
Maximum Flow

Chuck Cusack

These notes are based on chapter 27 of [1] and lectures from CSCE423/823, Spring 2001.

Some real-life problems, like those involving the flow of liquids through pipes, current through
wires, and delivery of goods, can be modeled using flow networks. Other problems which seem
unrelated to networks can also be modeled using flow networks. We discuss the basics of flow
networks, several network flow problems, and develop a few algorithms to solve the maximum
network flow problem.

1 Flow Networks and Flows
Definition 1 A flow network is a directed graph

���������
	��
such that

1. for edge
��
������������

, we associate a nonnegative capacity � ��
������ ;
2. there are two distinguished points, the source � , and the sink � ;
3. for every vertex

�����
, there is a path from � to � containing

�
.

Definition 2 Let
���������
	��

be a flow network. A flow in
�

is a real-valued function on pairs
of vertices such that the following properties hold:

1. Capacity constraint: For all

!�"�#���

, ��
������%$ � ��
������ ,
2. Skew symmetry: For all

����&�'�
, ��
������(��) ���*�"
+� ,

3. Flow conservation: For all

,���-)/. � � �
0 ,12
354 ��
������(� 167354 ��
!�"�8�9�-:8;

The three properties can be described as follows.< Capacity constraint makes sure that the flow through each edge is not greater than the
capacity.< Skew symmetry simply means that the flow from

to
�

is the negative of the flow from
�

to

.

1

8 9

s

10

6

6

8 22

7

t4

11

47

4 6

5

7

13

4

12

s t

(a)

7/10

6/8

7/7

4/6

5/8

1/5

7/9

0/22

4/4

6/7

7/11

4/4

4/12 6/13

6/7
3/4

0/61/4

2/6

(b)

Figure 1: (a) A flow network =?>A@�BDCFEHG . (b) A flow I in = . Only the positive flows are show. Each edge
is labeled with IKJMLONQPOR"SUT�SVR"W�XZY . For example, [\P^] means the flow is 3 and the capacity is 4. The value of
the flow is _ I�_7>/`Ua

< Flow conservation means that for every vertex
�����b)c. � � �
0 , the net flow out of

�
is 0. In

other words, the amount of flow into a
�

is the same as the amount of flow out of
�
.

Lemma 1 If
��
!�"�8�ed��	

and
������
f�gd��	

, then ��
������(� ������
f���b: .
Proof: Since

 ��
������h$ � ��
������(�-:�� ������
f�h$ � ������
f�(�-:�� and ������
f�i�) ��
��������
the result holds. j
In other words, if there is no edge between

and

�
, there can be no flow between

and

�
.

Definition 3 The value of the flow is the net flow from the source,k k � 12
354 � � �����U;
Definition 4 For each edge

��
��������l	
, we call ��
������ the net flow from

to
�
.

Definition 5 The positive net flow entering a vertex
�

is defined by1m 6\354on p5qr67s 2utwvyx{z ��
������U;
The positive net flow leaving a vertex is defined symmetrically.

Definition 6 A flow is said to be integer-valued if ��
������ is an integer for all
��
���������	

.

Clearly the value of the flow
k k is an integer in an integer-valued flow. Figure 1 shows a flow

network
�

, and a flow in
�

.

2

2 Implicit Sum Notation
For convenience, we will omit the set braces when it simplifies notation. For instance, we will
write

�-) �) � instead of
�|)}. � � �
0

The following notation will greatly simplify the writing of proofs involving functions like the
net flow .

Definition 7 If ~ and � are sets, and � is a 2-variable function, we define

� � ~ � � ��� 1�53O� 1��35� � �w�����K��;
For example, we can express the flow conservation property as ��
!�
�����-: for all

����-) �) � ,
or equivalently, �Z���"�8���A: for all

�#����) �) � . Given this, it is easy to prove the following:

Lemma 2 If ~�� �|) �) � , then ����� ~ ��� � ~ �
�����-: .
Proof: Since ~h� �|) �) � ,

 ����� ~ ��� 1�53O� �Z���u�f��� 1�53O� :��-:�;
The proof is similar for � ~ �������-: . j
The following identities will also be useful. The proof of them is left as an exercise.

