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These notes are based on chapter 26 of [1] and lectures from CSCE423/823, Spring 2001.
We begin with a few definitions.

Definition 1 A problem is tractable if it is solvable by a polynomial-time algorithm.
Definition 2 A problem is intractable if it requires a superpolynomial-time algorithm.

There is an important class of problems, called NP-complete, whose status is unknown.
No polynomial-time algorithm to solve them is known, but there is no proof that they are
intractable, either. Most theoretical computer scientists believe that NP-complete problems
are intractable.

1 Polynomial Time

There are three reasons we consider polynomial-time solvable problems tractable:

1. Very rarely will you come across a problem that requires ©(n!?). Most polynomial-
time computable problems require much less time (e.g. ©(n?),0(n3), O(n')).

2. For many reasonable models of computation, a problem that can be solved in polynomial-
time in one model can be solved in polynomial-time in another.

3. Since polynomials are closed under addition, multiplication, and composition, the class
of polynomial-time solvable problems has nice closure properties.

1.1 Abstract Problems

Definition 3 An abstract problem Q) is a binary relation on a set I of problem instances
and a set S of problem solutions.

Example 1 SHORTEST-PATH

Given an unweighted, undirected graph G = (V, E) and two vertices x,y € V, the SHORTEST
PATH problem is the problem of finding the shortest path from x toy in G. That is, the path
from x to y that requires the least number of edges.

e An instance i of SHORTEST-PATH is a triple consisting of a graph and two vertices.
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e A solution S is a path in G.

e The abstract problem for SHORTEST-PATH is the set of pairs (i,s), such that s is a
solution for instance i. That is, s is a sequence of vertices vy, ..., v in the graph such
vy =z, v =y, (Vi,vi41) € E fori=1,...k —1, and k is the smallest number for
which this is true.

There are two distinct types of abstract problems: optimization problem and decision
problems.

Definition 4 An optimization problems is a problem in which some value must be min-
imized or mazximized. These are the types of problems you have probably seen many times in
the past.

Definition 5 A decision problems is a problem that has a “"yes/no” answer.

The SHORTEST PATH problem is an optimization problem. There is a related problem,
called PATH, which is a corresponding decision problem. We can describe the PATH problem
as follows.

Problem: PATH
e Instance: A graph G = (V, E), two vertices z,y € V, and a positive integer k.
e Solution: A path from z to y.
e Decision Problem: Is there a solution of length at most k?
¢ Related Optimization Problem: A path of shortest length from x to y.

Given an instance ¢ of PATH, we say that ¢ is a yes instance if there is a path from =z
to y of length at most k, and 7 is a no instance if there is no path from z to y of length at
most k. We also use the notation PATH(i)=1 (PATH(:)=0) if i is a yes (no) instance. Similar
notation is used for all decision problems.

When studying the theory of NP-completeness, we are only concerned with decision
problems. This makes the theory more elegant, and much easier to deal with. Although this
seems like a strong restriction, it is usually the case that a decision problem can be solved
efficiently if and only if the related optimization problem can be solved efficiently. If there
is a solution to the optimization problem, the decision problem can often be answered by
comparing the answer with a decision parameter (For instance, with PATH, find the shortest
path, and compare the length to k.) Conversely, if the decision problem can be solved, a
binary-search type algorithm generally yields an efficient algorithm to solve the optimization
problem.



1.2 Encoding and Concrete Problems

Definition 6 An encoding of a set S of abstract objects is a mapping e from S to the set
of binary strings.

Example 2 Encoding integers
The set of integers N = {0,1,2,3,...} can be easily encoded by converting to binary. For
instance, e(17) = 10001.

Example 3 FEncoding graphs

A graph can be thought of as a listing of vertices, and a listing of pairs of vertices (the edges).
Since each vertex can be labeled with an integer, a graph can be encoded by encoding each
vertex and each edge by encoding in binary the indices of the vertices.

It is easy to see that virtually any problem can be encoded, as evidenced by the fact that
we can store them in a computer, which certainly stores them with some binary encoding.

Definition 7 A concrete problem is a problem whose instance set is the set of binary
strings.

The concept of concrete problems is important in the study of complexity theory in that it
gives us a way to phrase any problem in the same language-that of binary strings.

