An Active Introduction to
Discrete Mathematics and Algorithms

Charles A. Cusack

cusack@hope.edu

David A. Santos

Version 2.6.3
March 30, 2018

mailto:cusack@hope.edu

i

Copyright (© 2016 Charles A. Cusack. Permission is granted to copy, distribute and /or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

Copyright (© 2007 David Anthony Santos. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation Li-
cense, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation License”.

History

e An Active Introduction to Discrete Mathematics and Algorithms, 2016, Charles A. Cusack.
Minor revisions. Algorithm Analysis chapter had a few additions.

e An Active Introduction to Discrete Mathematics and Algorithms, 2015, Charles A. Cusack.
Minor revisions. Algorithm Analysis chapter had major revisions.

e An Active Introduction to Discrete Mathematics and Algorithms, 2014, Charles A. Cusack.
This is a significant revision of the 2013 version (thus the slight change in title).

e An Introduction to Discrete Mathematics and Algorithms, 2013, Charles A. Cusack. This
document draws some content from each of the following.
— Discrete Mathematics Notes, 2008, David A. Santos.
— More Discrete Mathematics, 2007, David A. Santos.
Number Theory for Mathematical Contests, 2007, David A. Santos.
— Linear Algebra Notes, 2008, David A. Santos.

Precalculus, An Honours Course, 2008, David Santos.

These documents are all available from http://www.opensourcemath.org/books/santos/,
but the site appears not to be consistently available.

About the cover
The image on the cover is an example of mathematical art using Lego bricks. It shows 9 different
Latin squares of order 16. Go to https://www.instagram.com/ferzle/ to see more pictures of Dr.
Cusack’s Lego art.

http://www.opensourcemath.org/books/santos/
https://www.instagram.com/ferzle/

Contents

Preface v

How to use this book vii

1 Motivation 1
1.1 Some Problems 2

2 Proof Methods 7
2.1 Direct Proofs 7
2.2 Implication and Its Friends 16
2.3 Proof by Contradiction 20
2.4 Proof by Contraposition 29
2.5 Other Proof Techniques 31
2.6 If and Only If Proofs 33
2.7 Common Errors in Proofs 35
2.8 More Practice 38
29 Problems 42

Programming Fundamentals and Algo-

rithms 45
3.1 Algorithms 45
3.2 The mod operator and Integer Division 49

3.3 If-then-else Statements 56
34 Theforloop 58
35 Arrays 61
3.6 The whileloop 65
3.7 Problems 68
Logic 71
4.1 Propositional Logic 71

4.1.1 Compound Propositions 72

4.1.2 Truth Tables 80

4.1.3 Precedence Rules 82
4.2 Propositional Equivalence 84
4.3 Predicates and Quantifiers 96
4.4 Normal Forms. 105
4.5 Bitwise Operations 108
4.6 Problems 111
Sets, Functions, and Relations 117
5.1 Sets 117
5.2 Set Operations 123
5.3 Functions 134

5.4 Partitions and Equivalence Relations . 145

55 Problems 159
Sequences and Summations 163
6.1 Sequences 163
6.2 Sums and Products 176
6.3 Problems 192

iii

7 Algorithm Analysis 195
7.1 Asymptotic Notation 195
7.1.1 The Notations 195

7.1.2 Properties of the Notations . . 205
7.1.3 Proofs using the definitions . . 209

7.1.4 Proofs using limits 214
7.2 Common Growth Rates 225
7.3 Algorithm Analysis 233
7.3.1 Analyzing Algorithms 234
7.3.2 Common Time Complexities . 242
7.3.3 Basic Sorting Algorithms . . . 246
7.3.4 Basic Data Structures (Review) 250
7.3.5 More Examples 252
7.3.6 Binary Search 261
7.4 Problems 264
Recursion, Recurrences, and Mathe-
matical Induction 271
8.1 Mathematical Induction 271
8.1.1 The Basics 272
8.1.2 Equalities/Inequalities 277
8.1.3 Variations 280
8.1.4 Strong Induction 284
8.1.5 Induction Errors 286
8.1.6 Summary/Tips 288
8.2 Recursion 291
8.3 Solving Recurrence Relations 299
8.3.1 Substitution Method 301
8.3.2 TIteration Method 305
8.3.3 Master Theorem 313
8.3.4 Linear Recurrence Relations . . 315
8.4 Analyzing Recursive Algorithms . . . 319
8.4.1 Analyzing Quicksort 323
85 Problems 327
Counting 331
9.1 The Multiplication and Sum Rules . . 331
9.2 Pigeonhole Principle 336
9.3 Permutations and Combinations . . . 342

9.3.1 Permutations without Repeti-

tions 342

9.3.2 Permutations with Repetitions 345
9.3.3 Combinations without Repeti-

tions 349

9.3.4 Combinations with Repetitions 355

9.4 Binomial Theorem 359

9.5 Inclusion-Exclusion 362

9.6 Problems

iv

10 Graph Theory 373
10.1 Types of Graphs 373
10.2 Graph Terminology 377
10.3 Some Special Graphs 382
10.4 Handshaking Lemma 385
10.5 Graph Representation 387
10.6 Problem Solving with Graphs 388
10.7 Traversability 391

10.8 Planarity
10.9 Problems

11 Selected Solutions

GNU Free Documentation License

Index

397

445

449

Preface

This book is an attempt to present some of the most important discrete mathematics concepts to
computer science students in the context of algorithms. I wrote it for use as a textbook for half
of a course on discrete mathematics and algorithms.

Some of the material is drawn from several open-source books by David Santos. Other material
is from handouts I have written and used over the years. I have extensively edited the material
from both sources, both for clarity and to emphasize the connections between the material and
algorithms where possible. I have also added a significant amount of new material. The format
of the material is also significantly different than it was in the original sources.

I should mention that I never met David Santos, who apparently died in 2011. I stumbled
upon his books in the summer of 2013 when [was searching for a discrete mathematics book to
use in a new course. When I discovered that I could adapt his material for my own use, I decided
to do so. Since clearly he has no knowledge of this book, he bears no responsibility for any of the
edited content. Any errors or omissions are therefore mine.

This is still a work in progress, so I appreciate any feedback you have. Please send any typos,
formatting errors, other errors, suggestions, etc., to cusack@hope.edu.

I would like to thank the following people for submitting feedback/errata (listed in no par-
ticular order): Dan Zingaro, Mike Jipping, Steve Ratering, Victoria Gonda, Nathan Vance, Cole
Watson, Kalli Crandell, John Dood, Coty Franklin, Kyle Magnuson, Katie Brudos, Jonathan
Senning, Matthew DeJongh, Julian Payne, Josiah Brouwer, and probably several others I forgot
to mention.

Charles A. Cusack
July, 2014

mailto:cusack@hope.edu

vi

How to use this book

As the title of the book indicates, this is not a book that is just to be read. It was written so
that the reader interacts with the material. If you attempt to just read what is written and take
no part in the exercises that are embedded throughout, you will likely get very little out of it.
Learning needs to be active, not passive. The more active you are as you ‘read’ the book, the
more you will get out of it. That will translate to better learning. And it will also translate to a
higher grade. So whether you are motivated by learning (which is my hope) or merely by getting
a certain grade, your path will be the same—use this book as described below.

The content is presented in the following manner. First, concepts and definitions are given—
generally one at a time. Then one or more examples that illustrate the concept/definition will
be given. After that you will find one or more exercises of various kinds. This is where this
book differs from most. Instead of piling on more examples that you merely read and think you
understand, you will be asked to solve some for yourself so that you can be more confident that
you really do understand.

Some of the exercises are just called Fzercises. They are very similar to the examples, except
that you have to provide the solution. There are also Fill in the details which provide part of
the solution, but ask you to provide some of the details. The point of these is to help you think
about some of the finer details that you might otherwise miss. There are also Questions of various
kinds that get you thinking about the concepts. Finally, there are Fvaluate exercises. These ask
you to look at solutions written by others and determine whether or not they are correct. More
precisely, your goal is to try to find as many errors in the solutions as you can. Usually there will
be one or more errors in each solution, but occasionally a correct solution will be given, so pay
careful attention to every detail. The point of these exercises is to help you see mistakes before
you make them. Many of these exercises are based on solutions from previous students, so they
often represent the common mistakes students make. Hopefully if you see someone else make
these mistakes, you will be less likely to make them yourself.

The point of the exercises is to get you thinking about and interacting with the material. As
you encounter these, you should write your solution in the space provided. After you have written
your solution, you should check your answer with the solution provided. You will get the most out
of them if you first do your best to give a complete solution on your own, and then always check
your solution with the one provided to make sure you did it correctly. If yours is significantly
different, make sure you determine whether or not the differences are just a matter of choice or if
there is something wrong with your solution.