Lemma 3 Let
�����Z���
	��

be a flow network, a flow in
�

, and ~ � � ��� � � , with �b� ����� .
Then

1. � ~ � ~ ���-: .
2. � ~ � � ����) � � � ~ � .
3. � ~ � ��� �H��� � ~ � � �D� � ~ ���g� .
4. � ��� �e� ~ �(� � � � ~ �o� ���e� ~ �U;
We will demonstrate the use of this lemma by proving that the value of a flow is the total net

flow into the sink.

Lemma 4 The value of a flow is
k k � ����� � � .

Proof: We have k k � � � �
��� (by definition)� �Z�������9) ���-) � ����� (by Lemma 3.3)� �Z�����-) � � (by Lemma 3.1 and 3.2)� �Z��� � �D� �������-) �) � � (by Lemma 3.3)� �Z��� � � (by Lemma 2)

j
3

3 Network Flow Problems
The most obvious flow network problem is the following.

Problem 1 Given a flow network
�����Z���
	��

, the maximum flow problem is to find a flow with
maximum value.

In Section 5 we will present an efficient algorithm to solve this problem. One variation of the
maximum flow problem is the following.

Problem 2 The multiple source and sink maximum flow problem is similar to the maximum
flow problem, except there is a set

. ��� �5;O;5;^� �5��0 of sources and a set
. �
� �5;5;5;^� ���y0 of sinks.

It turns out that this problem is no harder to solve than the maximum flow problem. Given a
multiple source and sink flow network

�
, we define a new flow network

���
by adding< a supersource � ,< a supersink � ,< for each �5� , add edge

� � � �5� � with capacity , and< for each ��� , add edge
� �F� � � � with capacity .

It is left as an exercise to prove that the maximum flows in
�

and
���

are the same. Figure 2 shows
a multiple source and sink flow network and an equivalent single source and sink flow network.

o o
o o

o o
o o

o o
o o

11

2

3 4

2

6
6

4

3 9

5

11

2

1

ts

t

2

1

4

3

2

1s

s

s

s t
11

2

3 4

2

6
6

4

3 9

5

11

2

1

ts

t

2

1

4

3

2

1s

s

s

(a) (b)

Figure 2: (a) A multiple source and sink flow network with sources ¡^¢ � C{¢^£OC{¢U¤5C{¢U¥O¦ and sinks ¡�X � C�X�£^¦ . (b)
The equivalent flow network.

The last problem we will consider is not a network flow problem. However, we will show that
it is equivalent to one. We start with a definition.

Definition 8 A graph
�§� �Z����	��

is called a bipartite graph if there exists a partition of the
vertices

���-¨ ��© such that if

����#� © or

����#��¨
, then

��
!�"�8�Hd��	
. That is, all of the edges go

from a vertex in
¨

to a vertex in © , and there are no edges within each partition.

4

Definition 9 Let
���������
	��

be a bipartite graph with partition
���-¨ ��© .< A bipartite matching is a subset ª of the edges of

�
such that for all

��
!�"�8�Hd����
f�«�"�¬�­�%� ª ,
where

!�"
��®��¨
, and

�*�"�¬��� © ,

¯d�b
®�

and
�ld�b�°�

.< In other words, ª is a subset of the edges such that no two edges are incident with each
other.< Put another way, for any vertex

�����
, there is at most one edge containing

�
in the matchingª .

Problem 3 Let
�±�²�����
	��

be a bipartite graph with partition
�i�³¨ �´© . We wish to find a

maximal bipartite matching of
�

. That is, a matching with the maximal number of edges.

Given a bipartite graph
���������
	��

with partition
���-¨ ��© , we can construct a flow network� � ����� � �
	 � �

as follows:< Let
� � �|� � . � � �
0 ,< let
	µ�8��.���
�������¶°
,��¨Q����� © �\��
���������	 0·� .�� � �"
+�¸¶°
���¨ 0¹� .\��� � ¶°�#� ©�0 , and< let � ��
���������º for all

��
��������l	��
.

