
CSCI235 Bible Reader Project

16

Project Stage 9: Dealing with multiple versions

You should work in self-selected pairs on this stage. You must use pair programming—you may
not work separately on different parts of the project. This stage involves updating the application
so that it can display results from multiple versions of the Bible at the same time.
1. Update BibleReaderModel so that it properly deals with multiple versions of the Bible

simultaneously. Read the documentation for all of the methods in MultiBibleModel (except
for the three methods you haven’t implemented yet) to ensure you have implemented
everything in BibleReaderModel according to that documentation.

2. Obtain and run the Stage 9 tests. These will test that everything in the BibleReaderModel
works properly with multiple versions. One of these tests depends on the Stage 7 tests, so
make sure you still have those in your project.

3. Update the GUI code (i.e. ResultView and BibleReaderApp) so that results from all currently
loaded Bible versions (i.e., those that have been added to BibleReaderModel) are displayed.
Use an HTML table for the results, with one column for the reference and one column for the
results from each version, with the appropriate column headers.

4. Change anything else in the GUI that is relevant to properly dealing with multiple versions.
5. Pick one of the following options for adding multiple Bibles to your model:

a. For up to 90%, add the other two versions of the Bible (asv.xmv and esv.atv) to your
model in the constructor of BibleReaderApp.

b. For up to 100%, have the application still start by just reading the KJV automatically and
add a FileOpen menu item that will allow you to open additional Bibles.

i. Use a JFileChooser to pick the file (see ScatterPlot for an example).
ii. Read in the file, create a Bible object, and add it to the model.

iii. For up to 100%, update the current results to take into account the additional
version as soon as it is loaded. For up to 95%, make future searches include the
newest version but don’t update the current results.

6. Be sure to test your GUI very carefully. Make sure the text displayed is from the proper
version(s). Also make sure it works for cases that have missing verses—I recommend doing
a passage search for Mark 9, and word search for worm dieth not. In these cases the ESV
should be missing a few verses.

7. Here is one way to test your application: Start your program (with just the KJV loaded).
Search for eaten. Load the ASV and see if it loads the second column. The second result
(Gen 3:17) should be slightly different in the ASV. Do a passage search for John 3. Now
load the ESV and see if it updates properly. Now do passage search for Mark 9 and verify
that your program does not crash and that verses 44 and 46 are missing from the ESV (so
there should be blanks in those spots). Finally, search for worm dieth not and verify that it
displays 3 verses for ASV and KJV but only 1 for ESV (again, it should be leaving blank
space where the missing verses are).

8. Create MyGrade_P9.txt and fill in your actual time spent and expected grade and include a
brief justification of your expected grade.

9. Zip up your src directory and submit it along with MyGrade_P9.txt using Handin under
assignment 235-P9.

10. Grades will be based on passing the tests, the implementation of several of your classes, and
whether or not your application runs as specified.

See next page for hints and tips.

CSCI235 Bible Reader Project

17

Hints/Tips
• For a sample HTML table based on my solution, go to the Misc section of the Notes page

(linked from the course website) and take a look at sampleHTMLTable2.html. (Notice that
this is similar to the one referenced in a previous stage, but this one has 4 columns.)
• There are several ways to combine results from multiple versions. You can't do it by

using addAll on an ArrayList<Reference> since this will just append the References
from one list to the end of the other list. You can either do it by going through the lists
and adding references at the proper location (since they need to be in order) or you can do
it the easy way. The easy way involves using a better data structure. Since you want to
combine lists and only keep one copy of each Reference, you need to use some sort of
Set. The obvious choices in Java are HashSet and TreeSet. If you look at the APIs, one
of these is the clear choice for our purposes (and the other one is clearly not the one to
use).

• You can pass in collections to the constructors of other collections. For instance, if you want
to create a TreeSet with elements from an ArrayList (or vice-versa), you can do that. In fact,
the easiest (and best) way to implement most of the find methods is to create some sort of set
to combine the results and then pass it into the constructor of an ArrayList<Reference> so
you can return the correct type of object.

• As usual start early! Once you figure out what you need to do this stage isn’t too difficult,
but you might get stuck on either correctly combining the results or getting the GUI to work
properly. You need to allow time to read some of the APIs, think about how to correctly
code things, and experiment a little.

• If you run out of heap space when you run the tests, you can increase the heap size in Eclipse
as follows:

o Select Run->Run Configurations...
o In the left side of the window, find the JUnit heading.
o Look under the JUnit heading for the test you are running and click on it (It might be

the class name or the package name, depending on whether you run them one at a
time or all together).

o In the right side of the window, make sure the name field has the package/class you
expect.

o Click on the Arguments tab
o In the box under VM Arguments (NOT Program arguments), put: -Xmx256M

This will increase the maximum heap size to 256MB. You can change that to 512 or larger if
you need to. If you run the tests separately, you will need to do this for each test.

	Project Stage 9: Dealing with multiple versions

