Dynamic Programming

Megan M. Sheets, Eric Larson, Matt Boettger

Edited by Chuck Cusack

These notes are based on chapter 16 of [1] and lectures from CSCE423/823, Spring 2001. For a
more basic introduction to dynamic programming, see the lecture notes from CSCE310, Fall 2000.

Many divide-and-conquer algorithms, like Mergesort, solve problems by combining the
solutions of subproblems. However, in some cases, a divide-and-conquer algorithm solves each
subproblems many times, which is clearly not efficient. In these cases, a technique called dynamic
programming solves such problems so that each subproblem is solved only once. Dynamic pro-
gramming usually applies to optimization problems.

1 Dynamic Programming

Definition 1 An optimization problem is one in which we assign a value to each solution, and
wish to find a solution with minimal or maximal value.

Definition 2 Dynamic programming is a technique to solve optimization problems that exhibit
two properties: optimal substructure and overlapping subproblems.

e A problem exhibits optimal substructure if an optimal solution to a problem consists of
optimal solutions to subproblems (or subsolutions).

e A problem exhibits overlapping subproblems if the standard recursive algorithm to solve
the problem would solve subproblems many times.

Dynamic programming solves problems by combining the solutions to subproblems. In order
for the technique to work, a problem must exhibit optimal substructure, since without it, there is
no basis for defining subproblems. In order for the technique to provide a more efficient solution
than a standard recursive algorithm, a problem should exhibit overlapping subproblems.

Dynamic programming provides a more efficient solution than a standard recursive algorithm
by saving the solutions to subproblems in a table. To develop a dynamic programming algorithm,
the following steps should be followed.

1. Define what is meant by optimal solution.

2. Define the value of an optimal solution based on values of subsolutions. In other words,
develop a recursive definition for the value of an optimal solution.

3. Compute the values of all subsolutions.
4. Construct the optimal solution from computed information.

There are two ways of accomplishing step 3 above: bottom-up or memoization. Bottom-up simply
means to compute the values in the table in a systematic way, usually row by row. Memoization
uses the regular recursive algorithm with one modification. Whenever the value of a subproblem
is computed, it is stored in a table, and every time a a recursive call is made, the table is checked
first, and if the value is available, it is used instead of being re-computed.

Problems which can be solved with dynamic programming include

Matrix Chain Multiplication

0-1 Knapsack Problem

Longest Common Subsequence

Optimal Polygon Triangulation

We now turn to a few examples.

2 Longest Common Subsequence (LCS)

Let X = (x1,29,...,2,). Then Z = (21, 29,...,2,) is a subsequence of X if there exists a
strictly increasing sequence (i1, . . .,) such that z;, = z; forj =1,..., k.

Example: X = (A, F, X,Q,R,N). Then Z = (A,Q, R, N) is a subsequence of X, and Z =
(A, Q, N, R) is not a subsequence of X.

Definition 3 If X and Y are sequences, Z is a common subsequence of X and Y if Z is a
subsequence of both X and Y.

Definition 4 A longest common subsequence (LCS) of X and Y is a common sequence of max-
imal length.

Example: Let X = (A4,B,C,B,D,A,B) and Y = (B,D,C, A, B, A) The sequence Z =

(B,C, A) is a common subsequence of X and Y. But this sequence is not a longest common

subsequence of X and Y because their exists a longer sequence (Z = (B, C, B, A), for example).
Now, we will develop an algorithm to compute an LCS of two strings.

Theorem 1 (Optimal Substructure) Let X = (x1,...,2,), Y = (Y1,---,Ym), and let Z =
(z1,...,2k) be any LCS of X andY. Then:

1. If ¢, = Ypm, then 2z, = T, = Y, and Zy_1 is and LCS of X,, 1 and Yy, 1.
2. If v, # ym and z, # x, then Z is an LCS of X,,_1 and Y.
3. If v, # Ym and z, # Y, then Z is an LCS of X and Yy, 1.

Proof:

1. If Zx_; is not an LCS of X,,_; or Y;,_; then there exists a sequence Z' longer than Z;_;
that is an LCS of X,, ; and Y;, | (Z' has length of at least k). Then Z' U z,, is a common
subsequence for X and Y of length at least £ 4 1, which contradicts Z being and LCS of X
and Y. Therefore Z;_;isan LCSof X,,_; and Y,,,_;.

2. Since X, ; is a subsequence of X, then the length of an LCS for X,, ; and Y is no longer
than an LCS for X and Y. Since z,, # 2z, 1, Zx is a common substring of X,, ; and Y, so it
isan LCS of X,,_; and Y.

3. Symmetric to 2. U
Define c[i, j] to be the length of an LCS of X; and Y;. Then by Theorem 1, we have:

0 ifi=0o0rj =0,
ci,jl=qcli—1,7—1]+1 ifi,j > 0and z; = y;, (1)
mazx(ci,j —1],c[i — 1,7]) if4,5 > 0and z; # yj,

Based on the definition of c[z, j], The following algorithm computes the length of an LCS.