Figure 3 shows a bipartite graph
�

and the corresponding flow network
���

.

RL

s

t

RL
(a) (b)

Figure 3: (a) A bipartite graph =/>A@�B�CFEgG , with partition B�>?»�¼¾½ . A maximal matching ¿ is shown
with the grey edges. (b) A flow network = � corresponding to = . Each edge has capacity 1. The grey edges
have flow 1, and the others have flow 0.

The following theorem shows the relationship between flows and matchings.

Theorem 5 Let
� � �Z����	��

be a bipartite graph with partition
� � ¨ �/© , and

���
be the

corresponding flow network. Then each matching ª in
�

corresponds to an integer-valued flow
in
� �

with
k k � k ª k

.

Proof: Let ª be a matching in
�

. Define an integer-valued flow as follows:< ��
������(� � � �"
+�9� ����� � ����º , for each edge
��
������%� ª ,

5

< ������
f�(� ��
!� � �9� � � �"�8����)�º , for each edge
��
!�"�8�¸� ª ,< ��
������(�-: for each edge

��
������gd� ª .

To see that is indeed a flow, we need to prove that the three properties are satisfied.

1. Since ��
�������$�ºe� � ��
������ for all
��
���������	��

, the capacity constraint is satisfied.

2. It is not hard to see that ��
������(��) ���*�"
+� for all

and
�
, so skew symmetry is satisfied.

3. Let

�����)c. � � �
0 .< If

is not in an edge of the matching ª , then ��
��������-: , since no flow goes through

.< Otherwise,

is in exactly one edge of ª .< If

À�Á¨
and

��
������´� ª , then ��
�� � �l�)�º
, ��
������,� º

, and ��
!�"ÂÃ��� :
ifÂ����-)/. � ��� 0 , so ��
!�
�����-: .< A similar argument shows that if

�� © , then ��
��������b: .< Therefore flow conservation is satisfied.

Since there are
k ª k

edges in the matching, there are
k ª k

edges
� � ��
f� such that � � ��
f�(��º , sok k � 167354 � � ��
f��� k ª k ;

Conversely, let be an integer-valued flow in
� �

. Define

ª ��.���
�������¶°
��l¨¹�"��� © � and ��
������%Ä}: 0 ;
We will show that ª is a matching.< The only edge entering each vertex

,��¨
is
� � ��
f� , which has capacity 1. Therefore, the net

flow into

is at most 1.< In light of this, the net flow out of vertex

is at most 1.< Since is integer valued, the net flow into and out of vertex

is 1 if and only if there is a
vertex

�Å� © such that ��
������(��º .< Thus, at most one edge leaving

carries weight.< A similar argument proves the same for edges entering
�#� © .< Thus, ª is a matching.

6

To see that
k k � k ª k

, notice that:k ª k � �Z¨Q� © � (by definition)� �Z¨Q���Ã�Æ�9) ��¨Q�
¨¸�9) �Z¨Q� � �9) ��¨Q� � � (by splitting up the sum)� :Ã)Ç:�� � � ��¨��9)È: (by conservation)� � � �
¨¸�D� � � � © � � � � � (no flow from � to ©}� . �
0·� . �V0)� � � ���Ã�Æ� (by Lemma 3
�� k k (by definition)

j
In particular, this means that every maximum bipartite matching in

�
corresponds to a max-

imum integer-valued flow in
� �

. Thus, a solution to the maximum flow network problem for
� �

should give us a solution to the maximum bipartite matching problem for
�

. The problem with this
is that the algorithm we use to compute a maximum flow of

� �
might not produce an integer-valued

flow. It turns out that it is not a problem if we use the right algorithm.

Theorem 6 There exists an algorithm (the FORD-FULKERSON METHOD) to solve the maximum
flow problem such that if the capacities � are integers, then the resulting maximum flow will be
integer-valued.

Proof: We will explore the FORD-FULKERSON METHOD in Section 5. The proof is then left as
an exercise. j
Corollary 7 Let

���������
	��
be a bipartite graph and

���
be the corresponding flow network. Then

the cardinality of a maximum matching of
�

is the value of a maximum flow in
� �

.