If you get stuck on an exercise, you should re-read the previous material (definitions, examples,
etc.) and see if that helps. Then give it a little more thought. For Fill in the details questions,
sometimes reading what is past a blank will help you figure out what to put there. If you get
really stuck on an exercise, look up the solution and make sure you fully understand it. But don’t
jump to the solution too quickly or too often without giving an honest attempt at solving the
exercise yourself. When you do end up looking up a solution, you should always try to rewrite

vii

viii

it in the space provided in your own words. You should not just copy it word for word. You
won’t learn as much if you do that. Instead, do your best to fully understand the solution. Then,
without looking at the solution, try to re-solve the problem and write your solution in the space
provided. Then check the solution again to make sure you got it right.

It is highly recommended that you act as your own grader when you check your solutions.
If your solution is correct, put a big check mark in the margin. If there are just a few errors,
use a different colored writing utensil to mark and fix your errors. If your solution is way off,
cross it out (just put a big ‘X’ through it) and write out your second attempt, using a separate
sheet of paper if necessary. If you couldn’t get very far without reading the solution, you should
somehow indicate that. So that you can track your errors, I highly recommend crossing out
incorrect solutions (or portions of solutions) instead of erasing them. Doing this will also allow
you to look back and determine how well you did as you were working through each chapter. It
may also help you determine how to spend your time as you study for exams. This whole process
will help you become better at evaluating your own work. This is important because you should
be confident in your answers, but only when they are correct. Grading yourself will help you gain
confidence when you are correct and help you quickly realize when you are not correct so that you
do not become confident about the wrong things. Another reason that grading your solutions is
important is so that when you go back to re-read any portion of the book, you will know whether
or not what you wrote was correct.

It is important that you read the solutions to the exercises after you attempt them, even if
you think your solution is correct. The solutions often provide further insight into the material
and should be regarded as part of any reading assignment given.

Make sure you read carefully. When you come upon an Ewvaluate exercise, do not mistake it
for an example. Doing so might lead you down the wrong path. Never consider the content of an
Evaluate exercise to be correct unless you have verified with the solution that it is really correct.
To be safe, when re-reading, always assume that the FEvaluate exercises are incorrect, and never
use them as a model for your own problem solving. To help you, we have tried to differentiate
these from other example and exercise types by using a different font.

Finally, there is an expectation that you are able to solve every exercise on your own. (Note
that I am talking about the exercises embedded into the chapters, not the homework problems
at the end of each chapter.) If there are exercises that you are unable to complete, you need to
get them cleared up immediately. This might mean asking about them in class, going to see the
professor or a teaching assistant, and/or going to a help center/tutor. Whatever it takes, make
sure you have a clear understanding of how to solve all of them.

Chapter 1

Motivation

The purpose of a discrete mathematics course in the computer science curriculum is to give
students a foundation in some of the mathematical concepts that are foundational to computer
science. By “foundational,” we mean both that the field of computer science was built upon (some
of) them and that they are used to varying degrees in the study of the more advanced topics in
computer science.

Computer science students sometimes complain about taking a discrete mathematics course.
They do not understand the relevance of the material to the rest of the computer science curricu-
lum or to their future career. This can lead to lack of motivation. They also perceive the material
to be difficult.

To be honest, some of the topics are difficult. But the majority of the material is very
accessible to most students. One problem is that learning discrete mathematics takes effort, and
when something doesn’t sink in instantly, some students give up too quickly. The perceived
difficulty together with a lack of motivation can lead to lack of effort, which almost always leads
to failure. Even when students expend effort to learn, they can let their perceptions get the
best of them. If someone believes something is hard or that they can’t do it, it often leads to
self-fulfilling prophecy. This is perhaps human nature. On the other hand, if someone believes
that they can learn the material and solve the problems, chances are they will. The bottom line
is that a positive attitude can go a long way.

This book was written in order to ensure that the student has to expend effort while reading it.
The idea is that if you are allowed to simply read but not required to interact with the material,
you can easily read a chapter and get nothing out. For instance, your brain can go on ‘autopilot’
when something doesn’t sink in and you might get nothing out of the remainder of your time
reading. By requiring you to solve problems and answer questions as you read, your brain is
forced to stay engaged with the material. In addition, when you incorrectly solve a problem, you
know immediately, giving you a chance to figure out what the mistake was and correct it before
moving on to the next topic. When you correctly solve a problem, your confidence increases. We
strongly believe that this feature will go a long way to help you more quickly and thoroughly
learn the material, assuming you use the book as instructed.

What about the problem of relevance? In other words, what is the connection between discrete
mathematics and other computer science topics? There are several reasons that this connection
is unclear to students. First, we don’t always do a very good job of making the connection clear.
We teach a certain set of topics because it is the set of topics that has always been taught in such
a course. We don’t always think about the connection ourselves, and it is easy to forget that this
connection is incredibly important to students. Without it, students can suffer from a lack of

2 Chapter 1

motivation to learn the material.

The second reason the connection is unclear is because one of the goals of such a course is
simply to help students to be able to think mathematically. As they continue in their education
and career, they will most certainly use some of the concepts they learn, yet they may be totally
unaware of the fact that some of their thoughts and ideas are based on what they learned in a
discrete mathematics course. Thus, although the students gain a benefit from the course, it is
essentially impossible to convince them of this during the course.

The third reason that the connection is unclear is that given the time constraints, it is impos-
sible to provide all of the foundational mathematics that is relevant to the advanced computer
science courses and make the connection to those advanced topics clear. Making these connec-
tions would require an in-depth discussions of the advanced topics. The connections are generally
made, either implicitly or explicitly, in the courses in which the material is needed.

This book attempts to address this problem by making connections to one set of advanced
topics—the design and analysis of algorithms. This is an ideal application of the discrete math-
ematics topics since many of them are used in the design and analysis of algorithms. We also
do not have to go out of our way too far to provide the necessary background, as we would if
we attempted to make connections to topics such as networking, operating systems, architecture,
artificial intelligence, database, or any number of other advanced topics. As already mentioned,
the necessary connections to those topics will be made when you take courses that focus on those
topics.

The goal of the rest of this chapter is to further motivate you to want to learn the topics that
will be presented in this book. We hope that after reading it you will be more motivated. For
some students, the topics are interesting enough on their own, whether or not they can be applied
elsewhere. For others, this is not the case. One way or another, you must find motivation to learn
this material.

1.1 Some Problems

In this section we present a number of problems for you to attempt to solve. You should make an
honest attempt to solve each. We suspect that most readers will be able to solve at most a few
of them, and even then will probably not use the most straightforward techniques. On the other
hand, after you have finished this book you should be able to solve most, if not all of them, with
little difficulty.

There are two main reasons we present these problems to you now. First, we hope they help
you gauge your learning. That is, we hope that you do experience difficulty trying to to solve
them now, but that when you revisit them later, they will seem much easier. Second, we hope
they provide some motivation for you to learn the content. Although all of these problems may
not interest you, we hope that you are intrigued by at least some of them.

Problem A: The following algorithm supposedly computes the sum of the first n integers. Does
it work properly? If it does not work, explain the problem and fix it.

sumiToN(int n) {
return n + sumlToN(n-1);

}

Problem B: The Mega Millions lottery involves picking five different numbers from 1 to 56, and
one number from 1 to 46. I purchased a ticket last week and was surprised when none of my

Some Problems 3

six numbers matched. Should I have been surprised? What are the chances that a randomly
selected ticket will match none of the numbers?

Problem C: I programmed an algorithm recently to solve an interesting problem. The input is
an array of size n. When n = 1, it took 1 second to run. When n = 2, it took 7 seconds.
When n = 3, it took 19 seconds. When n = 4, it took 43 seconds. Assume this pattern
continues.

(a) How large of an array can I run the algorithm on in less than 24 hours?

(b) How large can n be if I can wait a year for the answer?

Problem D: Is the following a reasonable implementation of the QUICKSORT algorithms? In
other words, is it correct, and is it efficient? (Notice that the only difference between this
and the standard algorithm is that this one is implemented on a LinkedList rather than
an array.)

Quicksort(LinkedList A,int 1,int r) {
if(r > 1) {
int p = RPartition(A,l,r);
Quicksort(A,l,p-1);
Quicksort(A,p+l,r);

}

int RPartition(LinkedList A,int 1,int r) {
int piv=1+(rand () %(r-1+1));
swap(A,l,piv);
int i = 1+1;
int j = r;
while (1) {
while (A.get(i) <= A.get(l) && i<r)
i++;
while (A.get(j) >= A.get(1l) && j>1)
j=—=s
if (i >= j) {
swap(A,j,1);
return j;
} else {
swap(A,i,j);
}

}

void swap(LinkedList A, index i, index j) {
int temp = A.get(i);
A.set(i,A.get(j));
A.set(j,temp);

}

Problem E: I have an algorithm that takes two inputs, n and m. The algorithm treats n
differently when it is less than zero, between zero and 10, and greater than 10. It treats m
differently based on whether or not it is even. I want to write some test code to make sure
the algorithm works properly for all possible inputs. What pairs (n,m) should I test? Do
these tests guarantee correctness? Explain.

