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These notes are based on chapter 16 of [1] and lectures from CSCE423/823, Spring 2001.

1 Basic Definitions
Definition 1 The ith order statistic of a set of � elements is the

�
th smallest element in the set.

Definition 2 A minimum of a set is the first order statistic (
�����

).

Definition 3 maximum of a set is the � th order statistic (
��� � ).

Definition 4 median of a set is the ”halfway point”. When � is odd, the median occurs at
���� �
	 ����
��

. When � is even, the median occurs at
��� � 
�� and � 
�� 	 �

.

Problem 1 Given a set � of � distinct numbers and a number
�
, with

������� � , the selection
problem asks to find an element ����� such that � that is larger than exactly

�����
other elements

of � . In other words, find the
�
th order statistic.

The selection problem can easily be solved in � � � �"!#� � time using heapsort or merge sort and then
indexing the

�%$'&
element in the output array. We will see, however, that the problem can be solved

in time � � � � in the worst case.

2 Minimum and Maximum
The following algorithm returns the minimum element in a set � .

MINIMUM (A)
1 min= A[1]
2 for(i=2 to length[A])
3 if(min > A[i])
4 min=A[ i]
5 return min

It is easy to modify this algorithm to compute the maximum in � . It is not hard to see that if( � ( � � , then this algorithm requires � ���
comparisons, which is the best one can hope for.

To find the minimum and maximum, we can use these two algorithms, requiring
� � � �)���

steps.
However, we can do better than this. If we compare each pair of elements, then compare the
smaller to the min and the larger to the max, we can find both the minumum and the maximum
with only *,+ � 
��.-/���

comparisons.
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3 Selection in expected linear time
In this section we present a divide-and-conquer algorithm for the selection problem. The algo-
rithms is based on the RandomPartition algorithm used with Quicksort.

Random-Select(A,l,r,k)
1 m = RandomPartition(A,l,r)
2 if (k == m - l +1) then return A[m]
3 else if (k < m - l +1) then return Random-Select(A,l,m-1,k)
4 else return Random-Select(A,m+1,r,k-(m - l + 1))

The algorithm partitions about a random element, and continues the search on whichever side
of the pivot 0 is on.

We will analyze the average-case running time of Random-Select.

Lemma 1 Let 1 � � � be the average case complexity of Random-Select. Then

1 � � �2� �� 3547689;:=< >@? 6 1 � �A� 	 � � � �
Proof: If we assume that the larger of the partitions is always taken, we have that

1 � � �2� �� 3.4768 9;:CBEDGF � � 1 � �A�IH 1 � � �J�K�L�A��� 	 � � � �
We shall assume that 1 � � � is monotomically increasing (which is reasonable), so that 1 � � �M���N�O�
is larger when P � 3 Q

, and 1 � �A� is larger otherwise. Thus, we have

1 � � �R� �� S 3UT QOV8 9W:CB 1 � � �X�K�L�A� 	 �� 3.47689;: * < > - ? 6 1 � �O� 	 � � � �
� �� 3547689W: < >Y? 6 1 � �O� 	 �� 3547689W: < >U? 6 1 � �A� 	 � � � �
� �� 3547689W: < >Y? 6 1 � �O� 	 � � � �

Z
Theorem 2 The average case complexity of Random-Select is � � � � .
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Proof: We need to show that 1 � � �[�]\ � for some
\_^ P and all �L` �

. Notice that when � �a�
,

we need 1 � ���b��\ � �c\
. We can choose

\
sufficiently large so that this holds. Now assume that1 � �O�d�e\f�

for
�hg � . Then

1 � � �R� �� 3547689W:=< >@? 6 1 � �A� 	 � � � �
� �� 3.47689W:=< > \f� 	 � � � �
� ��\� 354768 9W: < > � 	 � � � �
� ��\� ij 3.4768 9;: 6 �k� < > 4768 9W: 6 lm 	 � � � �� ��\�on � � �J�U� � � � � � � �J��� � 
���ap 	 � � � �� ��\� � +q � Q � � r � 	 � � � �� +r \ � � \� 	 � � � �� \ �

assuming we can pick
\

so that � � � �s� �r \ �t	 \� H
which we can. The proof of this is left to the reader. Thus, we have 1 � � ���u\ � for all �v` �

, so1 � � �2� � � � � . Z
4 Selection in worst-case linear time
Although the algorithm in the last section has a good average case, like quicksort, it has a worst-
case complexity of � � ��wyx�z=� � We now examine a selection algorithm whose running time is � � � �
in the worst case. Like Random-Select, Select will find the desired element by recursively
partitioning the input array. However, it will choose the pivot element so that the partition will be
even, guaranting a linear runtime.

The algorithm is as follows.
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Select
� � H � H|{�H 0 �

1. Split array � into * � 
�}.- groups of size 5 (except possibly last group).

2. Insertion sort each group.

3. Let ~ =array of medians of each group from � .

4. � =Select
� ~ H@��H � 
�}#H � � 
�}���
����

5. PartitionAbout
� � H � H|{�H��7���#�U$'�

6. if
� 0 g����

return Select
� � H � H����J��H 0 �

else if
� 0 ^����

return Select
� � H�� 	 ��H|{�H 0 �

else return
�

To be continued...
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