Definition 8 An algorithm solves a concrete problem in time O(T(n)) if whenever the
algorithm is given an instance © of a concrete problem such that |i| = n (that is, the size of
the input is n), the algorithm produces a solution in at most O(T(n)) time.

Definition 9 A concrete problem is polynomial-time solvable if there is an algorithm
that solves the problem in time O(n*) for some constant k, where n is the size of the problem.

We now give the first formal definition of the complexity class P.

Definition 10 The complexity class P is the set of concrete decision problems that are
polynomial-time solvable.

Since we solve concrete problems and not abstract problems, the encoding of an abstract
problem is very important to our understanding of polynomial time. We might expect that
any encoding will suffice. However, consider the following scenarios, given an integer n.

e If n is represented in unary (a string of n ones) then an algorithm with complexity
©(n) is polynomial on the size of the input (n).

e If we use the more common binary representation then the input length is k& = [logn]|
so an algorithm with complexity ©(n) = ©(2F) is exponential on the size of the input

().

It appears that the way we encode a problem can dramatically change the complexity of
an algorithm to solve the problem. On the surface, it appears that we cannot say anything
about the complexity of solving an abstract problem. The following theorem gives us hope.



Theorem 1 Let () be an abstract problem on an instance set I, and let e; and ey be two
encoding on I that are polynomially related. That is, given any instance v € I of an abstract
problem, e1(i) can be computed from es(i), and vice-versa, in polynomial time. Then e1(Q) €

P if and only if F5(Q) € P.

In other words, any reasonable encoding (of which unary is not) of an abstract problem
will result in similar running times. Since most of the encoding that naturally occur to us
are reasonable, we usually do not have to be too concerned with the actual encoding used.
We should be sure, however, that there actually is a reasonable encoding.

1.3 Formal Languages

In order to further develop our discussion of complexity classes, we first need to discuss some
basic principles of formal languages.

Definition 11 An alphabet ¥ is a finite set of symbols.
Definition 12 A language L over X is a set of strings from .

Example 4 Let ¥ = {0,1}. The set L = {10,11,101,111,...} is the language of binary
representations of prime numbers.

Definition 13 X* is the set of all strings over 3.
Definition 14 ¢ is the empty string. That is, it is the string with no characters.

Definition 15 The compliment of L is L = ¥* — L. That is, the compliment of L is the
set of strings not in L.

Definition 16 The concatenation of two languages Ly and Lo is L = {x1xo : 11 € Ly, 19 €
Ly}

Definition 17 The closure of a language is L* = {e} U L* U L>U L3 U --- U L* where L*
1s the language obtained by concatenating L to itself k times.

Since any decision problem () can be be encoded, each instance of () belongs to >*, where
¥ ={0,1}. Thus, we can define each decision problem as a language L by

L={ze¥ :Q(z) =1}
In other words, L is the set of yes instances of ().

Definition 18 An algorithm A accepts (rejects) a string x € {0, 1}* if, given x, it outputs
A(x) =1 (A(z) = 0).

If A accepts a language L and = ¢ L, A does not necessarily return 0 — it may never
terminate.



Definition 19 The language accepted by an algorithm A is the set
L={xe{0,1}": A(z) = 1}.

Definition 20 A language L is decided by A if, for allz € L, A(z) =1 and for all x & L,
A(xz) = 0. In other words, A accepts every string in L and rejects every string not in L.

Definition 21 A language L is accepted (decided) in polynomial time by A if, for all
x € {0,1}*, A accepts (accepts or rejects) x in time O(n*) for some k, where n is the size
of x.

We can re-define the complexity class P.

Definition 22 The complexity class P is the set of languages L that are decided in poly-
nomial time. In other words,

P ={L C{0,1}": There exists an algorithm A that decides L in polynomial time}

It is not hard to show the following equivalent definition of P.
Theorem 2
P ={L C{0,1}" : There exists an algorithm A that accepts L in polynomial time}

Proof: This is only a sketch of the proof. Since a polynomial-time algorithm A exists to
accept L, it has running time O(n*) for some k. In other words, the running time is at most
cn® for some constant c¢. An algorithm A’ to decide L runs algorithm A for at least cn®
steps. If A has accepted xz, A" accepts x. If A has not accepted x, it never will, since it has
run long enough. Therefore A’ rejects x. Thus A’ decides L in polynomial time. O

Think about why it might be difficult in practice to actually implement the decision
algorithm described in the previous proof.
2 Polynomial-Time Verification

Definition 23 A verification algorithm is an algorithm that takes two inputs:
1. A binary string x from the language.