4 Chapter 1

Problem F: Consider the stoogeSort algorithm given here:

void stoogeSort(int[] A,int L,int R){
if (R<=L) { // Array has at most one element so it is sorted
return;

}

if CA[RI<A[L]) {
int temp = A[L]; // Swap first and last element
A[L] = A[R]; // 1if they are out of order
A[R] = temp;

}

if (R-L>1){ // If the list has at least 3 elements
int third=(R-L+1)/3;
stoogeSort(A,L,R-third); // Sort first two-thirds
stoogeSort(A,L+third,R); // Sort last two-thirds
stoogeSort(A,L,R-third); // Sort first two-thirds again

}

(a) Does stoogeSort correctly sort an array of integers?

(b) Is stoogeSort a good sorting algorithm? Specifically, how long does it take, and how
does it compare to other sorting algorithms?

Problem G: In how many ways may we write the number 19 as the sum of three positive integer
summands? Here order counts, so, for example, 1 + 17 4+ 1 is to be regarded different from
17+1+4+1.

Problem H: Can the following code be simplified? If so, give equivalent code that is as simple
as possible.

if ((!'x.size() <=0 && x.get(0) !'= 11) || x.size() > 0)
{
if (1 (x.get(0)==11 && (x.size() > 13 || x.size() < 13))
&& (x.size() > 0 || x.size() == 13))
{
//do something
}

}

Problem I: A cryptosystem was recently proposed. One of the parameters of the cryptosystem
is a nonnegative integer n, the meaning of which is unimportant here. What is important
is that someone has proven that the system is insecure for a given n if there is more than
one integer m such that 2-m <n <2-(m+1).

(a) For what value(s) of n, if any, can you prove or disprove that there is more than one
integer m such that 2-m <n <2-(m+1)?

(b) Given your answer to (a), does this prove that the cryptosystem is either secure or
insecure? Explain.

Problem J: A certain algorithm takes a positive integer, n, as input. The first thing the algo-
rithm does is set n = n mod 5. It then uses the value of n to do further computations. One
friend claims that you can fully test the algorithm using just the inputs 1, 2, 3, 4, and 5.
Another friend claims that the inputs 29, 17, 38, 55, and 6 will work just as well. A third

Some Problems 5

friend responds with “then why not just use 50, 55, 60, 65, and 70?7 Those should work just
as well as your stupid lists.” A fourth friend claims that you need many more test cases to
be certain. A fifth friend says that you can never be certain no matter how many test cases
you use. Which friend or friends is correct? Explain.

Problem K: Write an algorithm to swap two integers without using any extra storage. (That
is, you can’t use any temporary variables.)

Problem L: Recall the Fibonacci sequence, defined by the recurrence relation

0 if n=0
fa=11 if n=1
foo1+ fanee ifn>1.

Sof2:17f3:27f4:37f5:57f6:876tc'

(a) One friend claims that the following algorithm is an elegant and efficient way to com-
pute f.
int Fibonacci(int n) {
if(n <= 1) {
return (n) ;
} else {
return(Fibonacci(n-1)+Fibonacci(n-2));
}
}

Is he right? Explain.

(b) Another friend claims that he has an algorithm that computes f,, that takes constant
time—that is, no matter how large n is, it always takes the same amount of time to
computer f,. Is it possible that he has such an algorithm? Explain.

Problem M: You are at a party with some friends and one of them claims “I just did a quick
count, and it turns out that at this party, there are an odd number of people who have
shaken hands with an odd number of other people.” Can you prove or disprove that this
friend is correct?

Problem N: You need to settle an argument between your boss (who can fire you) and your
professor (who can fail you). They are trying to decide who to invite to the Young Accoun-
tants Volleyball League. They want to invite freshmen who are studying accounting and
are over 6 feet tall. They have a list of everyone they could potentially invite.

1. Your boss says they should make a list of all freshmen, a list of all accounting majors,
and a list of everyone over 6 feet tall. They should then combine the lists (removing
duplicates) and invite those on the combined list.

2. Your professor says they should make a list of everyone who is not a freshman, a list
of anyone who does not do accounting, and a list of everyone who is 6 feet tall or less.
They should make a fourth list that contains everyone who is on all three of the prior
lists. Finally, they should remove from the original list everyone on this fourth list,
and invite the remaining students.

Who is correct? Explain.

Chapter 1

Chapter 2

Proof Methods

The ability to write proofs is important to computer scientists for a variety of reasons. Proofs
are particularly relevant to the study of algorithms. When you write an algorithm it is important
that the algorithm performs as expected, both in terms of producing the correct answer and doing
so quickly. That is, proofs are necessary in algorithm correctness and algorithm analysis.

In this chapter we will introduce you to the basics of mathematical proofs. Along the way
we will review some mathematical concepts/definitions you have probably already seen, and in-
troduce you to some new ones that we will find useful as we proceed. We will continue to write
proofs and learn more advanced proof techniques as the book continues.

2.1 Direct Proofs

A direct proof is one that follows from the definitions. Facts previously learned help many a time
when writing a direct proof. We will begin by seeing some direct proofs about something you
should already be very familiar with: even and odd integers.

Definition 2.1. Recall that
e an even integer is one of the form 2k, where k is an integer.

e an odd integer is one of the form 2k + 1 where k is an integer.

Example 2.2. Use the definition of even to prove that the sum of two even integers is even.

Proof: If x and y are even, then x = 2a and y = 2b for some integers a and b.
Then x + y = 2a + 2b = 2(a + b), which is even since a + b is an integer. O

Example 2.3. Use the definitions of even and odd to prove that the sum of an even integer
and an odd integer is odd.

Proof: Let a be an even integer and b be an odd integer. Then a = 2f and
b =2g+ 1 for some integers f and g. Thena+b=2f+ (29 +1) =2(f +g) + 1.
Since f + g is an integer, a + b is an odd integer. O

8 Chapter 2

Note: The next example is the first of many Fill in the details exercises in which you need
to supply some of the details. After you have filled in the blanks, compare your answers with
the solutions. The answers are given with semicolons (;) separating the blanks.

*F'ill in the details 2.4. Use the definitions of even and odd to prove that the sum of two
odd integers is even.

Proof: If x and y are odd, then x = 2c+ 1 and y = for some

integers c and d. Then x +y =2c+1+2d+1=2(c+d+1). Now

is an integer, so 2(c+d+ 1) is an integer. O

Note: Did you notice the x in the heading of the previous example? This indicates that a
solution is provided. If you are reading the PDF file, clicking on the x will take you to the
solution. Clicking on the number in the solution will take you back.

Example 2.5. Use the definitions of even and odd to prove that the product of two odd
integers is odd.

Proof: Let a and b be odd integers. Then ¢ = 2l + 1 and b = 2m + 1 for some
integers [and m. Then a-b = (21+1)(2m+1) = 4mi+2{4+2m+1 = 2(2mi+I+m)+1
which is odd since 2ml + m + [is an integer. O

xF'ill in the details 2.6. Use the definitions of even and odd to prove that the product of
an even integer and an odd integer is even.

Proof: Let a be an even integer and b be an odd integer. Then a =

and b = for . Given that, we can see that
a-b=(2n)20+1) = . Since is an
integer, a - b is . O

These examples may seem somewhat ridiculous since they are proving such obvious facts.
However, keep in mind that our goal is to learn techniques for writing proofs. As we proceed the
proofs will become more complicated, but we will continue to follow the same basic techniques
we are using here. In other words, the fact that we are proving facts about even and odd integers
is not at all important. What is important are the techniques we are learning in the process.

You may be asking yourself “why are we wasting our time proving such obvious results”? If
so, ask yourself this: Would you rather be asked to prove more complicated things right away?

Direct Proofs 9

Think about how you learned to read and write. You started by reading books that only
had a few simple words. As you progressed, the books and the words in them got longer. The
vocabulary increased. You encountered increasingly complex sentence and paragraph structures.
The same is true when you learned to write. You began by writing the letters of the alphabet.
Then you learned to write words, followed by sentences, paragraphs, and eventually essays.

Learning to read and write proofs follows the same procedure. In order to know how to write
correct proofs you first need to see some examples of them. But you need to go beyond just
seeing them—you need to understand them. That is the goal of examples like the previous one.
Your brain needs to be engaged with the material as you work through the book. You must work
through all of the examples in order to get the most out of this book.

