Algorithms and Recurrence Relations: Examples

Chuck Cusack

1. What is the worst-case running time of Mergesort?
The algorithm for Mergesort is below. Let T'(n) be the worst-case running time of Mergesort
on an array of size n=right-left. Recall that Me rge takes two sorted arrays and merges them into one
sorted array in time ©(n), where n is the number of elements in both arrays. Since the two recursive
calls to Mergsort are on arrays of half the size, they each require time T'(n/2) in the worst-case. The
other operations take constant time, as indicated below.

Analysis of Mergesort
Algorithm Time required
Mergesort (int[] A,int left,int right) { T(n)
if (left < right) { C1
int mid = (left + right)/2; Cs
Mergesort (A, left, mid); T(n/2)
Mergesort (A, mid + 1, right); T(n/2)
Merge (A, left, mid, right); O(n)
}
}
Given this, we can see that
T(n) = C1+Cy+T(n/2)+T(n/2)+ 60(n)

= 2T(n/2)+ O(n).

For simplicity, we will write this as T'(n) = 2T (n/2) + ¢n for some constant c.

Now we have a formula for T'(n), but it is not straight-forward to use. For instance, if n = 1000, what
is T(n)? We need a formula for T'(n) that is not recursive. Finding such a formula is called solving a
recurrence relation, and we call the formula the closed-form for T'(n).

It turns out that T'(n) = ©(nlogn). Although this is not an exact formula, a tight-bound is often all
we are interested in when analyzing algorithms. We will prove that T(n) = O(nlogn), and leave the
Q-bound to the reader.

By definition, T'(n) = O(nlogn) if and only if there exists constants k and ng such that T'(n) <
knlogn for all n > ng. We will use induction to prove this.

For the base case, notice that T'(2) = a for some constant a, and a < k2log 2 = 2k as long as we pick
k > a/2. Now, assume that T'(n/2) < k(n/2) log(n/2). Then

T(n) = 2T(n/2)+cn
2(k(n/2)log(n/2) + cn
knlog(n/2) + cn
knlogn — knlog2 + cn
= knlogn+ (c—k)n
knlogn ifk>c

IN

IN

As long as we pick k = max{a/2, ¢}, we have T'(n) < knlogn, so T'(n) = O(nlogn) as desired.



2. How many moves does it take to solve the Towers of Hanoi problem?
The usual (and best) algorithm to solve the Towers of Hanoi is as follows:
e Move the top n — 1 disk to from peg 1 to peg 2.
e Move the last disk from peg 1 to peg 3.
e Move the top n — 1 disks from peg 2 to peg 3.
The only question is how to move the top n — 1 disks. The answer is simple: using the same algorithm

(with the peg numbers switched). Don’t worry if you don’t see why this works. Our main concern here
is analyzing the algorithm.

Let H(n) be the time required to solve the Towers of Hanoi problem with n disks. Assuming moving
a single disk takes 1 operations, the above algorithm requires

Hn)=H(n-1)+1+Hn-1)=2Hn-1)+1

operations. As with the first example, we want a closed form for H (n). Notice that

H1) = 1

H2) = 2H1)+1=3
HB3) = 2H2)+1=7
H@A) = 2HB3)+1=15

From these examples, it appears that H(n) = 2™ — 1. We will prove this by induction. Clearly, we
already have proven the base case. Assume H(n — 1) = 2"~1 — 1. Then

H(n) = 2Hn-1)+1
= 22" ' -1)+1
= 2" -2+1
= 2" 1.

Thus, by the principle of induction, H (n) = 2" — 1 foralln > 1.
3. Give a recurrence relation for the following algorithm:

int Nothing(int n) {
if(n>5) {
return Nothing(n-1)+Nothing(n-1)+Nothing (n-5)+Nothing (sgrt(n));
}
else {
return n;
}
}

It is not hard to see that if 7'(n) is the running time for Nothing (n), then
T(n) =2T(n—1)+T(n—5)+T(v/n) +O0(1).

4. Exercise: The BinarySearch algorithm is given below. Give a recurrence relation and a tight bound
for the worst-case running time of BinarySearch.

boolean BinarySearch (int[] A,int First,int Last,int Value) {
if (Last>=First) {
int mid=(Last+First)/2;

if (Value==A[mid]) return true;
else if (Value<A[mid]) return BinarySearch(A,First,mid-1,Value);
else return BinarySearch (A,mid+1,Last,Value);

}

else return false;



