
CSCI235 Bible Reader Project

18

Project Stage 10: Fancifying the results

You may work by yourself or in groups of two on this stage. Start this project early and ensure

that you can run the tests as soon as possible! There are a few important details related to

running the tests that can cause problems and if you wait too long you may have a much harder

time debugging your code.

For this stage you will improve how results are displayed. You will also gain a little experience

doing GUI tests. I highly recommend experimenting with my solution so you are clear on what I

am looking for. You will notice that my solution is the same as what I am asking you to do here,

but mine does better word searching (something you will fix soon) and it highlights words

slightly differently (due to the better word matching).

1. Before you get started, you need to know about something new: in order for the testing class

to work, you need to set the name of several of your GUI elements. This is done using the

setName() method available to all Swing components. Note that I don't mean the name of

your variables or the text on the button. The name is something internal that is used for

various purposes, including testing. Your GUI must have the following:

GUI element Required type Required name

input field JTextField InputTextField

search button JButton SearchButton

passage button JButton PassageButton

next button JButton NextButton

previous button JButton PreviousButton

output (where your results are) JEditorPane OutputEditorPane

For instance, you might have JButton nextButton, for which you would need to do:
 nextButton.setName("NextButton");

You also need to make the fields for these 6 GUI elements public. If they are private the

tests won’t be able to find them.

2. Limit the number of results displayed at a time to 20 and add previous and next buttons to

allow the results to be navigated.

 Disable each of these when they are not relevant.

 Display a message that says something like “Displaying page 3 of 5.”

 You may use the NavigableResults class that should already be in your project.

 You should put the previous/next buttons in ResultView since not only is it no more

difficult to do so than to put them anywhere else, but it makes the most sense. For

instance, if you wanted several search result windows, you would need to have the

buttons on them.

3. Bold the searched words (not for passage searches).

 Do this by placing bold tags around every occurrence of the searched phrase. For

instance, if the word is eaten, you would replace it with eaten, and beaten with

beaten.

CSCI235 Bible Reader Project

19

 Because the case of words can make this difficult and because although regular

expressions make this really easy, they can be difficult to figure out, here is some

relevant code:
// Replace every occurrence of foo with foo in the String

// phrase regardless of the case (so Foo becomes Foo).

String word="foo";

String phrase = phrase.replaceAll("(?i)" + word, "$0");

FYI, in Java, putting (?i) at the beginning of a regular expression is essentially saying

"match regardless of case". The $0 is saying "place here exactly what you matched

(maintaining the case of each letter)."

 If you want to learn more about regular expressions in Java, you can check out the

Regular Expressions Tutorial linked to on the Main page of the course website (Under

Resources under the Regular Expressions heading).

4. For passages (not word searches), display the reference for the current portion of the passage

that is displayed at the top of the results page.

 You should base the reference you display on the first and last reference being displayed.

Since this is only relevant in passage results, it is probably safe to assume the ones in

between are what we expect.

 Don't display the book or chapter twice. So if the passage is John 3:3-John 3:23, you

want to display John 3:3-23.

 I display it within bold and center tags: <center>John 3:3-3:23</center>

 This should probably occur before you start your table of results.

 Notice that this should be based on the currently displayed results, so it should change

when you navigate with previous/next.

5. Display passage results (not word searches) in paragraph form with the verse number

preceding each verse superscripted, except the first verse of each chapter which will have the

chapter number instead.

 Do this by placing the verse number in <sup> tags (e.g. ² will display as 2).

 Start a new paragraph at the beginning of every chapter. You can do this by using either

 tags (line break) or putting all of the text for each paragraph between <p> tags (e.g.

<p>My long paragraph here.</p>). I use an extra set of <p></p> tags between paragraphs

to get a blank line between them. You will probably have to do a little experimenting to

get it just right.

6. Modify your application so that it automatically loads all 3 versions. You will not pass the

tests if you do not do this. You can keep the FileOpen menu item (if you added it in a

previous stage), but we won't need it for this stage.

7. Change your application so that the window is no larger than 600 tall by 800 wide. If it is

larger, the tests may not run properly on the grading machine due to the size of the screen.

8. Obtain and run the Stage10 test. If you get an initialization error while trying to run the test

you will need to use an older version of JUnit in your project. See the next page for how to

obtain and include it in your project.

Important: do not touch the mouse or keyboard while the tests are running. You will notice

that the tests are moving the mouse and typing things into your application. If you move the

mouse or type anything it will probably mess the test up. The tests should take about a

minute to run. If you get weird or unexpected errors when you are testing, make sure you

have the required GUI elements named as specified above and that you aren't touching the

mouse or keyboard during the tests.

CSCI235 Bible Reader Project

20

9. If you work with a partner, make sure their name is in the BibleReaderApp and ResultView

classes (and any other classes you modified together).

10. Create MyGrade_P10.txt and fill in your actual time spent and expected grade and include a

brief justification of your expected grade.

11. Have one person from your pair (if you worked with someone) zip up your src directory and

submit it and MyGrade_P10.txt using Handin under assignment 235-P10.

12. Grades will be based on the tests, the implementation of several of your classes, and whether

or not your application works as specified.

Using an older version of Junit in your project so you can run the GUI tests

Try these steps way in advance since I haven’t double-checked everything and there may be a

few details I forgot to mention!

1. Go to the Main page on the course website and find the Junit section of links under the

Resources section.

2. The last link in that section is for junit-4.8.2.jar. Download that file.

3. Copy junit-4.8.2.jar into your project directory in Eclipse—it should go in the same place

as the student.jar file that should already be there.

4. Right-click on junit-4.8.2.jar and choose Add to build path (or something similar).

5. Right-click on the Junit 4 icon (not the jarfile but the one with the icon next to it that

looks like a stack of books) and select Remove from Build Path.

6. Now the test should run. You will probably see a warning in the console mentioning an

EventDispatchExceptionHandler, but as long as the tests run you can ignore that.

Optional Visual Enhancement
If you want to make your application look better without much effort, include the method on the

following page in your BibleReaderApp class and call it before you create any of your GUI

components.

The three colors are used to determine the color of a variety of things in a way that is not easily

discernible. I have given them to you as various shades of gray, but you can tweak them to

change the look. They are specified by giving the amount of red, green, and blue, between 0 and

255. Don't do anything too obnoxious, and don't spend too much time with this unless you have

everything else done. For more information on how to tweak this, do a Google search for

“Nimbus look and feel.”

// Method that can be used to enhance the look of your application

private void setupLookAndFeel() {

 UIManager.put("control", new Color(200,200,200));

 UIManager.put("nimbusLightBackground", new Color(220,220,220));

 UIManager.put("nimbusFocus", new Color(150,150,150));

 try {

 for (LookAndFeelInfo info : UIManager.getInstalledLookAndFeels()) {

 if ("Nimbus".equals(info.getName())) {

 UIManager.setLookAndFeel(info.getClassName());

 break;

 }

 }

 } catch (Exception e) {

 // It will use the default look and feel.

 }

}