Note: Next you will see the first of many Exercises. These give you an opportunity to solve
a problem from start to finish and then check your answer with the solution provided. It is
important that you try each of these on your own before looking at the solution. You will not
get as much out of the book if you skip these or jump straight to the answer without trying
them yourself.

*Exercise 2.7. Use the definition of even to prove that the product of two even integers is
even.

Proof:

Note: The next example is an Evaluate example. These examples give a problem and then
provide one or more solutions to the problem based on previous student solutions. Your job
is to evaluate each solution by finding any mistakes. Mistakes include not only incorrect
algebra and logic, but also unclear presentation, skipped steps, incorrect assumptions, over-
simplification, etc. When you come across these examples you should write down every error
you can find. Once you are pretty sure you know all of the problems (if there are any), compare
your evaluation to the one given in the solutions.

10 Chapter 2

xEvaluate 2.8. Evaluate the following proof that supposedly uses the definition of odd to
prove that the product of two odd integers is odd.

Proo$: By definition of odd numrers, let a Be an odd intecer 2n +|
let 8 Be an odd intecer 2@+ Then (2ZNn+N2a+D =d4na+2n+] =
2(2na+N =+l Since 2na-tl is an inteaer, 2(2na=+N—+l is an odd intecer
By definition of odd. O

Evaluation

Sometimes students get frustrated because they think that too many details are required in
a proof. Why are mathematicians such sticklers on the details? The next example is the first of
many that will try to demonstrate why the seemingly little details matter.

Note: The Question examples are similar to the Evaluate ones except that they ask a

specific question. Write down your answer in the space provided and then compare your
answer with the one in the solutions.

*Question 2.9. What is wrong with the following “proof” that the sum of an even and an
odd number is even?

Proo$: Let a = 2n Be an even intecer and B = 2m +| Be an odd
intecer. Then a4+ =2n+2m+1 =2n+m+1/2). Since we wrote

a-+8 as a multiple of 2, it is even. Therefore the sum Of an even and
an 0odd Nnumeer is even O

Answer

We will find the following definitions useful throughout the book.

Definition 2.10. Let b and a be integers with a # 0. We say that b is divisible by a
if there exists an integer ¢ such that b = ac. If b is divisible by a, we also say that b is a

multiple of a, a is a factor or divisor of b, and that a divides b, written as alb. If a does
not divide b, we write a 1 b.

Example 2.11. Since 6 = 2-3, 2|6, and 3|6. But 4 1 6 since we cannot write 6 = 4 - ¢ for any
integer c.

Direct Proofs 11

Example 2.12. Prove that the product of two even integers is divisible by 4.

Proof: Let 2h and 2k be even integers. Then (2h)(2k) = 4(hk). Since hk is an
integer, 4(hk) is divisible by 4. O

*Fill in the details 2.13. Prove that if z is an integer and 7 divides 3z + 2, then 7 also
divides 152% — 11z — 14.

Proof: Since 7 divides 3z + 2, we know that 3z + 2 = T7a, where a is

. Notice that

1522 — 11z — 14 = ()()

Therefore . U

Example 2.14. Let a and b be integers such that a|b and bla. Prove that either a = b or
a = —b.

Proof: If alb, we can write b = ac for some integer c¢. Similarly, if b|a, we can
write a = bd for some integer d. Then we can write b = ac = (bd)c. Dividing both
sides by b (which is legal, since bla implies b # 0), we can see that ¢d = 1. Since
¢ and d are integers, we know that either c =d =1 or ¢ = d = —1. In the first
case, we have that a = b, and in the second case, we have that a = —b. O

xEvaluate 2.15. Prove that if n is an integer, then n® — n is divisible by 6.

Proos: We have N3 —n = (n —Dn(n 4D, the product of three con-
secutive intecers. Among three consecutive intecers at least one
is even and exactly one is divisiele By 3. Since 2 and 3 do not have
common factors, b divides the @uantity (n —Dn(n+D, and so N2 —n is
divisigle By b. O

Evaluation

Definition 2.16. A positive integer p > 1 is prime if its only positive factors are 1 and p.
A positive integer ¢ > 1 which is not prime is said to be composite.

12 Chapter 2

xEvaluate 2.17. Prove or disprove that if a is a positive even integer, then it is composite.

Proo$: Let a Be an even numeer. By definition of even, a = 2k for
some intecer k. Since a > O, clearly k > O. Since a has at least two
factors, 2 and k, 3 is compOsite. d

Evaluation

Note: Notice that according to the definitions given above, 1 is neither prime nor composite.
This is one of the many things that makes 1 special.

xExercise 2.18. Prove that 2 is the only even prime number.
(Hint: Assume a is an even number other than 2 and prove that a is composite.)

Proof

*Question 2.19. Did you notice that the proof in the solution to the previous exercise (you
read it, right?) did not consider the case of 0 or negative even numbers. Was that O.K.?
Explain why or why not.

Answer

Definition 2.20. For a non-negative integer n, the quantity n! (read “n factorial”) is
defined as follows. 0! =1 and if n > 0 then n! is the product of all the integers from 1 to n
inclusive:

nl=1-2---n.

Example 2.21. 3!=1-2-3=6,and 5!=1-2-3-4-5 = 120.

Direct Proofs

Example 2.22. Prove that if n > 0, then n! < n".
Proof: Since1<n,2<mn,---,and (n —1) < n, it is easy to see that

nl = 1-2-3-..n

= n"

13

xEvaluate 2.23. Prove that if n > 4 is composite, then n divides (n — 1)!.

Proof: Since N is composite, N = ar £Or some intecers | < a < n—| and
| <& <n—| Bydefinition of factorial, a[(n —Nland &8[(n — D! Therefore
N = a& divides (n — D! O

Evaluation

Since the previous proof wasn’t correct, let’s fix it.

Example 2.24. Prove that if n > 4 is composite, then n divides (n — 1)!.

Proof: If n is not a perfect square, then we can write n = ab for some integers
aand bwithl <a<b<n-—1. Thus,(n—1)!'=1---a---b---(n—1). Since a
and b are distinct numbers on the factor list, n = ab is clearly a factor of (n —1)!.

If n is a perfect square, then n = a? for some integer 2 < a < n — 1. Since a > 2,
2a < a®> =n. Thus, 2a < n,so (n—1)!'=1---a---2a--- (n—1). Then a(2a) = 2n
is a factor of (n — 1)!, which means that n is as well. O

*Question 2.25. Why was it O.K. to assume 1 < a < b <n — 1 in the previous proof?

Answer

*Question 2.26. In the second part of the previous proof, why could we say that a > 27

Answer

14 Chapter 2

Example 2.27. Prove the Arithmetic Mean-Geometric Mean Inequality, which states that
for all non-negative real numbers z and y,

r+y

VI < =

Proof: Since z and y are non-negative, /= and ,/y are real numbers, so \/z—,/y
is a real number. Since the square of any real number is greater than or equal to
0 we have

(VT v/5)* 2 0.
Expanding (recall the FOIL method?) we get
T — 2/xy+1y > 0.

Adding 2,/zy to both sides and dividing by 2, we get

r+y
>
5 = Ty,

yielding the result. U

The previous example illustrates the creative part of writing proofs. The proof started out
considering \/x — /3, which doesn’t seem to be related to what we wanted to prove. But hopefully
after you read the entire proof you see why it makes sense. If you are saying to yourself “I would
never have thought of starting with /z — ,/y?,” or “How do you know where to start?,” I am
afraid there are no easy answers. Writing proofs is as much of an art as it is a science. There
are three things that can help, though. First, don’t be afraid to experiment. If you aren’t sure
where to begin, try starting at the end. Think about the end goal and work backwards until you
see a connection. Sometimes working both backward and forward can help. Try some algebra
and see where it gets you. But in the end, make sure your proof goes from beginning to end. In
other words, the order that you figured things out should not necessarily dictate the order they
appear in your proof.

The second thing you can do is to read example proofs. Although there is some creativity
necessary in proof writing, it is important to follow proper proof writing techniques. Although
there are often many ways to prove the same statement, there is often one technique that works
best for a given type of problem. As you read more proofs, you will begin to have a better
understanding of the various techniques used, know when a particular technique might be the
best choice, and become better at writing your own proofs. If you see several proofs of similar
problems, and the proofs look very similar, then when you prove a similar problem, your proof
should probably resemble those proofs. This is one area where some students struggle—they
submit proofs that look nothing like any of the examples they have seen, and they are often
incorrect. Perhaps it is because they are afraid that they are plagiarizing if they mimic another
proof too closely. However, mimicking a proof is not the same as plagiarizing a sentence. To be
clear, by ‘mimic’, I don’t mean just copy exactly what you see. I mean that you should read
and understand several examples. Once you understand the technique used in those examples,
you should be able to see how to use the same technique in your proof. For instance, in many of
the examples related to even numbers, you may have noticed that they start with statement like
“Assume x is even. Then x = 2a for some integer a.” So if you need to write a proof related to
even numbers, what sort of statement might make sense to begin your proof?

