Minimum Spanning Tree

- Let $G = (V, E)$ be a connected, weighted graph.

- Recall that a weighted graph is a graph where we associate with each edge a real number, called the weight.

- Recall that a spanning tree of G is a subgraph T of G which is a tree that spans G. In other words, it contains all of the vertices of G.

- The weight of a spanning tree T is the sum of the weights of its edges. That is,

$$w(T) = \sum_{(u,v) \in T} w(u, v).$$

- A minimum spanning tree (MST) of G is spanning tree T of minimum weight.

- It should be clear that a minimum spanning tree always exists.
Minimum Spanning Tree Examples

- A graph G.

- T_1 is a minimum spanning tree of G.

- T_2 is another minimum spanning tree of G.
Constructing an MST

- Minimum spanning trees can be constructed in a greedy fashion.
- There are two common algorithms to construct MSTs:
 - Kruskal’s algorithm
 - Prim’s algorithm
- Both of these algorithms use the same basic ideas, but in a slightly different fashion.
- We will proceed as follows:
 - We will consider a general approach to solving MST.
 - We will prove that the general approach works.
 - We will show two methods of implementing the general method: Kruskal’s and Prim’s algorithms.
Some Terminology

- A cut $(S, V - S)$ of G is a partition of the vertices V.
- An edge $(u, v) \in E$ is said to cross the cut if one of the endpoints is in S, and the other is in $V - S$.
- The set of edges which cross a cut are the cross edges.
- A cut respects a set A of edges if A does not contain any cross edges.
- A cross edge of minimum weight is called a light edge.

The cut respects $\{(x,w),(y,w),(c,d)\}$

The cut does not respect $\{(a,b),(d,z)\}$
The Generic MST algorithm

- Let A be the edges a minimal spanning tree of G.
- The MST algorithm “grows” the spanning tree one edge at a time.
- It starts with set $A = \emptyset$, which is clearly a subset of every minimum spanning tree.
- At each step, the algorithm adds an edge (u, v) to A so that the set $A \cup \{(u, v)\}$ is a subset of some minimum spanning tree.
- Such an edge (u, v) is called a safe edge, because we can safely add it to the set A and still continue.
- The algorithm is simple:

```plaintext
MST(G)
A=EmptyList
While ! IsSpanningTree(G,A)
    e = SafeEdge(G,A)
    Insert(A,e)
return A
```
Properties of A during MST

- Let A be the edges in a partial solution to MST.
- The graph $G_A = (V, A)$ is a forest.
- Each tree in the forest G_A is a connected component.
- Some of the trees in the forest consist of just a single node.
- At every step of the algorithm, MST adds an edge to the set A.
- The result of this is a merger of two trees into one.

Example
Are There Safe Edges?

- The algorithm assumes that we can always find a safe edge.
- We can easily argue this:
 - At the beginning of the algorithm, $A = \emptyset$, and any edge in any minimum spanning tree is safe.
 - During each iteration, we add a safe edge to A.
 - Since we added a safe edge, then A is still contained in some minimal spanning tree T.
 - Thus, any edge from $T - A$ is safe for A.
- Now we know there are safe edges. How do we find them?
- Actually, it’s not that hard to find safe edges, as we will see next.
Finding Safe Edges: Part 0

• **Theorem 0:** Let
 - $G = (V, E)$ be a connected, weighted graph,
 - $A \subseteq E$ a subset of some MST for G,
 - $(S, V - S)$ be any cut of G that respects A, and
 - (u, v) be a light edge of $(S, V - S)$.

Then the edge (u, v) is safe for A.

• **Proof:**
 - Let T be a MST of G containing A.
 - If $(u, v) \in T$, then (u, v) is safe for A, and we are done.
 - If $(u, v) \not\in T$, we need to find an MST T' such that $A \cup \{(u, v)\} \subseteq T'$
 - We will find an edge $(x, y) \in T$ such that the tree $T' = (T - \{(x, y)\}) \cup \{(u, v)\}$ is an MST for G that contains A.
 - This will mean that (u, v) is safe for A.
Proof of Theorem 0 Continued

- An illustration:

- The graph $T \cup \{(u, v)\}$ contains a cycle.
- Since (u, v) is a cross edge on the cycle, there must be another cross edge on the cycle.
- Let (x, y) be such an edge.
- **Claim:** $T' = (T - \{(x, y)\}) \cup \{(u, v)\}$ is an MST for G containing A, so that (u, v) is safe for A.
- The edge (x, y) is not in A, because the cut respects A. Thus, A is a subset of T'.
- Now all we need to show is that T' is an MST for G.
Proof of Theorem 0 Continued

- Proof that T' is an MST of G.
 - Since (u, v) is a light edge crossing $(S, V - S)$, $w(u, v) \leq w(x, y)$, since (x, y) is also a cross edge.
 - Thus $w(T') = w(T) + w(u, v) - w(x, y) \leq w(T)$.
 - Since T is an MST, $w(T) \leq w(T')$.
 - Thus, $w(T) = w(T')$.
 - Then we have that T' is an MST for G.