Proof: Left as an exercise. j
In light of these results, we can solve the maximum bipartite matching problem by solving the

equivalent maximum network flow problem, as long as we use an algorithm such as the FORD-
FULKERSON METHOD to guarantee the flow to be integer-valued.

4 Residual Networks, Augmenting Paths, and Cuts
Definition 10 Let

�É�²�Z���
	��
be a graph with flow . For each pair of vertices

����?���
, we

define the residual capacity of
��
!�"�8�

by

� p ��
������(� � ��
!�"�8�!) ��
�������;
That is, it is the additional net flow that can be pushed from

to
�
.

Definition 11 Given a flow network
���À�����
	��

with flow , the residual network of
�

induced
by is

� p �������
	 p � , where 	 p ��.���
!�"�8�%����Ê��Ë¶ � p ��
������%Ì�: 0 ;
An edge in

	 p is called a residual edge.

7

Think of the residual network as the network of edges through which more flow can be pushed.
Notice that an edge does not need to be present in

�
to be present in

� p , although if edge
��
!�"�8�%�	 p , then at least one of

��
!�"�8�
or
������
f�

is in
	

.
Since the residual network

� p is a flow network, we can find a flow ÎÍ in
� p . As Lemma 8

shows, we can add the flows and ÏÍ to obtain another flow in
�

.

Lemma 8 Let
���������
	��

be a flow network with flow ,
� p the residual network induced by ,

and \Í a flow in
� p . Let �K� � \Í . That is, for each pair

!�"�#���
, ����
!�"�8��� ��
������¬� \Í ��
!�"�8� .

Then � is a flow in
�

with value
k � k � k k � k \Í k .

Proof: We need to verify that the 3 properties of a flow are satisfied.

1. By definition, \Í ��
�������$ � p ��
������(� � ��
������Ð) ��
������ for all

!�"�#����;

Given this, we can demonstrate capacity constraint as follows. � ��
!�"�8�É� ��
������o� 7Í ��
!�"�8�$ ��
������o� � ��
������Ð) ��
������� � ��
�������;
2. To see that � has skew symmetry, notice that for

����Å���
, � ��
�������� ��
������o� \Í ��
������i�) ������
f�Ð) \Í ������
f��)�� ������
f�o� \Í ������
f�"��) � ������
f�

3. � has flow conservation, since for all

�����) �) � ,12
374 � ��
������Ñ� 12
374 � ��
!�"�8�+� \Í ��
������"�� 12
374 ��
������+� 12
374 7Í ��
������� :��?:��A:

Finally, we can easily see that k �Zk � 12�354 � � � ������ 12�354 � � �����o� \Í � � ������ 12�354 � � �����o� 12
354 \Í � � ������ k k � k 7Í k ; j
8

Definition 12 Let
�Ë�������
	��

be a flow network with flow . An augmenting path Ò is a simple
path from � to � in the residual network

� p .
Definition 13 Let

�Ó�±�����
	��
be a flow network with flow . The residual capacity of an aug-

menting path Ò is � p � Ò ���bÔ&ÕMÖ�. � p ��
!�"�8�%¶*��
�������� Òo0
The residual capacity is the maximal amount of flow that can be pushed through the augmenting
path Ò . Notice that if there is an augmenting path, then each edge on it has positive capacity. We
will use this fact to compute a maximum flow in a flow network.
Figure 4 demonstrates these concepts.

s t s t

s t s t

s t s t

(a)

a

c

b

ed

11

6
3

4

12

8

9

5

2
7

7
7

8

13

(b)

a b

c

d e

5/6

7/7

6/11 1/7

0/9

5/5

5/8

0/2
7/70/3

4/4

1/13

8/8

10/12

a b

c

d e

5/6

7/7

0/9

5/5

0/2
7/70/3

4/4

1/13

8/8

8/11 3/7 7/8

12/12
(e)

8

7

5 1

12

1
7

14

9

a b

d e

c

8

10

2

7

5

6 1 5
3

(c)

1

12

1
7

14

9

a b

d e

c

8

10

2

7

5

6 1 5
3

1

12

1
7

14

9

a b

d e

c

(d)

6
5

6
5

8
3

4 3
1

7

12

(f)

Figure 4: (a) A flow network =A>|@�B�CFEgG . (b) A flow I in = . (c) The residual network = p . (d) The grey
edges form an augmenting path with capacity 2. (e) A new flow I � >ÇIH×,I�Ø . (f) The residual network = p�Ù .

