
Algorithm Analysis 1

Algorithm Analysis

• Example: Sequential Search.

– Given an array ofn elements, determine if a given numberval is
in the array.

– If so, setloc to be the index of the first occurrence ofval, and
returntrue.

– Otherwise, return false.

• The Algorithm:
bool SeqSearch(int A[],int n,int val,int &loc) {

loc = 0;
while(loc < n && A[loc] != val)

++ loc;
return loc < n;

}

• How much time does it take to execute this program?

• Is this the best question to ask? What are some of the important
considerations?

Algorithm Analysis 2

Factors Affecting Run Time

• Characteristics of the computer system (e.g. processor speed, amount
of memory, file-system type, etc.)

• The way the algorithm is implemented

• The particular instance of data the algorithm is operating on (e.g.,
amount of data, type of data).

Conclusion?

Given these facts

• What should we use as a measure of how “good” an algorithm is?

• By what should we compare two algorithms with each other?

This is what algorithm analysis is all about.

Algorithm Analysis 3

Good Measures, Bad Measures

• The obvious choices for characterizing algorithms is

– The amount of time required (time complexity)

– The amount of space required (space complexity)

• We are usually more interested in the time complexity.

• What istime? It can be any of the following:

– Wall-clock or real time

– CPU-time

– Number of instructions executed

Algorithm Analysis 4

Which Measure?

• We usually use the thenumber of instructions executed as our
measure of time. Why?

• We are not that interested in determiningexactly how much time a
given algorithm will take. Why?

• Instead, we will try to determine therate of growth of the running
time.

• Using the rate of growth, we can compare algorithms, independent of
the implementation details.

Algorithm Analysis 5

Simplifying Assumptions

• As stated several times before, the characteristics of the particular
computer system that the algorithm will execute on are considered
irrelevant.

• Often the implementation of the algorithm is also ignored, although
later we’ll see an example where it matters.

• Each instruction, no matter how simple or complex, is considered to
take one “unit” of time. Why?

• Some simple measure of the “size” of the data that the algorithm is
operating on is made, e.g., the size of an array, the number of nodes
in a graph, the dimensions of a matrix.

Algorithm Analysis 6

Example Revisited

Sequential Search

SeqSearch(int A[],int n,int val,int &loc)
{

loc := 0;
while (loc < n && A[loc] != val)

++ loc;
return loc < n;

}

• What is the size of the input?

• How many operations, as a function of the array sizen, are required
by SeqSearch?

Algorithm Analysis 7

Analyzing the Running Time

• Identify typical input data

• Identify abstract operations

• Derive a mathematical analysis

• Associate the algorithm to acomplexity class (This is the topic of the
next section)

Algorithm Analysis 8

Typical Input Data

• We first need to determine what the input is, andhow much data is
being input.

• We need to determine which of the data affects the running time.

• We usually usen to denote the number of data items to be processed.

• This could be

– size of a file

– size of an array or matrix

– number of nodes in a tree or graph

– degree of a polynomial

Algorithm Analysis 9

Abstract Operations

• We talk about abstract operations when we consider operations in a
hardware independent fashion.

• Recall that we are interested in rate of growth, not the exactrunning
time. Thus, we can pick operations that will run most often inthe
code.

• Determine the number of times these operations will be executed as a
function of the size of the input data.

• It is crucial that we pick the operations that are executed most often,
and that we recognize when an operation can or cannot be performed
in a constant amount of time.

Algorithm Analysis 10

Example: factorial

factorial(n) {
if(n==1)

return 1
else

return n * factorial(n-1)
}

• We focus on the comparison (==) (this is the abstract operation) and
ignore the other instructions.

• For example, if we calculate the number of operations in thisfunction
based on the comparison operator, we have:

– for factorial(1), 1 operation
– for factorial(2), 2 operations

...
– for factorial(n), n operations

Algorithm Analysis 11

Example: Search for Maximum

int max(int a[],int n) {
int max = int.MIN_VAL;
for (int i=0; i<n; i++)

max = MAXIMUM(max, a[i]);
return max;

}

• We focus on the assignment (=) inside the loop and ignore the other
instructions.

• for an array of length 1, 1 comparison

• for an array of length 2, 2 comparisons
...

• for an array of lengthn, n comparisons

Algorithm Analysis 12

Mathematical Analysis

There are three types of analysis that can performed on an algorithm.

• Best-case analysis
Analysis of the performance of the algorithm assuming the “easiest”
instance of data input.

–This is the most useless one. Why?

• Average-case analysis
Analysis of the performance of the algorithm assuming an “average”
instance of data input.

–This may be difficult. Why?

• Worst-case analysis
Analysis of the performance of the algorithm assuming the “worst”
instance of data input.

–This is the most practical. Why?

Algorithm Analysis 13

Analysis Example: Insertion Sort

void insertion(itemType A[], int n) {
int i, j; itemType v;
for (i=1;i<=n;i++) {

v=A[i]; j=i-1;
while (j > 0 && A[j] > v)

{ A[j+1] = A[j]; j--; }
A[j+1]=v;}

}

• Assume we use the comparisons in the “while” loop as our abstract
operation.
(Is this a good choice?)

• Worst-case:When the arrayA is sorted in descending order,
A[j] > v for 1 to i− 1 for every iteration of the “for” loop. The total
number of comparisons is

∑
n

i=2
(i− 1) = n(n− 1)/2 ≈ n2/2.

• Best-case:When the arrayA is already sorted in ascending order, the
algorithm only executesn comparisons!

Algorithm Analysis 14

Analysis Example: SumOfProducts

double SumOfProducts(double A[], int size) {
double V;
for (int i=1; i<=size; i++) {

for (int j=1; j<=size; j++) {
V=A[i]*A[j];

}
}

}

• We will use the assign (V=A[i]*A[j]) as our abstract operation.
(Is this a good choice?)

• Since there are no conditionals (if, while) the worst, average, and
best case will be the same.

• Notice thatj ranges from 1 tosize.

• Thus, each time the inner loop executes, it usessize operations.

• The outer loop also executessize times, each time executing the
inner loop.

• Thus, the number of operations issize ∗ size = size2.

