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Theory of NP-Completeness

• NP-completeis a class of problems with a certain property.

• Since it is a very theoretical area, it can also be complex.

• We won’t get into the finer details of the theory, but will try to give an

overall picture of what it is all about.

• Be aware that I will gloss over some important details/concepts, and

make some simplifying assumptions.

• Before we talk about NP-complete problems, we first need to discuss

several things, including

– decision problems,

– the classP, and

– the classNP
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Optimization/Decision Problems

• Optimization Problems

– An optimization problem is one which asks “What is the
optimal solution to problemX?”

– Examples:

∗ 0-1 knapsack/fractional knapsack
∗ matrix chain multiplication
∗ minimum spanning tree.

• Decision Problems

– A decision problemis a problem that asks “Is there a solution to
problemX satisfying propertyY ?”

– Examples:

∗ Does graphG have a minimum spanning tree of weight≤ W?
∗ Can I multiply matrices(A1, . . . , An) with ≤ M operations?
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Optimization/Decision Example

• Example

– Problem: 0-1 knapsack

– Instance: A list of integer profitsP = (p1, . . . , pn) and integer
weightsW = (w1, . . . , wn), and capacityM (an integer).

– Feasible Solution:A vectorx = (x1, x2, . . . , xn), where

xi ∈ {0, 1} for 1 ≤ i ≤ n, and
n∑

i=1

wixi ≤ M.

– Optimal Solution: A feasible solution which maximizesprofit .

That is, the quantityP =
n∑

i=1

pixi.

– Question: Is the optimal profit≥ Q?

• The optimization problem tries to find the optimal solution.

• The decision problem tries to answer the “yes/no” question.
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Why Decision Problems

• When we discuss the various classes of problems (P,NP,

NP-Complete), we restrict our attention to decision problems.

• This simplifies the study of complexity.

• It turns out that this restriction is not really much of a restriction.

• There are simple ways of using the solution to a decision problem to

get a solution to a related optimization problem.

• Example: If we can solve the 0-1 knapsack decision problem, we

can solve the 0-1 knapsack optimization problem by using abinary
searchtype algorithm.

• Before we go further, we will see another important example of a

decision problem.
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Satisfiability (SAT)

• Notation: Let∨ denote logicalor of 2 boolean variables, and¬

denotenegation of a boolean variable. Aclauseis the logicalor of

boolean variables and/or their negations.

• Problem: Satisfiability (SAT)

– Instance: A set of boolean variablesU = {x1, x2, . . . , xm}, and

a set of clauses,C = {c1, c2, . . . cs}.

– Question: Is there a satisfying truth assignment? In other words,

can boolean values be assigned to the variablesxi so that each of

the clauses is true?
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SAT Examples

• Let U = {u, v, w, x}, and

C = {u ∨ v ∨ ¬x,¬u ∨ ¬v ∨ w, u ∨ ¬w ∨ ¬x}.

If we setu = x = false, andv = w = true, then it is easy to see

that each of the clauses above is true, so the answer is “yes”.

• Let U = {u, v, w}, and

C = {u ∨ v,¬u ∨ ¬v, u ∨ w,¬u ∨ ¬w, v ∨ w,¬v ∨ ¬w}.

Then the answer is “no”. But how do we know?
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SAT Examples Continued

• Let U = {u, v, w}, and

C = {u ∨ v,¬u ∨ ¬v, u ∨ w,¬u ∨ ¬w, v ∨ w,¬v ∨ ¬w}.

It seem that the only way to know that there is no solution is totry
them all:

u 0 0 0 0 1 1 1 1

v 0 0 1 1 0 0 1 1

w 0 1 0 1 0 1 0 1

u ∨ v 0 0 1 1 1 1 1 1

¬u ∨ ¬v 1 1 1 1 1 1 0 0

u ∨ w 0 1 0 1 1 1 1 1

¬u ∨ ¬w 1 1 1 1 1 0 1 0

v ∨ w 0 1 1 1 0 1 1 1

¬v ∨ ¬w 1 1 1 0 1 1 1 0



P, NP, and NP-Complete 8

YES versus NO

• Notice that in the case ofSAT:

– answering “yes” is easy–we just find one assignment that works,

but

– answering “no” requires an exhaustive computation of all possible

solutions.