2. A certificate y (also a binary string).

Definition 24 An algorithm verifies an input x if there exists a certificate y such that
A(z,y) = 1.

You can think of a certificate as being a set of data that allows one to easily see that an
instance is a yes instance. For instance, a certificate for PATH could be a list of vertices.

Definition 25 Thelanguage verified by A is L = {z € {0,1}* : 3y such that A(z,y) = 1}.
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Clearly if « ¢ L, there should be no certificate y such that A(z,y) = 1. Also, the
algorithm A does not have to use the input y.

Definition 26 The complexity class NP (standing for nondeterministic polynomial) is
the class of languages that can be verified by a polynomial time algorithm A. That is, a
language L is in NP if there is a polynomial-time algorithm A, and constant ¢ such that

L ={x €{0,1}" : there exists a certificate y with |y| = O(|z|) such that A(x,y) =1}

Definition 27 The complexity class co-NP is the class of languages {L : L € NP}.
That is, the class of languages whose complement is in NP.

If L € P, then L € NP, since if there is a polynomial-time algorithm to decide L, the
algorithm can be easily converted to a two-argument verification algorithm. Thus P C NP.
Unfortunately, the ability to verify a language in polynomial time does not seem to guarantee
that it can be determined in polynomial time. We further develop this idea next.

3 NP-completeness and Reducibility

The class NP-complete has the property that if any one NP-complete problem can be solved
in polynomial-time, then every problem in NP has a polynomial-time solution. That is,
it would imply that P = NP. After decades of study, no polynomial-time algorithm has
ever been discovered to solve any NP-complete problem, yet nobody has proven one does
not exist, either. Some would consider the question of whether or not P = NP the most
important open question in theoretical computer science.

Definition 28 We say that a language L, is polynomial-time reducible to a language
Ly, written Ly <, Lo, if there is a polynomial-time computable function f :{0,1}* — {0,1}*
such that for all x € {0,1}*, x € Ly <= f(x) € Ly. We call the function f the reduction
function and the polynomial-time algorithm F' that computes f the reduction algorithm.

We will see many examples of polynomial-time reductions in the next section. The following
theorem shows one important property of polynomial-time reductions.

Theorem 3 If Ly, Ly C {0,1}* are languages such that Ly <, Lo, then Ly € P = Ly € P.

Proof: Let A; be the polynomial-time algorithm to solve Lo, and f a reduction function
from L; to Ly. An algorithm to solve L; can take an input z € {0,1}*, compute f(z) in
polynomial time, and use A, to determine if f(x) € Ly in polynomial time. The algorithm
returns the result from A, since x € Ly if and only if f(z) € Ly, and the algorithm is clearly
polynomial-time. ]

Definition 29 Let L be a language such that L' <, L for every L' € NP. Then we say that
L s NP-hard.



In English, Definition 29 says that a language L is NP-Hard if every problem in NP
is polynomial-time reducible to L. But how can we prove that every language in NP is in
polynomial-time reducible to L? We do not even know every language in NP! As we will see
soon, this is actually possible. Now the moment we have all been waiting for-the definition

of NP-Complete.

Definition 30 A language L C {0,1}* is NP-complete (NPC) if
1. L is NP and
2. L is NP-hard.

Theorem 4
1. If any problem in NPC'is polynomial-time solvable, then P = NP.

2. If there exists any problem in NP that is not polynomial-time solvable, then all NPC
problems are not polynomial-time solvable.

Proof:

1. Suppose L € P and that L € NPC. For any L' € NP we have L' <, L by property 2
of the definition of NPC. By Theorem 3, we have that L' € P.

