
ArrayListBible Algorithm Analysis Worksheet 

1 

 

The following methods are from ArrayListBible.  Recall that this class has an ArrayList<Verse> called 

theVerses.  Assume theVerses has n Verses.  Give tight bounds for the number of operations required for each.  

Then give what the ideal implementation would require.  Briefly justify.  A few have been done for you. 

 

1. Assume that ref is the mth verse in theVerses.  Operations =      Θ(n)      Ideal=         Θ(m)        .            
 
public boolean isValid(Reference ref) {    

        boolean valid = false; 

        if (ref.getBookOfBible() != BookOfBible.Dummy) { 

            for (Verse v : theVerses) { 

                if (v.getReference().equals(ref)) { 

                    valid = true; 

                } 

            } 

        } 

        return valid; 

} 

Since this method loops through the entire ArrayList and does a constant amount of work each 

time, it takes some constant times n operations.   

Ideally the method would return as soon as it determined the verse was valid.  This would require 

Θ(m) operations.  

 

2. Assume that ref is the mth verse in theVerses.  Operations =_____________  Ideal =______________ 

 
    public Verse getVerse(Reference ref) {     

        for (Verse v : theVerses) { 

            if (v.getReference().equals(ref)) { 

                return v; 

            } 

        } 

        return null; 

    } 

 

 

 

 

 

 

3. Assume that there are v verses in the given chapter and that the verses for this chapter start at the mth verse 

in theVerses.   

         Operations =_____________  Ideal =______________ 

 
    public int getLastVerseNumber(BookOfBible book, int chapter) { 

        int verse = 1; 

        while (getVerse(new Reference(book, chapter, verse)) != null) { 

            verse++; 

        } 

        return verse - 1; 

    } 

  



2 

4. Assume that there are c chapters and a total of k verses in the entire book and that the verses for this book 

start at the mth verse in theVerses. 

        Operations =      Θ(cn)     Ideal=      Θ(m+k )  
 

    public int getLastChapterNumber(BookOfBible book) { 

        int chapter = 1; 

        while (isValid(new Reference(book, chapter, 1))) { 

            chapter++; 

        } 

        return chapter - 1; 

    } 

 

This method calls isValid c times, each time requiring  Θ(n) operations.  Thus, it takes about  

Θ(cn) operations.   

Ideally we would just scan until we found the book, requiring  Θ(m) operations, and then scan 

from there until we found the end of the book, requiring an additional  Θ(k) operations.  The total 

would be  Θ(m+k). 

 

5. Assume the references has k elements and that on average each is at about the middle of theVerses. 

 

       Operations =_____________  Ideal =______________ 
 

    public VerseList getVerses(ArrayList<Reference> references) { 

        VerseList results = new VerseList(version, ""); 

        for (Reference ref : references) { 

            if (isValid(ref)) { 

                results.add(getVerse(ref)); 

            } else { 

                results.add(null); 

            } 

        } 

        return results; 

    } 

 

 

 

  



3 

6. Assume that verse1 is the mth verse, there are k verses between verse1 and verse2, the given book contains 

c chapters and that on average each chapter contains v verses. 

       Operations =     Θ(kvm+ccn) Ideal=      Θ(m+k ) 
 

    ArrayList<Reference> getReferencesInclusive(Reference verse1, Reference verse2) { 

        ArrayList<Reference> rList = new ArrayList<Reference>(); 

        if (verse1.compareTo(verse2) > 0 || !isValid(verse1) || !isValid(verse2)) { 

            return rList; 

        } 

        BookOfBible book = verse1.getBookOfBible(); 

        int chapter = verse1.getChapter(); 

        int verse = verse1.getVerse(); 

        while (!verse2.equals(new Reference(book, chapter, verse))) { 

            if (verse == getLastVerseNumber(book, chapter) + 1) { 

                chapter++; 

                verse = 1; 

                if (chapter == getLastChapterNumber(book) + 1) { 

                    book = BookOfBible.nextBook(book); 

                    chapter = 1; 

                } 

            } 

            rList.add(new Reference(book, chapter, verse)); 

            verse++; 

        } 

        if (verse1.equals(verse2)) { 

            rList.add(verse1); 

        } else { 

            rList.add(verse2); 

        } 

        return rList; 

    } 

This method calls getLastChapterNumber about c times, each time requiring  Θ(cn) time.   This 

takes  Θ(ccn) time total.  It also calls getLastVerseNumber for every verse between verse1 and 

verse2, each time requiring  Θ(vm) time.  This takes a total of  Θ(kvm) time.  The other 

operations take constant time for each verse, adding just an additional  Θ(k) time. Thus, the total 

time required is  Θ(kvm+cn+k)= Θ(kvm+ccn).  

Ideally we would scan until we found verse1 and then scan from there until we found verse2, 

adding each verse in between to our ArrayList.  The first part of the scan would take  Θ(m) 

operations and the in between part would take  Θ(k) operations for a total of  Θ(m+k). 
 

7. Assume that verse1 is the mth verse, there are k verses between verse1 and verse2, the given book contains 

c chapters and that on average each chapter contains v verses. 

       Operations =_____________  Ideal =______________ 
 

    public VerseList getVersesInclusive(Reference verse1, Reference verse2) { 

        ArrayList<Reference> refs = getReferencesInclusive(verse1, verse2); 

        VerseList verses = getVerses(refs); 

        return verses; 

    } 

 

 

  



4 

8. Assume that verse1 is the mth verse, there are k verses between verse1 and verse2, the given book contains 

c chapters and that on average each chapter contains v verses. 

       Operations =_____________  Ideal =______________ 
  

  ArrayList<Reference> getReferencesExclusive(Reference verse1, Reference verse2) { 

      ArrayList<Reference> results = new ArrayList<Reference>(); 

      if (verse1.compareTo(verse2) > 0) { 

          return results; 

      } 

      int i = 0; 

      while(i<theVerses.size()&&!theVerses.get(i).getReference().equals(verse1)) { 

          i++; 

      } 

      while(i<theVerses.size()&&theVerses.get(i).getReference().compareTo(verse2)<0) { 

          results.add(theVerses.get(i).getReference()); 

          i++; 

      } 

      return results; 

  } 

 

 

 

 

 

 

 

 

9. Assume that verse1 is the mth verse, there are k verses between verse1 and verse2, the given book contains 

c chapters and that on average each chapter contains v verses. 

       Operations =_____________  Ideal =______________ 
 

    public VerseList getVersesExclusive(Reference verse1, Reference verse2) { 

        ArrayList<Reference> refs = getReferencesExclusive(verse1, verse2); 

        VerseList verses = getVerses(refs); 

        return verses; 

    } 

 

 

 

 

 

 

10. Assume that verses for the book start at the mth verse, there are k verses in the book, and that 

getReferencesForBook takes  Θ(n) time. 

       Operations =_____________  Ideal =______________ 
 

    public VerseList getBook(BookOfBible book) { 

        return getVerses(getReferencesForBook(book)); 

    } 

 

} 