• This is true for many decision problems.

• This is the basis of the theory of NP-completeness.

• We shall see more about this shortly.
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The Class P

• A polynomial-time algorithm is one which runs in timeO(nk), for

some constantk, wheren is thesize of the input.

• A deterministic algorithm is (essentially) one which always returns

the correct answer.

• The algorithms we have studied in this course are all deterministic,

and most of them are polynomial-time.

• Definition: P denotes the collection of decision problems which have

deterministic polynomial-time algorithms.

• Examples:

– Is the largest element in the arrayA larger thanm?

– Does the graphG have a spanning tree with weight at mostw?
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Example of an problem in P

• Example

– Problem: Fractional knapsack

– Instance: A list of integer profitsP = (p1, . . . , pn) and integer
weightsW = (w1, . . . , wn), and capacityM (an integer).

– Feasible Solution:A vectorx = (x1, x2, . . . , xn), where

0 ≤ xi ≤ 1 for 1 ≤ i ≤ n, and
n∑

i=1

wixi ≤ M.

– Optimal Solution: A feasible solution which maximizesprofit .

That is, the quantityP =
n∑

i=1

pixi.

– Question: Is the optimal profit≥ Q?

• Solution: Solve optimization problem with the polynomial-time
greedy algorithm, and test whether the optimal profit is larger thanQ.
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Certificates

• A certificate is a set of data representing a solution to an instance of

a (decision) problem.

• If a particular instance of a problem is a “yes” instance, then there is

some certificate (set of data) that meets the requirements.

• Thus, certificates can be used to prove that a particular instance of a

problem is a “yes” instance.

• A certificate isvalid if it provides proof that the particular instance of

a decision problem is a “yes” instance.

• To prove that a particular instance of a decision problem is a“yes”

instance, one can generate certificates until a valid one is found.

• This may or may not yield an efficient algorithm.
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Certificate Example

• For SAT, a certificate is a truth assignment for the variables.

– We saw that whenU = {u, v, w, x}, and

C = {u ∨ v ∨ ¬x,¬u ∨ ¬v ∨ w, u ∨ ¬w ∨ ¬x}.

the certificate{u= x= true, v= w=false} is a proof that

{U,C} is a “yes” instance ofSAT.

– We also saw that ifU = {u, v, w}, and

C = {u ∨ v,¬u ∨ ¬v, u ∨ w,¬u ∨ ¬w, v ∨ w,¬v ∨ ¬w},

then none of the 8 certificates are valid. Since{U,C} is a “no”

instance ofSAT, this is what we should expect.
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Certificate Example

• For the 0-1 knapsack problem, a certificate is a list of integers

(x1, x2, . . . , xn) such that for1 ≤ i ≤ n, xi ∈ {0, 1}, and

n∑

i=1

wixi ≤ M.

– A certificate is valid if it has profit≥ Q.
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Non-Deterministic Algorithms

• To prove that an instance of a decision problem is a “yes” instance,

we only need to find one valid certificate.

• A non-deterministic algorithm N is one which

– Guesses a certificate (The nondeterministic stage)

– Checks the validity of the certificate (The deterministic stage)

– Returns “yes” if the certificate is valid and “no” otherwise

• Notice that if a non-deterministic algorithm produces the answer

“false” it does not necessarily mean that the instance of the problem

is a “no” instance.

• It only means that the certificate it guessed was not a valid certificate.
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Examples

• SAT

– Let |U | = n, and|C| = m.

– If we are given a truth assignment for then variables inU , we can
check whether or not each of them clauses is true or not inO(n)

time in the worst-case.

– The total time to do the checking isO(nm).

– If each of the clauses is true, we output “true”.

– Otherwise we output “false”.

• Fractional knapsack

– Given an assignment(x1, x2, . . . , xn), we can compute the profit
P in O(n) steps, and compare it toQ in constant time.

– If P ≥ Q, output “true”.

– Otherwise we output “false”.
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The Class NP

• Definition: NP denotes the collection of decision problems which

have polynomial-time non-deterministic algorithms to solve them.

• In other words, a problem is inNP if every “yes” instance has some

certificate that can be validated in polynomial time.