- To summarize, we have found a tree T' such that
 - T' is an MST of G.
 - A is a subset of T'.
 - $(u, v) \in T'$, and $(u, v) \notin A$, so (u, v) is safe for A.
Finding Safe Edges: Part 1

- **Theorem 0:** Let
 - \(G = (V, E) \) be a connected, weighted graph,
 - \(A \subseteq E \) a subset of some MST for \(G \),
 - \((S, V - S)\) be any cut of \(G \) that respects \(A \), and
 - \((u, v)\) be a light edge of \((S, V - S)\).

Then the edge \((u, v)\) is safe for \(A \).

- **We can use Theorem 0** to prove:

- **Theorem 1:** Let
 - \(G = (V, E) \) be a connected, weighted graph,
 - \(A \subseteq E \) a subset of some MST for \(G \), and
 - \(C \) be the edges in a connected component of \(G_A = (V, A) \), and
 - \((u, v)\) be a light edge of the cut \((C, V - C)\).

Then \((u, v)\) is safe for \(A \).

- **Proof:** Since \((C, V - C)\) respects \(A \), this follows from Theorem 0.
Interpreting Theorem 1

- **Theorem 1**: Let
 - \(G = (V, E) \) be a connected, weighted graph,
 - \(A \subseteq E \) a subset of some MST for \(G \), and
 - \(C \) be the edges in a connected component of \(G_A = (V, A) \), and
 - \((u, v)\) be a light edge of the cut \((C, V - C)\).

Then \((u, v)\) is safe for \(A \).

- **Theorem 1** basically says that if \(C \) is a subtree of an MST, and \((u, v)\)
 is an edge of minimum weight with exactly one endpoint incident
 with \(C \), then \(C \cup \{(u, v)\} \) is a subtree of an MST for \(G \).

- The following are applications of **Theorem 1**:
 - Let \(u \) be a vertex of \(G \), and \((u, v)\) an edge of minimum weight
 incident with \(u \). Then \((u, v)\) is contained in some MST of \(G \).
 - If \((u, v)\) is an edge of minimal weight in \(G \), then \((u, v)\) is
 contained in some MST of \(G \).
Applying Theorem 1

- **Theorem 1** is used by the two most common MST algorithms.

- **Kruskal’s Algorithm**
 - Let $A = \emptyset$.
 - While A is not an MST
 * Add to A a minimum weight edge that does not form a cycle.

- **Prim’s algorithm**:
 - Pick some vertex x.
 - Let $A = \{(x, y)\}$, where edge (x, y) has minimum weight of edges incident with x.
 - While A is not an MST
 * Add to A an minimum weight edge which has one endpoint incident with A

- We will take a closer look at each of these.
Kruskal’s Algorithm

- Kruskal’s algorithm is as follows.
 - Sort E in ascending order.
 - Set $A = \emptyset$
 - For I = 1 to $|E|$
 - If $A \cup \{E[I]\}$ does not contain a cycle
 - $A = A \cup \{E[I]\}$
 - Return A.

- When does $A \cup \{E[I]\}$ contains a cycle?
 - As the algorithm progresses, A is a forest.
 - Edges connecting two vertices in the same tree will create a cycle.
 - Edges that goes from one tree to another will not create a cycle.
 - We will store each tree in a separate set.
 - Adding an edge connect two trees, so we merge the sets.
 - We can now rewrite Kruskal’s algorithm.
The Real Kruskal’s Algorithm

- \textbf{Kruskal_MST}(G)
 \begin{verbatim}
 A=EmptySet
 ForAll v in V[G]
 Create_Set(v)
 SortAscending(E[G])
 ForAll edges e=(u,v) //sorted order
 If Set(u) != Set(v)
 Insert(A,e)
 Set_Union(u,v)
 Return A
 \end{verbatim}

- Let \(n = |V| \) and \(m = |E| \).
- It is possible to implement the sets so that the combined cost of the set operations is \(O(m \log m) \) (we won’t go into the details here).
- The sorting takes \(O(m \log m) \) time.
- Thus, the complexity of Kruskal’s Algorithm is \(O(m \log m) = O(m \log n) \) (since \(O(\log m) = O(\log n^2) = O(\log n) \)).
Kruskal’s Algorithm Example
Kruskal’s Algorithm Example (continued)
Prim’s Algorithm Background