Direct Proofs 15

The third thing that can help is practice. This applies not only to writing proofs, but to
learning many topics. An analogy might help here. Learning is often like sports—you don’t learn
how to play basketball (or insert your favorite sport, video game, or other hobby that takes some
skill) by reading books and/or watching people play it. Those things can be helpful (and in some
cases necessary), but you will never become a proficient basketball player unless you practice.
Practicing a sport involves running many drills to work on the fundamentals and then applying
the skills you learned to new situations. Learning many topics is exactly the same. First you need
to do lots of exercises to practice the fundamental skills. Then you can apply those skills to new
situations. When you can do that well, you know you have a good understanding of the topic. So
if you want to become better at writing proofs, you need to write more proofs.

*Question 2.28. What three things can help you learn to write proofs?

16 Chapter 2

2.2 Implication and Its Friends

This section is devoted to developing some of the concepts that will be necessary for us to discuss
the ideas behind the next few proof techniques.

Definition 2.29. A boolean proposition (or simply proposition) is a statement which
is either true or false. We call this the truth value of the proposition.

Although not technically interchangeable, you may sometimes see the word statement instead
of proposition. Context should help you determine whether or not a given usage of the word
statement should be understood to mean proposition.

Definition 2.30. An implication is a proposition of the form “if p, then q,” where p and
q are propositions.

It is sometimes written as p — q, which is read “p tmplies q.” It is a statement that
asserts that if p is a true proposition then q is a true proposition.

An implication is true unless p is true and q is false.

Example 2.31. The proposition “If I do well in this course, then I can take the next course”
is an implication. However, the proposition “I can do well in this course and take the next
course” is not an implication.

Example 2.32. Consider the implication
“If you read zkcd, then you will laugh.” ¢

If you read zkcd and laugh, you are being consistent with the proposition. If you read zkcd
and do not laugh, then you are demonstrating that the proposition is false.

But what if you don’t read zkcd? Are you demonstrating that the proposition is true or
false? Does it matter whether or not you laugh? It turns out that you are mot disproving
it in this case—in other words, the proposition is still true if you don’t read zkcd, whether
or not you laugh. Why? Because the statement is not saying anything about laughing by
itself. It is only asserting that IF you read zkcd, then you will laugh. In other words, it is a
conditional statement, with the condition being that you read zkcd. The statement is saying
nothing about anything if you don’t read zkcd.

So the bottom line is that if you do not read zkcd, the statement is still true.

°If you are unfamiliar with zkcd, go to http://xked.com.

*Question 2.33. When is the implication “If you read zkcd, then you will laugh” false?

Answer

http://xkcd.com

Implication and Its Friends 17

*Exercise 2.34. Consider the implication “If you build it, they will come.” What are all of
the possible ways this proposition could be false?

Solution

Given an implication p — ¢, there are three related proposition. But first we need to discuss
the negation of a proposition.

Definition 2.35. Given a proposition p, the negation of p, written —p, is the proposition
“not p” or “it is not the case that p.”

Example 2.36. If p is the proposition “x < y” then —p is the proposition “it is not the case
that x <y,” or “z > y”.

Note: It is easy to incorrectly negate sentences, especially when they contain words like
“and”, “or”, “implies”, and “if.” This will become easier after we study logic in Chapter 4.

Definition 2.37. The contrapositive of a proposition of the form “if p, then q” is the
proposition “if q is not true, then p is not true” or “if not q, then not p” or =q — —p.

*Question 2.38. What is the contrapositive of the proposition “If you know Java, then you
know a programming language”?

Answer

Theorem 2.39. An implication is true if and only if its contrapositive is true. Stated another
way, an implication and its contrapositive are equivalent.

18

Chapter 2

*Fill in the details 2.40. Prove Theorem 2.39.

Proof: Let p — ¢ be our implication. According to the definition of implication,

it is false when p is true and ¢ is false and otherwise. Put another
way, it is true unless p is true and ¢ is false. The contrapositive, =g — —p, is

false when —¢ is true and is false, and true otherwise. Notice that this is
equivalent to g being and being true. Thus, the contrapositive is
true unless and . But this
is exactly when p — ¢ is true. O

Definition 2.41. The inverse of a proposition of the form “if p, then q” is the proposition
“if p is not true, then q is not true” or “if not p, then not q” or -p — —q.

*Question 2.42. What is the inverse of the proposition “If you know Java, then you know
a programming language”?

Answer

*Question 2.43. Are a proposition and its inverse equivalent? Explain, using the proposition
from Question 2.42 as an example.

Answer

Definition 2.44. The converse of a proposition of the form “if p, then q” is the proposition
“if q, then p” or ¢ — p.

*Question 2.45. What is the converse of the proposition “If you know Java, then you know
a programming language”?

Answer

Implication and Its Friends 19

*Question 2.46. Are a proposition and its converse equivalent? Explain using the proposi-
tion about Java/programming languages.

Answer

As you have just seen, the inverse and converse of a proposition are not equivalent to the
proposition. However, it turns out that The inverse and converse of a proposition are equivalent
to each other. You will be asked to prove this in Problem 2.2. If you think about it in the right
way, it should be fairly easy to prove.

Example 2.47. Here is an implication and its friends:
1. Implication If I get to watch “The Army of Darkness,” then I will be happy.
2. Inverse If I do not get to watch “The Army of Darkness,” then I will not be happy.
3. Converse If I am happy, then I got to watch “The Army of Darkness.”

4. Contrapositive If I am not happy, then I didn’t get to watch “The Army of Darkness.”

*Question 2.48. Using the propositions from the previous example, answer the following
questions.

(a) Give an explanation of why an implication might be true, but the inverse false.

Answer

(b) Explain why an implication is saying the exact same thing as its contrapositive. (Don’t
just say “By Theorem 2.39.”)

Answer

Implications can be tricky to fully grasp and it is easy to get your head turned around when
dealing with them. We will discuss them in quite a bit of detail throughout the next few sections
in order to help you understand them better. We will also revisit them in Chapter 4.

20

Chapter 2

2.3 Proof by Contradiction

In this section we will see examples of proof by contradiction. For this technique, when trying
to prove a premise, we assume that its negation is true and deduce incompatible statements from
this. This implies that the original statement must be true. Let’s start by seeing a few examples.
Then we’ll describe the idea in more detail.

Example 2.49. Prove that if 5n + 2 is odd, then n is odd.

Proof: Assume that 5n + 2 is odd, but that n is even. Then n = 2k for some
integer k. This implies that 5n + 2 = 5(2k) + 2 = 10k + 2 = 2(5k + 1), which is
even. But this contradicts our assumption that 5n + 2 is odd. Therefore it must
be the case that n is odd. O

The idea behind this proof is that if we are given the fact that 5n + 2 is odd, we are asserting
that n» must be odd. How do we prove that n is odd? We could try a direct proof, but it
is actually easier to use a proof by contradiction in this case. The idea is to consider what
would happen if n is not odd. What we showed was that if n is not odd, then 5n + 2 has to
be even. But we know that 5n + 2 is odd because that was our initial assumption. How can
5n + 2 be both odd and even? It can’t. In other words, our proof lead to a contradiction—an
impossibility. Therefore, something is wrong with the proof. But what? If n is indeed even,
our proof that 5n + 2 is even is correct. So there is only one possible problem—n must not be
even. The only alternative is that n is odd. Can you see how this proves the statement “if
5n + 2 is odd, then n is odd?”

Note: If you are somewhat confused at this point that’s probably O.K. Keep reading, and
re-read this section a few times if necessary. At some point you will have an “Aha” moment
and the idea of contradiction proofs will make sense.

Example 2.50. Prove that if n = ab, where a and b are positive integers, then either a < \/n

or b <./n.

Proof: Let’s assume that n = ab but that the statement “either a < \/n or
b < /n” is false. Then it must be the case that a > y/n and b > y/n. But then
ab > \/ny/n = n. But this contradicts the fact that ab = n. Since our assumption
that @ > \/n and b > \/n lead to a contradiction, it must be false. Therefore it
must be the case that either a < y/n or b < /n. O

Sometimes your proofs will not directly contradict an assumption made but instead will con-

tradict a statement that you otherwise know to be true. For instance, if you ever conclude that
0 > 1, that is a contradiction. The next example illustrates this.