2. Suppose there exists an L € NP such that L ¢ P. Let L' be any polynomial-time solv-
able problem in NPC. Then L <, L', and Theorem 3 implies that L € P, contradicting
our assumption. 0

This theorem is at the heart of why NPC is such an important class of problems. NPC
can be thought of as the hardest problems in NP. Hundreds of problems have been proven
to be NPC, and thousands of researchers have tried and failed to find a polynomial time
algorithm to solve any of them. This leads most people to believe that NP # P. On the
other hand, they have also failed to prove that the best algorithm possible for any of these
problems is exponential.

3.1 Circuit Satisfiability
Problem: CircuiT-SAT

e Instance: A boolean combinational circuit with one output. That is, a circuit con-
sisting of input wires, AND, OR, NOT, and other boolean gates, and one output
wire.

e Decision Problem: Can boolean values be assigned to the inputs so that the output
is 17

We will give the sketch of a proof that CircuiT-SAT is NPC.

Theorem 5 The CIRCUIT-SAT problem is NP-complete.
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Proof: To show that CIRCUIT-SAT is NP we will provide a two-input, polynomial-time
algorithm A to verify CIRCUIT-SAT. The first input is a boolean combinational circuit
C. The certificate will consist of boolean values assigned to the inputs of C.

The algorithm A will compute the output of the circuit by computing the result of each
gate from inputs to outputs (which can be done in polynomial time). A will output the the
result of the circuit, since the circuit outputs 1 if and only if the certificate is a satisfying
truth assignment. Notice that if C' is not satisfiable, no satisfying truth assignment exists,
and A will always return 0 as required. Clearly A will work if C' is satisfiable, since it will
return 1 when given a valid certificate. Thus A is a polynomial-time verification algorithm,
and CIRCUIT-SAT is NP.

In order to show that CIRCUIT-SAT is NP-hard, we need to show that every language in
NP is polynomial-time reducible to CIRCUIT-SAT. The proof of this is beyond the scope of
these notes, so we will only give a very sketchy proof of this fact. In fact, if you are convinced
of the fact that CIRCUIT-SAT is NP-hard by reading this proof, you are either easily fooled
or very bright.

If a language L is in NP, there is a polynomial-time verification algorithm A for L. A
verification algorithm can be implemented on a computer, and computers consist of boolean
circuits with feedback, memory, etc. The trick is to modify the circuits in a computer to
remove feedback, memory, etc., by creating as many copies of the circuit as possible and
having all connections go forward. We need one copy for each step of the algorithm. The
input wires will contain the values of the inputs, including the certificate, and the output of
the circuit will be the output of the algorithm A. With a little thought, you can convince
yourself that the size of the circuit is polynomial in the size of the input.

Notice that if L is a yes instance, there is some certificate that will results in the value
1 being returned by A, and if L is a no instance, there is no certificate that will result in 1
being returned by A. Since our circuit returns the result of A, the circuit is satisfiable (is a
yes instance) if and only if L is a yes instance. Thus, L is reduced to CIRCUIT-SAT. O

We have now established (well, sort of) the existence of at least one NP-Complete prob-
lem. As we see next, this is more significant than is immediately obvious.

4 NP-completeness Proofs

The proof that CIRCUIT-SAT is NP-complete relies on a direct proof that for any language
L e NP, L <, CiIRcUIT-SAT. The next lemma shows that we do not have to go to all of
this work for every language we wish to show is NPC.

Lemma 6 If L is a language such that L' <, L for some L' € NPC then L is NP-hard.
Moreover, if L € NP, then L € NPC.

Proof: For any language L” € NP, we know that L"” <, L' since L' is NP-complete. Since
L' <, L, then L” <, L, since the relation <, is transitive (A polynomial-time reduction
followed by a polynomial-time reduction is still polynomial-time). Thus L is NP-hard. If
L € NP we also have L € NPC' by definition. O



By reducing a known NP-complete language L' to L, we implicitly reduce every language
in NP to L. Thus, the above lemma gives us a nice method for proving that a language L
is NP-complete.

1. Prove L € NP.
2. Select a known NP-complete language L'.

3. Describe an algorithm that computes a function f mapping every instance of L’ to an
instance of L.

4. Prove that the function f satisfies x € L' <= f(x) € L for all x € {0,1}*. There are
two common ways to prove that x € L' <= f(z) € L for all x € {0,1}*.

(a) Show that x € L'’ = f(z) € L and that f(z) e L = xz € L.
(b) Show that x € '’ = f(z) € L and that x ¢ L' = f(z) & L.