- Unlike Kruskal’s algorithm, with Prim’s algorithm we grow a single tree A into a minimum spanning tree.
- An arbitrary vertex r is picked, and the tree is grown from that vertex.
- At each step a light edge of the cut $(A, v - A)$ is added to A.
- Thus, we add a node and an edge to A at each step.
- Since A is a tree, it remains a tree with the added edge and node.
- We need to have an efficient (greedy) way to determine the light edge at each step.
- Notice that according to Theorem 1, this method will produce an MST.
Prim’s Algorithm–More Details

- For each node x, we will store
 - The predecessor $p(x)$. This is the vertex y in A which we join x to when edge (x, y) is added to A.
 - The $key(x)$. This is the minimum weight edge that connects x to some vertex in A.
- $key(r) = 0$, and $p(r) = NULL$ throughout.
- Each node $x \neq r$ starts with $key(x) = \infty$.
- The value $key(x)$ only changes if some neighbor of x is added to A.
- Thus, when we add a node y to A, we need to update the key values of the nodes adjacent to y.
- We will store the vertices in $V - A$ in a priority queue Q based on $key(x)$. This allows us to pick the minimum weight edge to add to A.
- We don’t explicitly store A. The MST is reconstructed using the predecessors $p(x)$ for all $p \neq r$.
Prim’s Algorithm

- Prim_MST(G, r)
 PriorityQueue Q=V[G]
 ForAll u in Q
 key[u]=Max_Int
 key[r]=0
 p[r]=NULL
 While NotEmpty(Q)
 u=ExtractMin(Q)
 ForAll v adjacent to u
 if(v in Q and w(u,v) < key[v])
 key[v]=w(u,v) // not constant (why?)
 p[v]=u

- Notice that at each step we add a vertex with minimum key, and then update the key values for its neighbors.

- The complexity is $O(n \log n + m \log n) = O(m \log n)$, assuming we use a binary heap to implement the priority queue, and an auxiliary array to keep track of the vertices that are still in the priority queue.
Prims’s Algorithm Example

$Q = \{a,b,c,d,e,f,g,h\}$

<table>
<thead>
<tr>
<th>Vertex</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>P</td>
<td>nil</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
</tbody>
</table>

$Q = \{d,c,b,e,f,g,h\}$

<table>
<thead>
<tr>
<th>Vertex</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>P</td>
<td>nil</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>g</td>
<td>g</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

$Q = \{c,e,f,b,h\}$

<table>
<thead>
<tr>
<th>Vertex</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>P</td>
<td>nil</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

$Q = \{e,f,b,h\}$
Prim’s Algorithm Example (continued)

\[
\begin{array}{c|cccccccc}
& a & b & c & d & e & f & g & h \\
\hline
k & \xmark \\
p & \text{nil} & c & d & a & c & c & d & ? \\
\end{array}
\]

\[Q=[e,f,b,h]\]

\[
\begin{array}{c|cccccccc}
& a & b & c & d & e & f & g & h \\
\hline
k & \xmark & 6 \\
p & \text{nil} & c & d & a & c & c & d & e \\
\end{array}
\]

\[Q=[f,h,b]\]

\[
\begin{array}{c|cccccccc}
& a & b & c & d & e & f & g & h \\
\hline
k & \xmark & 1 \\
p & \text{nil} & c & d & a & c & c & d & f \\
\end{array}
\]

\[Q=[h,b]\]

\[
\begin{array}{c|cccccccc}
& a & b & c & d & e & f & g & h \\
\hline
k & \xmark \\
p & \text{nil} & c & d & a & c & c & d & f \\
\end{array}
\]

\[Q=[b]\]

\[
\begin{array}{c|cccccccc}
& a & b & c & d & e & f & g & h \\
\hline
k & \xmark \\
p & \text{nil} & c & d & a & c & c & d & f \\
\end{array}
\]

\[Q=[]\]
Dijkstra’s Algorithm

Dijkstra’s shortest path algorithm is almost identical to Prim’s algorithm (changes marked by `<--`).

Dijkstra(G, r)

PriorityQueue Q=V[G]
ForAll u in Q
 key[u]=Max_Int
key[r]=0
p[r]=NULL
While NotEmpty(Q)
 u=ExtractMin(Q)
 ForAll v adjacent to u
 if(key[u] + w(u,v) < key[v]) <--
 key[v]=key[u] + w(u,v) <--
 p[v]=u