Proof by Contradiction 21

1
*Fill in the details 2.51. Show, without using a calculator, that 6 — V35 < 10"

1 1
Proof: Assume that 6 — /35 > 10" Then 6 — 0 > . If we multiple

both sides by 10 and do a little arithmetic, we can see that 59 >

Squaring both sides we obtain , which is clearly

1
Thus it must be the case that 6 — V35 < 10" O

Now that we have seen a few examples, let’s discuss contradiction proofs a little more formally.
Here is the basic concept of contradiction proofs: You want to prove that a statement p is true.
You “test the waters” by seeing what happens if p is not true. So you assume p is false and use
proper proof techniques to arrive at a contradiction. By “contradiction” I mean something that
cannot possibly be true. Since you proved something that is not true, and you used proper proof
techniques, then it must be that your assumption was incorrect. Therefore the negation of your
assumption—which is the original statement you wanted to prove—must be true.

xEvaluate 2.52. Use the definition of even and odd to prove that if ¢ and b are integers and
ab is even, then at least one of a or b is even.

Proo#t |1 By definition of even numeers, let a e an even integer 2n, and
By the definition of odd numerers, let 8 Be an odd intecer 2 +I1. Then
(224D =d4na+2n =22na+D. Since 2na 1 is an integer, 2(2na+D
Is an even intecer By definition of even

Evaluation

Proot 2: If true, either one is odd and the other even, or they are Both
even, sO we will show that the product of an even and an odd is even, and
that the product of two evens intecers is even
Llet 8 =2k and B = 2x 4+ (2)(2x 4D = drkx + 2k = 2(2kx + k). 2kx+k is an
intecer so 2(2kx+k) is even
Let 8 = 2k and B = 2x (2k)2x) = 4kx = 2(2kx) since 2kx is an intecer,
2(2kx) is even
Thus, i£ 8 and B are intecers, a& is even, at least one of a or & is even

Evaluation

22 Chapter 2

Proof 3: Let a and B Be inteaers and assume that aB is even, But that
neither a Nor & is even. Then BOth a8 and B are odd, so a8 = 2Zn +1 and
B = 2m+I| for some intecers N and m. But then aB = (2ZN+D2m +D =
20N+ 2N+ 2m 4+ = 2+ n+ M) 41, which is odd since v+ n+m is an
inteaer. This contradicts the fact that aB is even. Therefore either a or
B Mmust re even.

Evaluation

For some students, the trickiest part of contradiction proofs is what to contradict. Sometimes
the contradiction is the fact that p is true. At other times you arrive at a statement that is clearly
false (e.g. 0 > 1). Generally speaking, you should just try a few things (e.g. do some algebra) and
see where it leads. With practice, this gets easier. In fact, with enough practice this will probably
become one of your favorite techniques. When a direct proof doesn’t seem to be working this is
usually the next technique I try.

Example 2.53. Let ay, ao, ..., a, be real numbers. Prove that at least one of these numbers
is greater or equal to the average of the numbers.

Proof: The average of the numbers is A = (a1 + a2 + ... + ap)/n. Assume
that none of these numbers is greater than or equal to A. That is, a; < A
for all i = 1,2,...n. Thus (a; + a2 + ... + a,) < nA. Solving for A, we get
A>(ay+ag+...+a,)/n = A, which is a contradiction. Therefore at least one
of the numbers is greater than or equal to the average. O

Our next contradiction proof involves permutations. Here is the definition and an example in
case you haven’t seen these before.

Definition 2.54. A permutation is a function from a finite set to itself that reorders the
elements of the set.

Note: We will discuss both functions and sets more formally later. For now, just think of
a set as a collection of objects of some sort and a function as a black box that produces an
output when given an input.

Example 2.55. Let S be the set {a, b, c}. Then (a,b,c), (b,c,a) and (a, ¢, b) are permutations
of S. (a,a,c) is not a permutation of S because it repeats a and does not contain b. (b,d, a)
is not permutations of S because d is not in S, and ¢ is missing.

Proof by Contradiction 23

xExercise 2.56. List all of the permutations of the set {1,2,3}. (Hint: There are 6.)

Answer

Note: In many contexts, when a list of objects occurs in curly braces, the order they are
listed does mot matter (e.g. {a,b,c} and {b,c,a} mean the same thing). On the other hand,
when a list occurs in parentheses, the order does matter (e.g. (a,b,c) and (b,c,a) do not
mean the same thing).

Example 2.57. Let (aj,aq,...,a,) be an arbitrary permutation of the numbers 1,2,...,n,
where n is an odd number. Prove that the product (a; — 1)(ag — 2) - - (ay, — n) is even.

Proof: Assume that the product is odd. Then all of the differences ay — k
must be odd. Now consider the sum S = (a1 — 1) + (ag — 2) + -+ + (ap, — n).
Since the a;’s are a just a reordering of 1,2,...,n, S = 0. But S is the sum of
an odd number of odd integers, so it must be odd. Since 0 is not odd, we have a
contradiction. Thus our initial assumption that all of the a — k are odd is wrong,
so at least one of them is even and hence the product is even. O

*Question 2.58. Why did the previous proof begin by assuming that the product was odd?

Answer

*Question 2.59. In the previous proof, we asserted that S = 0. Why was this the case?

Answer

We will use facts about rational /irrational numbers to demonstrate some of the proof tech-
niques. In case you have forgotten, here are the definitions.

24 Chapter 2

Definition 2.60. Recall that

e A rational number is one that can be written as p/q, where p and q are integers,
with q # 0.

e An irrational number is a real number that is not rational.

Example 2.61. Prove that /2 is irrational. We present two slightly different proofs. In
both, we will use the fact that any positive integer greater than 1 can be factored uniquely
as the product of primes (up to the order of the factors).

Proof 1: Assume that v/2 = %, where a and b are positive integers with b # 0. We can

assume a and b have no factors in common (since if they did, we could cancel them
and use the resulting numerator and denominator as a and b). Multiplying by b and
squaring both sides yields 2b? = a?. Clearly 2 must be a factor of a?. Since 2 is prime,
a must have 2 as a factor, and therefore a? has 22 as a factor. Then 2b% must also have
22 as a factor. But this implies that 2 is a factor of b2, and therefore a factor of b. This
contradicts the fact that a and b have no factors in common. Therefore v/2 must be
irrational.

Proof 2: Assume that v2 = %, where a and b are positive integers with b # 0. Multi-

plying by b and squaring both sides yields 2b> = a?. Now both a? and b? have an even
number of prime factors. So 2b? has an odd number of primes in its factorization and
a® has an even number of primes in its factorization. This is a contradiction since they
are the same number. Therefore v/2 must be irrational.

*Question 2.62. In proof 2 from the previous example, why do a? and b have an even
number of factors?

Answer

Now that you have seen a few more examples, it is time to begin the discussion about how/why
contradiction proofs work. We will start with the following idea that you may not have thought
of before. It turns out that if you start with a false assumption, then you can prove that anything
is true. It may not be obvious how (e.g. How would you prove that all elephants are less than
1 foot tall given that 1 + 1 = 17), but in theory it is possible. This is because statements of the
form “p implies ¢” are true if p (called the premise) is false, regardless of whether or not ¢ (called
the conclusion) is true or false.

Example 2.63. The statement “If chairs and tables are the same thing, then the moon is
made of cheese” is true. This may seem weird, but it is correct. Since chairs and tables are
not the same thing, the premise is false so the statement is true. But it is important to realize

Proof by Contradiction 25

that the fact that the whole statement is true doesn’t tell us anything about whether or not
the moon is made of cheese. All we know is that if chairs and tables were the same thing,
then the moon would have to be made out of cheese in order for the statement to be true.

Example 2.64. Consider what happens if your parents tell you “If you clean your room,
then we will take you to get ice cream.” If you don’t clean your room and your parents don’t
take you for ice cream, did your parents tell a lie? No. What if they do take you for ice
cream? They still haven’t lied because they didn’t say they wouldn’t take you if you didn’t
clean your room. In other words, if the premise is false, the whole statement is true regardless
of whether or not the conclusion is true.

It is important to understand that when we say that a statement of the form “p implies ¢” is
true, we are not saying that ¢ is true. We are only saying that if p is true, then q has to be true.
We aren’t saying anything about ¢ by itself. So, if we know that “p implies ¢” is true, and we
also know that p is true, then ¢ must also be true. This is a rule called modus ponens, and it is
at the heart of contradiction proofs as we will see shortly.

*Exercise 2.65. It might help to think of statements of the form “p implies ¢” as rules
where breaking them is equivalent to the statement being false. For instance, consider the
statement “If you drink alcohol, you must be 21.”7 If we let p be the statement “you drink
alcohol” and ¢ be the statement “you are 21,” the original statement is equivalent to “p
implies ¢”.

1. If you drink alcohol and you are 21, did you break the rule?

2. If you drink alcohol and you are not 21, did you break the rule?

3. If you do not drink alcohol and you are 21, did you break the rule?

4. If you do not drink alcohol and you are not 21, did you break the rule?

5. Generalize the idea. If you have a statement of the form “p implies ¢”, where p and ¢
can be either true or false statements, exactly when can the statement be false?