5. Prove that the algorithm computing f runs in polynomial time.

In the remaining sections we give proofs that several other problems are NP-complete.
Figure 1 shows the reductions we use in each of the proofs.

Circuit-SAT $—»{ SAT $—»] 3-CNF-SAT

Subset-Sum |

Ham—CycIe+—>| TSP |

Figure 1: The structure of reductions used in these notes.

4.1 SAT
Problem: SAT

e Instance: A boolean formula involving a set of n boolean variable x4, ... x,,, m boolean
connectives (including AND (A), OR (V), NOT (—), implication (—), and iff (<)),
and parentheses.

e Decision Problem: Is there a satisfying truth assignment? That is, can each of the
variables be assigned truth values so the formula is true?

Theorem 7 SAT is NP-complete.



Proof: A certificate for an instance x of SAT consists of a truth assignment for the input
variables of x. The verification algorithm replaces each of the variables with the truth
assignments from the certificate, and evaluates the value of the expression, which can be
done in polynomial time. Since the expression can only evaluate to 1 if the formula is
satisfiable, we have a polynomial-time verification algorithm for SAT. That is, SAT is NP.

We will reduce CIRCUIT-SAT to SAT. Let C be an instance of CIRCUIT-SAT. We leave
it to the reader to verify that the obvious reduction (replacing circuit with expression) can
not always be done in polynomial time.

We reduce as follows. Let C be an instance of CIRCUIT-SAT. First, label each wire
(including the inputs) in the circuit. For each gate, create an expression that describes the
proper operation of the gate. For instance, if the circuit contains an OR gate with inputs
x1, T2, and x3, and output x4, create the expression (1 V xs V x3) <> x4. The formula we
construct is the AND of the expression for each gate and the final output of the gate. Clearly
we can construct this formula in polynomial time.

As an example of the construction, consider Figure 2. Notice the inputs are z,..., s,
the values wg,..., w19 are intermediate values, and z; is the output of the circuit. The
corresponding expression for this circuit is

T11

> > > > > >

X1 Xg
X2
X
7
X3%>o
X4

Xg

Figure 2: An instance of CIRCUIT-SAT

If x is a satisfiable circuit, then there is a truth assignment for the inputs of the circuit
such that the output will be 1. Assigning these same values to the expression, including the
correct results for each gate, will result in a value of 1 for the expression as well. Conversely,
assume x is not satisfiable. Since the expression contains the output ANDed with the rest
of the circuit, and the output cannot be 1, neither can the expression. Thus x is satisfiable
if and only if the corresponding expression is. 0
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4.2 3-CNF-Satisfiability

Definition 31 A literal is an occurrence in a boolean formula of a variable or its negation.

Definition 32 A boolean formula is in conjunctive normal form (CNF) if it is expressed
as an AND of OR clauses consisting of one or more literals.

Definition 33 A boolean formula is in 3-conjunctive normal form (3-CNF) if each
clause has three distinct literals (e.g. (x V -y V z) A (mx V -y V 2)).

Problem: 3-CNF-SAT
e Instance: A boolean formula in 3-conjunctive normal form.

e Decision Problem: Is there a satisfying truth assignment? That is, can each of the
variables be assigned truth values so the formula is true?

Notice that 3-CNF-SAT is just a special case of SAT. It turns out to be more useful
to use to reduce from than SAT since it has a well-defined structure. Do not make the
mistake of assuming that since it is a special case, it is clearly NPC. In fact the special case
2-CNF-SAT is solvable in polynomial time. As another example, just because finding the
roots of a polynomial of degree 1 is trivial, that does not imply that finding the roots of a
polynomial of degree 100 is trivial.

Theorem 8 3-CNF-SAT is NP-complete.

Proof: Since an instance of 3-CNF-SAT is also an instance of SAT, 3-CNF-SAT is NP.

We will reduce SAT to 3-CNF-SAT. This reduction involves several steps. We will
specify each step and give an example to make the reduction easier to understand. Let g
be an instance of SAT. For example,

wo = [~(x1 A xa) V1 V g V 3] = [9 — 24]

Step 1 Let ¢ be a full parenthesization of ¢, so that each connective is applied to at most 2
variables. For our example,

1= [(~(z1 Az2)) V (21 V (m22)) V 23)] > [(m22) — 4]

Step 2 Construct a binary parse tree T, for the formula ¢; with literals as leaves and connec-
tives as internal nodes. For example, the tree corresponding to ¢; is given in Figure 3.