9

The following is not hard to prove.

Lemma 9 Let
�Ñ�������
	��

be a flow network, a flow in
�

, and Ò an augmenting path in
� p .

Define Ø by

 Ø ��
�������� ÚÛÝÜ � p � Ò � if
��
������%� Ò) � p � Ò � if
������
f�%� Ò:

otherwise.

Then Ø is a flow in
� p with value

k Ø k � � p � Ò �·ÄÞ: .
Proof: Left as an exercise. j
Lemmas 8 and 9 lead immediately to the following.

Corollary 10 Let
���Ë�����
	��

be a flow network, a flow in
�

, and Ò an augmenting path in
� p .

Then �8� � Ø is a flow in
�

with value
k � k � k k � k Ø k Ä k k . j

Definition 14 Let
���������
	��

be a flow network with flow .< A cut
��ß9�"àg�

is a partition of
�

into
ß

and
à��-�|)?ß

such that � ��ß and � ��à .< The net flow across the cut
�Zß9�"àg�

is ��ß9�uàH� .< The capacity of the cut is � ��ß9�uàH� .
For example, consider the flow network

�����Z���
	��
with flow from Figure 4(b). Let

�F. � �
á®�
â7� � �
ã 0 �O.Îä�� �
0 �
be a cut in

�
. Then the flow across the cut is

 ��â7� � �D� � � ��ä\�D� ��ã���ä\�o� ��ä��
ãy���-å¹�}æ¹�cæ��?:���º7å8�
and the capacity is �Zâ7� � �D� � � �
ä\�o� �Zã®�
ä\���båe�?å��}æµ�|ç�º�;
Lemma 11 Let

���è�Z���
	��
be a flow network, and a flow in

�
. Let

�Zß9�"àg�
be a cut of

�
. Then �Zß9�"àg��� k k .

Proof: It is straightforward to see that

 ��ß9�"àg�i� �Zß9�����9) ��ß9��ß��� �Zß9������ �Zß') � �����D� � � �
���� � � ������ k k
j

Corollary 12 Let
�h� �����
	��

be a flow network. Then the value of any flow in
�

is bounded
above by the capacity of any cut.

10

Proof: Let be any flow of
�

, and
�Zß9�"àg�

be any cut. Using Lemma 11, we can show thatk k � ��ß9�uàH�� 1 6737é 1 2
3^ê ��
������$ 1 6737é 1 2
3^ê � ��
!�"�8�� � �Zß9�"àg�U;
j

Finally, we will prove the max-flow min-cut theorem.

Theorem 13 Let
���§�����
	��

be a flow network with flow . The the following statements are
equivalent:

1. is a maximum flow in
�

.

2.
� p has no augmenting paths.

3.
k k � � ��ß9�uàH� for some cut

��ß9�uàH�
of
�

.

Proof:ºeë ç
Assume that is a maximum flow, but

� p has an augmenting path Ò . By Corollary 10, � � � Ø is a flow in
�

with
k � k Ä k k , contradicting that was a maximum flow.çµë ì

– Assume that
� p has no augmenting path.

– Define ß � .\�#����¶
there exists a path from � to

�
in
� p 0 � andà � �-)?ß9;

– Clearly � ��ß .

– Since there is no augmenting path, there is no path from � to � .
– Thus � ��à .

– Therefore
�Zß9�"àg�

is a cut.

– By construction, when

���ß

and
����à

,
��
������gd��	 p , so ��
!�"�8�9� � ��
������ .