6. If you do not drink alcohol, does it matter how old you are?

7. Can a statement of the form “p implies ¢” be false if p is false? Explain.

26 Chapter 2

Now we are ready to explain the idea behind contradiction proofs. We want to prove some
statement p is true. We begin by assuming it is false—that is, we assume —p is true. We use this
fact to prove that ¢—some false statement—is true. In other words, we prove that the statement
“—p implies ¢” is true, where ¢ is some false statement. But if —p is true, and “—p implies ¢” is
true, modus ponens tells us that ¢ has to be true. Since we know that ¢ is false, something is
wrong. We only have two choices: either —p is false or “—p implies ¢” is false. If we used proper
proof techniques to establish that “—p implies ¢” is true, then that isn’t the problem. Therefore,
the only other possibility is that —p is false, implying that p must be true. That is how/why
contradiction proofs work.

Let’s analyze the second proof from Example 2.61 in light of this discussion. The only as-
sumption we made was that /2 is rational (—p="“y/2 is rational”). From this (and only this), we
were able to show that a? has both an even and an odd number of factors (¢="“a?® has an even
and an odd number of factors”, and we showed that “—p implies ¢” is true). Thus, we know
for certain that if v/2 is rational, then a? has an even and an odd number of factors.! This fact
is indisputable since we proved it. If it is also true that v/2 is rational, modus ponens implies
that a? has an even and an odd number of factors. This is also indisputable. But we know
that a? cannot have both an even and odd number of factors. In other words, we have a con-
tradiction. Therefore, something that has been said somewhere is wrong. Everything we said is
indisputable except for one thing-that /2 is rational. That was never something we proved—we
just assumed it. So it has to be the case that this is false, which means that v/2 must be irrational.

To summarize, if you want to prove that a statement is true using a contradiction proof,
assume the statement is false, use this assumption to get a contradiction (i.e. prove a false state-
ment), and declare that it must therefore be true.

Notice that what ¢ is doesn’t matter. In other words, given the assumption —p, the goal in
a contradiction proof is to establish that any false statement is true. This is both a blessing and
a curse. The blessing is that any contradiction will do. The curse is that we don’t have a clear
goal in mind, so it can sometimes be difficult to know what to do. As mentioned previously, this
becomes easier as you read and write more proofs.

If this discussion has been a bit confusing, try re-reading it. The better you understand the
theory behind contradiction proofs, the better you will be at writing them. We will revisit some
of these concepts in the chapter on logic, so the more you understand from here, the better off
you will be when you get there. O.K., enough theory. Let’s see some more examples!

We did not prove that a® has an even and an odd number of factors. We proved that if v/2 is rational, then a?

has an even and an odd number of factors. It is very important that you understand the difference between these
two statements.

Proof by Contradiction

27

then a < b.

Proof: We will prove this by contradiction. Assume that

Subtracting b from both sides and dividing by 2, we get

*F'ill in the details 2.66. Let a,b be real numbers. Prove that if a < b+ € for all € > 0,

€= . This implies that

a—2b
b - =
a<b+ 5

obtain a < b. But we started with the assumption that

a . Therefore,

“Hint: What assumption do we always make when doing a contradiction proof?
’Same as the previous blank

Since the inequality a < b + € holds for every € > 0 in particular it holds for

If we (to the previous equation), we

The following beautiful proof goes back to Euclid. It uses the assumption that any integer

greater than 1 is either a prime or a product of primes.

Example 2.67 (Euclid). Show that there are infinitely many prime numbers.

Proof: Assume that there are only a finite number of primes and let {p1, p2, . . .

be a list of all the primes. Consider the number

N =pip2---pn + 1L

This is a positive integer that is clearly greater than 1. Observe that none of the
primes on the list {p1,p2,...,p,} divides N, since division by any of these primes
leaves a remainder of 1. Since N is larger than any of the primes on this list, it
is either a prime or divisible by a prime outside this list. But we assumed the
list above contained all of the prime numbers. This is a contradiction. Therefore
there must be infinitely many primes. O

28

Chapter 2

«Fill in the details 2.68. If a,b, c are odd integers, prove that az? + bz + ¢ = 0 does not
have a rational number solution.

Proof: Suppose P is a rational solution to the equation. We may assume that

p and ¢ have no prime factors in common, so either p and ¢ are both odd, or one
is odd and the other even. Since L is a solution, we know that
q

=0.

If we , we obtain ap? 4 bpq + c¢®> = 0.

If both p and ¢ are odd, then ap? + bpq + c¢? is which contradicts

the fact that it is

If p is even and ¢ odd, then

If p is odd and ¢ even, then

Since all possibilities leads to a contradiction,

Proof by Contraposition 29

2.4 Proof by Contraposition

Consider the statement “If it rains, then the ground will get wet.” It should be pretty easy to
convince yourself that this is essentially equivalent to the statement “If the ground is not wet,
then it didn’t rain.” In fact, since the second statement is just the contrapositive of the first,
Theorem 2.39 tells us that they are equivalent. Again, by equivalent we simply mean that either
both statements are true or both statements are false. This is the idea behind the proof technique
in this section.

Definition 2.69. A proof by contraposition is a proof of a statement of the form “if
p, then q” that proves contrapositive statement instead. That is, it proves the equivalent
statement “if not q, then not p.”

Example 2.70. Prove that if 5n + 2 is odd, then n is odd.

Proof: = We will instead prove that if n is even (not odd), then 5n + 2 is even
(not odd). Since this is the contrapositive of the original statement, a proof of
this will prove that that the original statement is true.

Assume n is even. The n = 2a for some integer a. Then 5n + 2 = 5(2a) + 2 =
2(5a + 1). Since ba + 1 is an integer, 2(5a + 1) is even. O

Be careful with proof by contraposition. Do not make the mistake of trying to prove the
converse or inverse instead of the contrapositive. In that case, you may write a correct proof, but
it would be a proof of the wrong thing.

In the next example we will see the similarities and differences between contradiction proofs
and proofs by contraposition.

Example 2.71. Prove that if 5n + 2 is even, then n is even.

Proof by contradiction:

Assume that 5n + 2 is even but that n is
odd. Since n is odd, n = 2k + 1 for some
integer k. Therefore

Proof by contraposition:

We will prove the equivalent statement
that if n is odd, then 5n + 2 is odd.
Assume n is odd. Then n = 2k + 1 for

some integer k. Then we have that 5n+2 = 5(2k+1)+2
Bn+2 = 5(2k+1)+2 = W0harb--2
— 10k+5+2 = sy
= 10k+7 = 2(5k+3)+1
= 2(5k+3)+1 which is odd since 5k + 3 is an integer.

But we assumed that 5n 4+ 2 was even,
which is a contradiction. Therefore our
assumption that n is odd must be incor-
rect, so n is even.

Since 5k + 3 is an integer, this shows
that 5n + 2 is odd.

30

Chapter 2

xEvaluate 2.72. Let n be an integer. Use the definition of even/odd to prove that if 3n + 2
is even, then n is even using a proof by contraposition.

Proot |1 We need to show that if N is even, then 3n+2 is even £ nis
even, then N =2k for some intecer k. Then 3n+2 =32k +2D) =Lk +b =
2(3K) +2(3), which is even recause it is the sum Of two even integers.

Evaluation

Proot 2: We need to show that i£ nis odd, then 3n+72 is odd. I# N is odd
then N =2k 4| for some intecer k. Then 3n=+2L = 3(2k+N+2L =Lk+34+2L =
bk +5 =S(Ek 4D, which is clearty odd.

Evaluation

Proot 3: We need to show that if Nnis odd, then 3n+72 is odd. I# n is odd
then N =2k +| for some intecer k. Then 3n+2 =32k +D+2 =Lk +5,
which is odd By the definition of odd.

Evaluation

Other Proof Techniques 31

2.5 Other Proof Techniques

There are many other proof techniques. We conclude this chapter with a small sampling of the
more common and/or interesting ones. We will see a few other important proof techniques later
in the book.

Definition 2.73. A trivial proof is a proof of a statement of the form “if p, then q” that
doesn’t use p in the proof.

Example 2.74. Prove that if z > 0, then (z + 1)? — 2z > 22.

Proof: It is easy to see that

(x+1)2 -2 = (#24+224+1) -2z
22 +1
> 22
Notice that we never used the fact that > 0 in the proof. O

Definition 2.75. A proof by counterexample is used to disprove a statement by giving
an example of it being false.

Example 2.76. Prove or disprove that the product of two irrational numbers is irrational.

Proof: We showed in Example 2.61 that V2 is irrational. But v/2 % /2 = 2,
which is an integer so it is clearly rational. Thus the product of 2 irrational
number is not always irrational. O

Example 2.77. Prove or disprove that “Everybody Loves Raymond” (or that “Everybody
Hates Chris”).