Notice that the binary parse tree can be viewed as a circuit for computing the function,
with the leaves as input, and the value on top of the root as the result. We label the
outputs of each node by variables ;.
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Figure 3: The binary tree T, corresponding to ¢y

Step 3 Rewrite the original formula ¢, as the AND of the root variable and a conjunction of
clauses describing the operation of each node in T, , similar to the construction used
in the proof of SAT. In our example, the result is

pa=vy1 N [y (Y2 < y3)]
A ly2 < (ya Vys)]
A lys < (Yo — 24)]
A [ys = (—yr)]
A ys < (ys V 23)]
A [ys < (mx9)]
A lyr = (21 A ag)]
A lys < (21 Vo)
A lyo = (—2)]

Notice that since each node in the tree has at most two children and exactly one parent,
The resulting formula ¢ obtained is a conjunction of clauses 9 ;, each of which has
at most three literals.

Step 4 We need to write each clause ¢y, as an OR of literals. For 1 literal, there is nothing
to do. We will show how to do this for clauses with 2 or 3 literals, using @93 = yo <
(ya V y5), and a5 = y4 <> (—y7) to demonstrate.

4a. For each ¢, draw the truth table for ¢, ;. In our example, the truth tables are as
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follows

’yg\y4\y5\9023‘ 802,5
0 [0 |0 |1 0 {0 |0
00 |1 10 0|11
0O (1010 1 (0 |1
0|1 (110 11110
11010 1|0
1 (0 |1 |1
1 (1 (0 |1
1 (1 (1|1

4b. Compute the disjunctive normal form (DNF) of —py; by the usual method. In
our examples,

=023 = (Y2 A=Ys AYs) V (=Y Ayas A —ys) V (22 Aya Ays) V(Y2 A —ya A —ys)

a5 = (Ya Ay7) V (s A —yr)

4c. Compute the CNF ¢3; of 9, by negating —¢,; and applying DeMorgan’s Laws.
In our examples, we get

w33 =(Y2VysVYs) A(y2Voys Vuys) A (Y2 Vs V=ys) A (my2 Vys Vys)

w35 = (Y2 V 2yr) A (Ya V yr)
Notice that each clause of ¢3; is the OR of at most three literals.

Step 5 We need to make sure every clause has ezactly three literals. We introduce two new
variables p and g to assist. We replace each ¢3;, with an equivalent ¢,; that has
exactly three literals. There are three cases.

— If ¢3; has 3 distinct literals, let ¢4; = 3.

— If o3, has 2 distinct literals, then ¢3; = [; V Iy, for some literals /; and [. Let
30471‘ = (ll V l2 \/p) A\ (ll V lz V ﬁp)

— If 3, has 1 literal [, then let ¢, ; = (IVpV @) A(IVPV =) A(IV=pVq) A1V —pV—q).
It is easy to check that for any truth assignment of p and ¢, @3, and ¢4 ,; have the
same truth values.

Step 6 Let ¢4 be the AND of all of the ¢4 ;.

Since in each step we assured that the new expressions were equivalent to the old ones, ¢y
is equivalent to ¢g. In other words, ¢, is satisfiable if and only if ¢y is satisfiable.

Lastly, we need to show that the reduction can be done in polynomial time. Steps 1, 2,
and 3 take linear time in the size of the input, and the formula ¢, is at most double the size
of ¢1, since for each connective we add at most one literal (the output) and one connective
(the «»). Since each clause o, contains at most 3 literals, the truth tables for each contains
at most 8 rows, so the DNF for —py; is no larger than 8 times the size of ¢5;. The size of
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3, is the same as that of =9 ;. Lastly, it is clear that the size of ¢,; is no more than 4
times the size of ¢3,. In all, the size of ¢, is polynomial in the size of ¢y, and each step can
be accomplished in polynomial time. O

4.3 The Clique Problem

Definition 34 A clique is a complete subgraph of an undirected graph G = (V, E). That
is, a subset V! €'V such that the induced subgraph on V' is K.

