Algorithm Analysis

Algorithm Analysis

e Example: Sequential Search.

— Given an array of. elements, determine if a given numbeti Is
in the array.

— |If so, setloc to be the index of the first occurrencewafl, and
returntrue.

— Otherwise, return false.

e The Algorithm:

bool SeqSearch(int Al],int n,int val,int & oc) {
|l oc = O;

while(loc < n & Alloc] !'= val)
++ | oc;
return | oc < n;

}

e How much time does it take to execute this program?

e |s this the best question to ask? What are some of the imgortan
considerations?

Algorithm Analysis

Factors Affecting Run Time

e Characteristics of the computer system (e.g. processod sps®unt
of memory, file-system type, etc.)

e The way the algorithm is implemented

e The particular instance of data the algorithm is operatimgeog.,
amount of data, type of data).

Conclusion?

Given these facts

e What should we use as a measure of how “good” an algorithm is?
e By what should we compare two algorithms with each other?

This is what algorithm analysis is all about.

Algorithm Analysis

Good Measures, Bad Measures

e The obvious choices for characterizing algorithms is
— The amount of time requiredine complexity)
— The amount of space requiregbéce complexity)

e We are usually more interested in the time complexity.

e What istime? It can be any of the following:
— Wall-clock or real time
— CPU-time
— Number of instructions executed

Algorithm Analysis

Which Measure?

We usually use the theumber of instructions executed as our
measure of time. Why?

We are not that interested in determin@gctly how much time a
given algorithm will take. Why?

Instead, we will try to determine thate of growth of the running
time.

Using the rate of growth, we can compare algorithms, indeeenof
the implementation details.

Algorithm Analysis

Simplifying Assumptions

As stated several times before, the characteristics ofdhtecplar
computer system that the algorithm will execute on are cmmed
Irrelevant.

Often the implementation of the algorithm is also ignordthaugh
later we’ll see an example where it matters.

Each instruction, no matter how simple or complex, is cogrgd to
take one “unit” of time. Why?

Some simple measure of the “size” of the data that the algaris
operating on is made, e.g., the size of an array, the numberdasno
In a graph, the dimensions of a matrix.

Algorithm Analysis

Example Revisited

Sequential Search

SeqSearch(int Al],int n,int val,int & oc)
{

| oc : = O;
while (loc < n &k Alloc] !'= val)

++ | oC;
return | oc < n;

e What is the size of the input?

e How many operations, as a function of the array sizare required
by SeqSearch?

Algorithm Analysis

Analyzing the Running Time

|dentify typical input data
|dentify abstract operations
Derive a mathematical analysis

Associate the algorithm to@mplexity class (This is the topic of the
next section)

Algorithm Analysis 8

Typical Input Data

We first need to determine what the input is, d&od much data is
being input.

We need to determine which of the data affects the running.tim
We usually use: to denote the number of data items to be processg¢d.

This could be
— size of afile
— size of an array or matrix
— number of nodes in a tree or graph

— degree of a polynomial

Algorithm Analysis

Abstract Operations

We talk about abstract operations when we consider opasainoa
hardware independent fashion.

Recall that we are interested in rate of growth, not the exawting
time. Thus, we can pick operations that will run most oftethim
code.

Determine the number of times these operations will be drelcas a
function of the size of the input data.

It is crucial that we pick the operations that are executedtraften,
and that we recognize when an operation can or cannot berpedo
In a constant amount of time.

Algorithm Analysis

Example: factorial

factorial (n) {
| f (n==1)
return 1
el se

return n » factorial (n-1)

e \We focus on the comparison (==) (this is the abstract operaand

Ignore the other instructions.

e For example, if we calculate the number of operations inftmstion
based on the comparison operator, we have:

— for factorial(1), 1 operation
— for factorial(2), 2 operations

— for factorial(n), n operations

10

Algorithm Analysis

Example: Search for Maximum

int max(int af],int n) {
Int max = int. M N VAL
for (int i=0; i<n; |++)
max = MAXIMUM max, al[i]);
return max;

We focus on the assignment (=) inside the loop and ignorettier o
Instructions.

for an array of length 1, 1 comparison

for an array of length 2, 2 comparisons

for an array of lengtlm, n comparisons

11

Algorithm Analysis

Mathematical Analysis

There are three types of analysis that can performed on anthiqp.

e Best-case analysis
Analysis of the performance of the algorithm assuming tleesiest”

Instance of data input.
—This is the most useless one. Why?
Average-case analysis

Analysis of the performance of the algorithm assuming arfage”
Instance of data input.

—This may be difficult. Why?

Worst-case analysis
Analysis of the performance of the algorithm assuming therst

Instance of data input.
—This is the most practical. Why?

12

Algorithm Analysis 13

Analysis Example: Insertion Sort

void insertion(itenlype Al], int n) {
Iint 1, j; itemlype v,
for (1=1;i<=n;i++) {
v=Ali]; j=i-1;
while (j >0 && Alj] > v)
{ Alj+1] = Alj]; J--7}
AlJ+1]=v;}

e Assume we use the comparisons in the “while” loop as our abistr
operation.
(Is this a good choice?)

e Worst-case:When the array is sorted in descending order,
Alj] > v for 1to: — 1 for every iteration of the “for” loop. The total
number of comparisons s - ,(i — 1) = n(n —1)/2 ~ n?/2.

e Best-caseWhen the array is already sorted in ascending order, the
algorithm only executes comparisons!

Algorithm Analysis 14

Analysis Example: SumOfProducts

doubl e SunOf Product s(double Al], int size) {
doubl e V;
for (int i=1; i<=size; I++) {
for (int j=1; j<=size; j++) {
} V=ALT <AL T

}

We will use the assigniM=A[i | *A[j |) as our abstract operation.
(Is this a good choice?)

Since there are no conditionalsf(, whi | e) the worst, average, and
best case will be the same.

Notice thatj ranges from 1 taize.
Thus, each time the inner loop executes, it uses operations.

The outer loop also executes:e times, each time executing the
iInner loop.

Thus, the number of operationssige * size = size?.