• Notice that a problem inNP does not necessarily have a deterministic

polynomial algorithm to solve it.

• This is because the definition only assumes we can check the validity

of certificates. It does not give us a method for finding valid

certificates.

• For certain problems, there is no known method of finding valid

certificates in polynomial-time.
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Problems in NP

• From our earlier example, it is clear thatSAT and the fractional

knapsack problem are bothNP.

• The famoustraveling salesman problemis in NP. Can you argue

this?

– Problem: Traveling salesman problem

– Instance:n cities, and a costc(i, j) to travel from cityi to city j.

– Feasible Solution:A route that takes the salesman through every

city.

– Optimal Solution: A feasible solution with minimal cost.

– Question: Is there a route with cost≤ C?

• As we will prove (indirectly), most of the algorithms we have

discussed are inNP.
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More on NP

• As we just stated, for some problems inNP, there is no known way
of producing a valid certificate in polynomial time.

• For instance, there is no known polynomial-time deterministic
algorithm, or polynomial-time algorithm for finding a validcertificate
for, thetraveling salesman problem.

• In other words, it is unknown whetherNP⊆P or not.

• It can be shown, however, that problems inNP can be solved in
worst-case by exponential-time algorithms.

• As will be seen shortly,P⊆NP.

• It is important to remember thatNP does not stand for
non-polynomial.

• NP stands fornon-deterministic polynomial, which is much
different.
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P ⊆ NP

• It is not very difficult to argue thatP⊆NP

• Since a problem inP has a polynomial-time deterministic algorithm
A, we can compute a valid certificateC in polynomial time.

• We use this fact to write a nondeterministic algorithmN as follows

– Guess a certificate in the nondeterministic stage

– Ignore the certificate in the deterministic stage

– Instead, runA, which returns “yes” or “no,” and return that value.

• SinceA is polynomial, so is the nondeterministic algorithm.

• If an instance is a “no” instance,A (and henceN) will return “no,”
the correct answer.

• If an instance is a “yes” instance,A (and henceN) will return “yes,”
the correct answer.
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The Question: Is P=NP?

• The most important open question in theoretical computer science is

the question “IsP=NP?”

• Why is this so important?

– If it can be proved that indeedP=NP, then we will have

polynomial-time algorithms to solve thousands of problemsfor

which the best-known algorithms are exponential.

– If it can be shown thatP6= NP, then we will know that no

polynomial-time algorithm exists for certain problems. That is,

problems inNP-P.

• The question of which problems belong to the setNP-P, if any, has

been studied extensively for several decades.

• This is where the class ofNP-completeproblems comes into play.
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NP-complete

• There is a lot more to the theory of NP-Completeness than we can
cover here.

• It is important, however, to have a basic understanding of why
NP-completeproblems are so important.

• A problemD is said to beNP-completeif

– D ∈ NP, and

– For allD′ ∈ NP, there exists a polynomial time algorithm that
maps “yes” (“no”) instances ofD′ to “yes” (“no”) instances ofD.

• In other words, a solution to anNP-completeproblem yields a
solution toany other problem inNP. Why?

• Thus, if one can find a polynomial-time algorithm to solve an
NP-completeproblem, then it can be used to solveall problems in
NP, andP=NP.
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NP-complete Summary

• Although it is not known whether or notP=NP, most people thinkP
6= NP.

• If P 6= NP, theNP-completeproblems are the most likely problems

to be inNP-P.

• Thus, the most likely scenario is as follows:
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P

NP-complete
NP

• If you can prove thatP=NPor thatP 6= NP, you will be famous.
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A Final Note on NP-completeness

• There is one more important use of the theory ofNP-completeness.

• If you are asked by your boss to write an efficient algorithm for some

problem, there are several possibilities:

– You will find a polynomial-time algorithm to solve the problem,

and everyone will be happy.

– You will be unable to find a polynomial-time algorithm, and your

boss will fire you, and you will both be unhappy.

– You will be unable to find a polynomial-time algorithm, but you

will be able to show that the problem isNP-complete. Then your

boss will be unhappy, but he can’t fire you, because you have

shown that nobody else can come up with a good solution either,

so you will be happy.