The size of a clique is the number of vertices it contains. A clique of size k is called a k-clique.

Problem: CLIQUE
e Instance: A graph G = (V, F), and a positive integer k.
e Decision Problem: Does GG contain a k-clique?

¢ Related Optimization Problem: Find the largest k such that G contains a k-clique.
Theorem 9 CLIQUE is NP-complete.

Proof: Let V/ C V be our certificate. To check the certificate, first make sure |V’ = k. Next,
for each u,v € V', check whether or not (u,v) € F, returning 1 if and only if (u,v) € E
for every pair u,v € V’. It should be clear that the verification algorithm works, that a
graph with no k-clique does not have a valid certificate, and the verification can be done in
polynomial time.

We now reduce 3-CNF-SAT to CLIQUE. Let ¢ = C; ACy A --- A C} be an instance of
3-CNF-SAT with k clauses. For each clause C, = (I;" V I;" V [3") in ¢, we place a triple of
vertices v;",vo" and v3" in V. An edge is placed between two vertices v;" and v;® if r # s
and [;" # —l;°. In other words, they are in different clauses, and the corresponding variables
are consistent. We state this clearly as a lemma.

Lemma 10 There is an edge between v;" and v;° if and only if it is possible to assign both
;" and ;* to be true.

Clearly we can construct the graph from ¢ in polynomial time.

Now, assume ¢ has a satisfying assignment. Then each clause C, contains at least one
literal [;” that can be made true, and each such literal corresponds to a vertex v;". Picking
one such "true” literal from each clause yields a set V' of k vertices, all of which can be
connected to each other by the lemma. Thus V' is a k-clique.

Conversely, let G have a k-clique V'. Clearly V' contains one vertex from each triple.
Thus, each clause has a literal corresponding to a vertex in the clique. By the lemma, each of
these literals can be assigned the value true, and thus each clause is satisfied, and therefore
© is satisfied. O
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4.4 The Vertex-Cover Problem

Definition 35 A vertex cover of an undirected graph G = (V, E) is a subset V' CV such
that if (u,v) € E thenw € V' and/or v e V'.

The size of a vertex cover is the number of vertices in it. Figure 4 shows a simple example
of a vertex cover.

Figure 4: The white vertices represent a vertex cover for the graph

Problem: VERTEX-COVER
e Instance: A graph G = (V, E), and a positive integer k.
e Solution: A vertex cover of G.
e Decision Problem: Does GG contain a vertex cover containing k vertices?

e Related Optimization Problem: Find the smallest k for which there exists a vertex
cover with k vertices.

Theorem 11 VERTEX-COVER is NP-complete

Proof: Given a graph G = (V, F) and an integer k, let the certificate be the vertex cover
V' C V. The verification algorithm checks that |V'| = k and for each edge (u,v) € E,
determines whether or not either v € V' or v € V’, returning 1 if and only if this is always
the case. Clearly this can only return 1 if G' contains a vertex cover of size k, and works
properly given a valid certificate. It also takes polynomial time.

We now reduce CLIQUE to VERTEX-COVER. Given an undirected graph G = (V, E)
the compliment of G is defined as G = (V, E) where £ = {(u,v) : (u,v) ¢ E}. We can
compute this in polynomial time.

Suppose G has a clique V' C V with |V’| = k. We claim that V' — V"’ is a vertex cover in
G. Let (u,v) € E. Then (u,v) ¢ E which means u and/or v does not belong to V' since all
pairs of vertices in V' are connected by an edge E. Thus u and/or v is in V' — V', meaning
(u,v) is covered by V —V’. Thus all edges in E are covered by a vertex in V —V’. Therefore,
the set V — V' is a vertex cover of G of size |V| — k.
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Let G have a vertex cover V' C V, where |V’| = |V| — k. For all u,v € V, if (u,v) € F,
then u € V' and/or v € V'. For all u,v € V, if u ¢ V" and v ¢ V', then (u,v) € E. In other
words, if u and v are two vertices that are not in the vertex cover V', then (u,v) € E, so

(u,v) € E. Since this is true of any pair of vertices from V — V' V — V' is a clique and has
size |V| — |V'| = k. O

4.5 The Subset-Sum Problem

Problem: SUBSET-SUM
e Instance: A finite set of positive integers S, and a target integer t.
e Solution: A subset of S.

e Decision Problem: Is there a subset of S such that the sum of the numbers in the
subset is exactly t7

e Related Optimization Problem: Find a subset of S such that the sum of the
numbers is as close to t as possible.