– Thus, �Zß9�"àg��� � ��ß9�"àg� .
– By lemma 11,

k k � �Zß9�"àg�¸� � �Zß9�"àg� .ì�ë º
By Corollary 12,

k k $ � �Zß9�"àg� for any cut
��ß9�"àg�

. Thus, is
k k � � ��ß9�"àg� , must be a

maximum cut. j

11

5 The Ford-Fulkerson method
The FORD-FULKERSON METHOD computes a maximum flow in a flow network. It works by re-
peatedly finding augmenting paths and adding them to the flow until there are no more augmenting
paths. More specifically, the algorithm is as follows.

FORD-FULKERSON(
�

)
1 For each edge

��
���������	
2 ��
������(�-:
3 ������
f�(�-:
4 While there exists an augmenting path in

� p
5 Let í �AÔ&ÕMÖf. � p ��
�������¶*��
!�"�8�%� Òo0
6 For each edge

��
������%� Ò
7 ��
������(� ��
������+� í
8 ������
f�(��) ������
f�
Notice that the FORD-FULKERSON METHOD does not specify how the augmenting paths are cho-
sen. Depending on how this is handled, the algorithm can perform very differently. Since most
network-flow problems have integer capacities, or can be converted to integer capacities, our dis-
cussion and analysis will assume this.

Let
k 	 k �Àä

and
k � k �è�

. Notice that lines 1-3 require î �Zä\� time, as do lines 5-8, assuming
we store the graph, including capacities and flow values, using an appropriate data structure (an
adjacency matrix where each entry stores the capacity and flow would suffice). If lines 5-8 are
executed ï times, then the complexity of FORD-FULKERSON is î �Zä\�D� ï�î �Zä\��� î � ï ä\� .

In the worst case, the value of the flow of the augmenting path is 1 for each iteration of the while
loop. Thus, if the value of a maximal flow is

k k � ª , then the worst-case complexity of FORD-
FULKERSON is î � ª ä\�

. This worst-case behavior can be avoided by choosing the augmenting
paths in an intelligent way.

The EDMONDS-KARP algorithm is an implementation of FORD-FULKERSON that chooses as
an augmenting path a shortest path in the residual flow network, using breadth-first search. It can
be shown that this implementation has a complexity of î ���¸ä £ � . Two other implementations which
achieve a better running times are the PREFLOW-PUSH algorithm, with complexity î ��� £ ä\� , and
the LIFT-TO-FRONT algorithm, with complexity î ��� ¤ � . The details of all three of these implemen-
tations, including proofs of the complexities, can be found in [1].

In Figure 5 we show how the EDMONDS-KARP algorithm works on a small graph.

References
[1] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990.

12

7
5

7
5

2

4

5

2

4

2

5

2

0/9

0/11

0/3

0/12

0/4
0/7 0/5

0/5

0/5 0/13

4/7

4/11

11

13

5

9 3 5

5

4
7

12

4

7

4

4

3

0/9

0/11

0/3

0/4
0/7 0/5

0/5 0/13

4/7

4/11

5/12 5/5

0/3

0/4
0/7 0/5

0/5

4/7

4/11

5/12 5/5
9/9

9/11

9/13

11

13

5

9 3 5

4
74

7

4

4

3

5

5

9 3 5

4
74

7

4

4

3

5

9

9 0/3

0/4
0/7

0/5

4/7

5/5
9/9

9/11

9/13

10/12

5/5

9/11

9 3 5

4
74

4

3

9

9

10

5 9

2
0/4

0/7

0/5

4/7

5/5
9/9

5/5

9/11

12/12

2/3

11/11

11/13

0/4
0/7

0/5

4/7

5/5
9/9

5/5

9/11

12/12

2/3

11/11

11/13
9

5

4
74

4

3

5 9

2

12

2

11

11

t

4/4

st

9

7
4

11

13

s 12

53

5

5

11

7

4

ts t

4/4

s

t

4/4

sts

ts t

4/4

s

ts t

4/4

s

t

4/4

sts
1

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: The Ford-Fulkerson Algorithm. In steps (a)-(e) we find an augmenting path, and add
it into the flow. The residual graph is on the left, and the resulting flow is on the right. (f) The final
residual network has no augmenting path, and the final flow is shown on the right. The flow has
value 25.

13

