
Algorithms and Recurrence Relations: Examples

Chuck Cusack

1. What is the worst-case running time of Mergesort?
The algorithm for Mergesort is below. Let

�������
be the worst-case running time of Mergesort

on an array of size
�

=right-left. Recall that Merge takes two sorted arrays and merges them into one
sorted array in time � ����� , where

�
is the number of elements in both arrays. Since the two recursive

calls to Mergsort are on arrays of half the size, they each require time
�����	��
��

in the worst-case. The
other operations take constant time, as indicated below.

Analysis of Mergesort
Algorithm Time required
Mergesort(int[] A,int left,int right) { 
������

if (left < right) { ���
int mid = (left + right)/2; ���
Mergesort(A, left, mid); 
����������
Mergesort(A, mid + 1, right); 
����������
Merge(A, left, mid, right); �������

}
}

Given this, we can see that
� �����"! #%$�&'#)(�&*� �+�	��
��,&-� �+�	��
.�/& � �����! 
0�����	��
���& � �����21

For simplicity, we will write this as
� �����3!4
0� �+�	��
���&657�

for some constant
5
.

Now we have a formula for
�������

, but it is not straight-forward to use. For instance, if
�8!:9�;.;�;

, what
is
� �+���

? We need a formula for
� �+���

that is not recursive. Finding such a formula is called solving a
recurrence relation, and we call the formula the closed-form for

� �+���
.

It turns out that
� ������! � �+��<>=.?3��� . Although this is not an exact formula, a tight-bound is often all

we are interested in when analyzing algorithms. We will prove that
� �+���)!A@B���C<>=.?)���

, and leave theD
-bound to the reader.

By definition,
� �+���E!F@B�+��<>=.?)���

if and only if there exists constants G and
��H

such that
� �+���JI

G ��<>=.?K� for all
�ML'� H

. We will use induction to prove this.

For the base case, notice that
� �N
.�3!PO

for some constant
O

, and
OEI G 
Q<>=.?K
R!4
 G as long as we pick

G LSOT��
 . Now, assume that
� ���	�.
.�)I G �+�	��
��U<V=�?��+�	��
.� . Then

� �+���"! 
0�����	��
��/&-57�
I 
T� G ���	�.
.�U<>=.?����	�.
.�/&-52�! G �C<>=.?��+�	��
��W&-57�! G �C<>=.?��JX G ��<>=.?�
Y&-57�! G �C<>=.?��E&P�Z5[X G �\�I G �C<>=.?�� if G LS5

As long as we pick G !S]_^�`�abOT��
dce5bf , we have
� �+����I G �C<>=.?�� , so

� �+���3!g@B�+��<>=.?)���
as desired.

1



2. How many moves does it take to solve the Towers of Hanoi problem?
The usual (and best) algorithm to solve the Towers of Hanoi is as follows:
h Move the top

�iXj9
disk to from peg 1 to peg 2.h Move the last disk from peg 1 to peg 3.h Move the top

�iXj9
disks from peg 2 to peg 3.

The only question is how to move the top
�_Xk9

disks. The answer is simple: using the same algorithm
(with the peg numbers switched). Don’t worry if you don’t see why this works. Our main concern here
is analyzing the algorithm.

Let l �+��� be the time required to solve the Towers of Hanoi problem with
�

disks. Assuming moving
a single disk takes 1 operations, the above algorithm requires

l ������! l ���mXj9��W&P9)& l ���JX'9b��!g
 l ���JX'9b�W&n9
operations. As with the first example, we want a closed form for l ����� . Notice that

l �o9��"! 9
l �Z
.�"! 
 l �o9��W&P9�!Pp
l �+p��"! 
 l �Z
.�W&P9�!4q
l ��rs�"! 
 l �+p��W&P9�!t9bu

From these examples, it appears that l �+���R!v
�w_X49 . We will prove this by induction. Clearly, we
already have proven the base case. Assume l ���JX'9b��!g
swUx

$ X'9
. Then

l �+���"! 
 l ���JXj9��W&P9! 
y�Z
 wUx $ Xj9��W&P9
! 
 w X*
Y&P9
! 
 w Xj9.1

Thus, by the principle of induction, l ������!4
�w�X'9 for all
�MLA9

.

3. Give a recurrence relation for the following algorithm:

int Nothing(int n) {
if(n>5) {

return Nothing(n-1)+Nothing(n-1)+Nothing(n-5)+Nothing(sqrt(n));
}
else {

return n;
}

}

It is not hard to see that if
� �����

is the running time for Nothing(n), then
� �+����!P
�� ���JX'9b�W&*�����JXku��W&*� �{z ���	&6@B�|9��71

4. Exercise: The BinarySearch algorithm is given below. Give a recurrence relation and a tight bound
for the worst-case running time of BinarySearch.

boolean BinarySearch(int[] A,int First,int Last,int Value) {
if(Last>=First) {

int mid=(Last+First)/2;
if(Value==A[mid]) return true;
else if(Value<A[mid]) return BinarySearch(A,First,mid-1,Value);
else return BinarySearch(A,mid+1,Last,Value);

}
else return false;

}

2