Example 5 Let S = {1,16, 64,256, 1040, 1041, 1093, 1284, 1344} andt = 3754. One possible
solution is S" = {1, 16,64, 256, 1040, 1093, 1284 }.

Theorem 12 SUBSET-SUM is NP-complete.

Proof: We will not give the proof here, but an example that should give enough details
for the reader to figure out the general idea. The reduction is from 3-CNF-SAT. Let
(xVyV-z)A(-xVyVz)A(zV-yVz) be an instance of 3-CNF-SAT. Create a table
with rows for each variable, each variable’s negation, and two rows for each clause. Insert a
column for each variable and each clause. Fill in the table following the pattern in Table 1.
Interpret each row as a decimal number, including the target. With a little work, you can
convince yourself that this is a valid reduction. 0

Another proof reduces from VERTEX-COVER.

4.6 The Hamiltonian-Cycle Problem

Problem: HAM-CYCLE
e Instance: A graph G = (V, E).

e Decision Problem: Does GG have a Hamiltonian cycle? That is, does G contain a
simple cycle containing all vertices of V7

Theorem 13 HaM-CYCLE is NP-complete.

Proof: See page 954-959 of [1] to see that HAM-CYCLE is NP-complete. The reduction is
from 3-CNF-SAT.
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Clause/Var Clause 1 | Clause 2 | Clause 3
x
T
Y
Y
z

—_
]
—_

*

-z
Clause 1
Slop
Clause 2
Slop
Clause 3
Slop
target

k=] =] o) Nen) Nen] Neol Nen) Nen) Nen) Nenll Bl I I
Il k==l el el Nen) Nen) Neol Neol Nen) el Bl Neol Neanll NG
=] k=] Nl Ne] Nes] Neol Bl B el Nen) Nanl el IR S
[Ny el Nen) Neol Neol N IR B Neol Nesl By New)
SOOI OO OO =
N B Nen) Nen) Neol Reol Nen) i o e Nenl Nan)

*

Table 1: Table for the Subset-Sum Problem. Select rows (e.g. the rows indicated by the *)
such that the numbers in these rows sum to the target.

4.7 The Traveling-Salesman Problem
Problem: TSP

e Instance: A complete graph G = (V, E), a function ¢(x, y) such that for each z,y € V,
c(x,y) is a positive integer called the cost to go from z to y, a maximum cost k, a
positive integer.

e Solution: A tour of G. That is, an ordering of the vertices. wvy,..., v,. The cost
of a tour is the sum of the costs of each of the edges in the ordering. That is C' =

n—1
Y iy (v, 1) + c(vn, v1).
e Decision Problem: Does (G contain a tour of cost at most k?

e Related Optimization Problem: Find the lowest cost tour of G.
Theorem 14 TSP is NP-complete.

Proof: A certificate is an ordering of the vertices. The verification algorithm checks that
the sequence contains each vertex exactly once, sums up the edge costs, and checks to see
that this cost is at most k, which can easily be done in polynomial time.

We reduce from HAM-CYCLE. Let G = (V, E') be an instance of HAM-CYCLE. Construct
an instance of TSP as follows: form the complete graph G’ = (V, E’), where E' = {(i,j) :
i,7 € V}, and define the cost function ¢ by

oli 7} = 0, if (i,j) € E,
(i) {1, if (i,7) ¢ E.
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Lastly let the cost be 0. Clearly this can be done in polynomial time.

Now we must show that G has a Hamiltonian cycle iff G’ has a tour with cost a most 0.
Suppose G has a Hamiltonian cycle h. Thus each edge h belongs to E and thus a tour has
cost 0 in G'.

Conversely, suppose G’ has a tour h’ with cost< 0. Since the cost of edges in E’ are 0
and 1, the cost of A’ is exactly 0. Therefore, h' contains only edges in E. Therefore h is a
Hamiltonian cycle in G. U
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