LCSLength(x,n,y,m)
{
if (n==0) OR (m==0)
return 0;
else if (x[n]==y[m])
return LCSLength(x,n-1,y,m-1)+1;
else
return max{ LCSLength(x,n-1,y,m), LCSLength(x,n,y,m-1) };
}

Let T'(n, m) be the complexity of LCSlength (x, n, y, m). Then it is not hard to see that
T(n,m)=T(n,m—1)+T(n—1,m)+ O(1),

which can be shown to be exponential. However, the values c[i, j] can be computed row by row,
starting with the first row. The value of the optimal solution is ¢[n, m|, and the LCS can be found
by tracing backwards through the table. See Section 16.3 of [1] for the details of the algorithm.
Figure 1 illustrates the method.

3 Optimal Polygon Triangulation

A convex polygon can be represented by listing the vertices in counterclockwise order. That is,
we represent a polygon as P = (vy, . .., U,_1), Where g0y, U10s, . .. Up_2Un_1, and U, 17, are the
edges.

W == 0

W W W= >

Alalwlv|v—|oflg

FNYIF U ROV T R Y |~

(o] Hev) Hev) Heo) Nl Ne) Ran]
»—»—»—Ab—tb—toc>
| [| | e | O] T

Qo> Q> w

Figure 1: Computing an LCS for X = (A,B,C,A,D,A) and Y = (B, A,C,A,D,C). We compute
the table starting with the top row, left to right. The bold numbers trace back to find the LCS. The LCS is
<B, C’ A, D) *

A triangulation 7' of a polygon is a set of chords that divide the polygon into triangles. A
triangulation of polygon with n vertices has n — 3 chords and n — 2 triangles. The weight of a
triangle Av;v;vy can be defined in several ways. Two possibilities are the area of the triangle, or
the sum of the lengths of the edges:

W (Avwjvg) = [0705] + [050%] + [070%]|

where [7;7;| is the Euclidean distance from v; and v;. Given a weight function, the weight of a
triangulation, W (P) is the sum of the weights of the triangles. We define an optimal triangulation
to be one which minimizes the sums of the weights of triangles in the triangulation.

We will develop a method of computing an optimal triangulation that will work no matter what
weight function is chosen. We begin by showing that an optimal triangulation is composed of
optimal triangulations of subproblems.

Theorem 2 The optimal triangulation exhibits optimal substructure.

Proof: Let P = (v, ..., v,_1) be a convex polygon, T an optimal triangulation of P with weight
Wr(P), and Avgvgv,_1 be a triangle in T. (Notice that, for some &, Avqugv,_1 is in T). Let
P1 = <’U0, ey Uk>, and PQ = <Uk, ey Un—1>' Then T = T1 U T2 U A’Uo’l)k’l)n_l, where T1 is the
triangulation of P; and 75 is the triangulation of P,. Notice that

WT(P) = WT1 (P) + I/VT2 (P) + W(A?J(ﬂ)kvn_l).

Assume 7 is not optimal for P, (similar for 7, and P,). Then there is a triangulation 7 for P,
such that Wiy (P1) < Wy, (Py). But we can construct a triangulation 7" = T} U T U Avgvgvy
for P with

WT/(P) = WT{ (Pl) + WT2 (PQ) + W(Avovkvn,l)
< VVT1 (Pl) -+ WT2 (PQ) -+ W(A?Jovk’l}n_l)
= Wr(P)

But this contradicts the fact that 7" is optimal. Therefore 7 (and 75) is optimal, and the polygon
triangulation has optimal substructure. U

Theorem 2 is the basis of a recursive definition for the optimal cost of a triangulation. Let [, j]
be the weight of an optimal triangulation of the polygon (v;_1,v;,...,v;), for 1 < i < j < n.
Since the polygon (v;_1, v;) is only a line, we define the weight to be zero in this case, so t[i, i] = 0
fori =0,...n — 1. Then we can define t[7, j| as follows

L 0 if1 =7,
t[z,j]:{

miniSij,l(t[i, k] + t[k‘ + 1,_]] + W(Avi,lvkvj) if 1 <]

In addition if we store in an array K[i, j| the the value of & that gave optimal triangulation ¢[i, j],
we can reconstruct the optimal triangulation. As with the LCS problem, the recursive algorithm
would take exponential time. However, a bottom-up implementation has complexity O(n?).

It turns out that the problem of computing an optimal parenthesization of a matrix-chain prod-
uct is a special case of finding an optimal triangulation of a convex polygon. Notice that if we
associate each pair of vertices (v;_1, v;) with matrix A;, and define the weight to be W (Av;v;v;,) =
PiP;Dk, then the recursive definition for ¢[¢, j] is the same as m/[z, j].

Figure 2 demonstrates that each triangulation of a polygon has a corresponding parse tree (a
full binary tree), as does a full parenthesization of a sequence of n — 1 matrices.

For more details about the matrix chain multiplication problem, or the correspondence of these
two problems, see chapter 16 of [1].

“ vv o)

/ N
N
4 N
7 ~
y @) DY
N
vl 4 \ / N
/ ~N
\ /
N
/ \ 4 N
: Q
s @) NN §
A2 ; \ Al Ad ’ N N
/ \ 7 N
/ \ 7 N
v5 . . Q .
v2 A2 A3 , \ . A7
/ ! \
, \
] []
v3
Ad v4 A5 A6

Figure 2: A triangulation and corresponding parse tree. The parse tree also corresponds to the paren-
thesization (((A1A42)As)(A4((A5A46)A7)))

References

[1] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.