Proof: Sinceldon’t really love Raymond (and I don’t hate Chris), the statement
is clearly false. O

xExercise 2.78. Prove or disprove that the sum of any two primes is also prime.

Proof

32 Chapter 2

Definition 2.79. A proof by cases breaks up a statement into multiple cases and proves
each one separately.

We have already seen several examples of proof by cases (e.g. Examples 2.24 and 2.68), but
it never hurts to see another example.

Example 2.80. Prove that if z # 0 is a real number, then 22 > 0.

Proof: If x # 0, then either z > 0 or x < 0.

If 2 > 0 (case 1), then we can multiply both sides of z > 0 by z, giving 2% > 0.
If z < 0 (case 2), then we can write y=-x, where y > 0. Then 2% = (—y)? =
(—1)%y? = y? > 0 by case 1 (since y > 0). Thus 2 > 0. In either case, we have
shown that z2 > 0. O

xFill in the details 2.81. Let s be a positive integer. Prove that the closed interval [s, 2s]
contains a power of 2.

Proof: If sis a power of 2 then
If s is not a power of 2, then it is strictly between two powers of 2. That is,

211 < 5 < 2" for some integer r. Then

If and Only If Proofs 33

2.6 If and Only If Proofs

Sometimes we will run into “if and only if” (abbreviated iff) statements. That is, statements
of the form p if and only if ¢q. This is equivalent to the statement “p implies ¢ and g implies
p.” Thus, to prove that an iff statement is true, you need to prove a statement and its converse.
“p implies ¢” is sometimes called the forward direction and the converse is sometimes called the
backwards direction. Sometimes the converse statement is proven by contaposition, so that instead
of proving ¢ implies p, —p implies —¢q is proven.

*Question 2.82. Why is there a choice between proving ¢ implies p and proving —p implies
—q when proving the backwards direction?

Answer

Example 2.83. Prove that x is even if and only if x + 10 is even.

Proof: If x is even, then x = 2k for some integer k. Then = 4+ 10 = 2k + 10 =
2(k+5). Since k+5 is an integer, then x+ 10 is even. Conversely, if 2+ 10 is even,
then x4 10 = 2k for some integer k. Then z = (x4 10) — 10 = 2k — 10 = 2(k — 5).
Since k — 5 is an integer, then z is even. Therefore x is even iff 4+ 10 is even. [J

As we have mentioned before, the examples in this section are quite trivial and may seem
ridiculous—since they are so obvious, why are we bothering to prove them? The point is to use
the proof techniques we are learning. We will use the techniques on more complicated problems
later. For now we want the focus to be on proper use of the techniques. That is more easily
accomplished if you don’t have to think too hard about the details of the proof.

xExercise 2.84. Prove that x is odd iff z 4 20 is odd using direct proofs for both directions

34 Chapter 2

xExercise 2.85. Prove that x is odd iff x 4+ 20 is odd using using a direct proof for the
forward direction and a proof by contraposition for the backward direction.

*F'ill in the details 2.86. The two most common ways to prove p iff ¢ are

1. Prove that and , Or

2. Prove that and

xEvaluate 2.87. Use the definition of odd to prove that z is odd if and only if x — 4 is odd.

Proot [Assume x is odd. Then x = 2k +1| for some intecer k. Then
x—4 =2k+l -4 =2k — 3, which is odd. Now assume that x —4 is odd. Since
(24D — 4 is odd, then x =2k =+ is clearly odd.

Evaluation

Proos 2. Assume x is odd. Then x =2k =+, so x—4 = (2k+D -4 =2k -2+,
which is odd since k — 2 is an inteaer. Now assuve x — 4 is even. Then
x —4 =2k for some inteaer k. Then x = 2k +4 = 2(k + 2, which is even
since k+2 is an intecer.

Evaluation

Common Errors in Proofs 35

2.7 Common Errors in Proofs

If you arrive at the right conclusion, does that mean your proof is correct? Some students seem
to think so, but this is absolutely false. Let’s consider the following example.

16 1
Example 2.88. Is the following proof that — = — correct? Why or why not?

64 4
Proof: This is true because if I cancel the 6 on the top and the bottom, I get
16 16 1
N O
64 B4 4

Evaluation: You probably know that you can’t cancel arbitrary digits in a frac-

tion, so this is not a valid proof. In addition, consider this: If this proof is correct,

1 1 1
then it could be used to prove that 6_(15 = 6—? =71= 1, which is clearly false.

Note: The point of the previous example is this: Don’t confuse the fact that what you are
trying to prove is true with whether or not your proof actually proves that it is true. An
incorrect proof of a correct statement is no proof at all.

A common mistake when writing proofs is to make one or more invalid assumptions without
realizing it. The problem with this is that it generally means you are not proving what you set
out to prove, but since the proof seems to “work”, the mistake isn’t always obvious. The next
few examples should illustrate what can go wrong if you aren’t careful.

*Question 2.89. What is wrong with this proof that the sum of two even integers is even?

Proo#: Let x and y Re even intecers. Then x =23 for some intecer
a and y =23 for some intecer a. So x+y=72a+2a =72(a+3). Since
a—+ais an intecer, 2(a +3) is even, so the sum of two even inteaers
is even d

Answer

Since the statement in the previous example is true, it can be difficult to appreciate why the
proof is wrong. The proof seems to prove the statement but as you saw in the solution, it actually
doesn’t. It proves a more specific statement. If it seems like we are being too nit-picky, consider
the next example.

36 Chapter 2

*Question 2.90. What is wrong with the following proof that the sum of two even integers
is divisible by 47

Proos: Let x and y Be two even intecers. Then x = 23 for some
intecer a and y = 23 for some intecer a. So x+y =2a+2a3 = H4a.
Since a is an integer, 4a is divisiele By 4, sO the sum Of two even
intecers is divisigle By 4. O

Answer

Another common mistake students make when trying to prove an identity /equation is to start
with what they want to prove and work both sides of it until they demonstrate that they are
equal. I want to stress that this is an invalid proof technique. Again, if this seems like I am
making something out of nothing, consider this example:

*Question 2.91. Consider the following supposed proof that —1 = 1.

Proos:

Il
s

(—N%

Therefore —| =1 O

How do you know that this proof is incorrect? (Think about the obvious reason, not any
technical reason.)

Answer

Notice that each step of algebra in the previous proof is correct. For instance, if a = b, then
a® = b? is correct. And (—1)? and 12 are both equal to 1. So the majority of the proof contains
proper techniques. It contains just one problem: It starts by assuming something that isn’t true.
Unfortunately, one error is all it takes for a proof to be incorrect.

Note: When writing proofs, never assume something that you don’t already know to be true!

*Question 2.92. When you are given an equation to prove, should you prove it by writing
it down and working both sides until you get them both to be the same? Why or why not?

Answer

Let’s be clear about this issue. If an equation is correct, you can work both sides until they are
the same. But as Example 2.91 demonstrated, if an equation is not correct, sometimes you can
also work both sides until they are the same. This should tell you something about this technique.

Common Errors in Proofs 37

*Question 2.93. You are given an equation. You work both sides of it until they are the
same. Should you now be convinced that the equation is correct? Why or why not?

Answer

Note: If you already know that an equation is true, then working both sides of it (for some
purpose other than demonstrating it is true) is a valid technique. However, it is more common
to start with a known equation and work just one side until it is what we want.

There are plenty of other common errors in proofs. We will see more of them throughout the
remainder of the book, especially in the Evaluate examples.

38 Chapter 2

2.8 DMore Practice

Now you will have a chance to practice what you have learned throughout this chapter with some
more exercises. Now that they aren’t in a particular section, you will have to figure out what
technique to use.

xExercise 2.94. Let p < g be two consecutive odd primes (two primes with no other primes
between them). Prove that p 4 ¢ is a composite number. Further, prove that it has at least
three, not necessarily distinct, prime factors. (Hint: think about the average of p and q.)
Proof:

xEvaluate 2.95. Prove or disprove that if x and y are rational, then x¥ is rational.

Proo# 1 Because x and y are Both rational, assuve x = a/B where a and &
are intecers and 8 # O. We can assume that a and B8 have no factors
in common (since i£ they did we could cancel them and use the resutting

numBers as our new a and B). Then x! = 2 so ¥’ is rational.

Evaluation

Proof 2: Notice that ¥ is just x multiplied Ry itself y times. A rational
numier muttiplied By a rational numeer is rational, so <’ is rational.

Evaluation

Since none of the proofs in the previous example were correct, you need to prove it.

More Practice 39

xExercise 2.96. Prove or disprove that if x and y are rational, then x¥ is rational.
Proof:

xEvaluate 2.97. Prove or disprove that if x is irrational, then 1/z is irrational.

Proot |: £ x is rational, assume it is an integer. £ x is an integer, it is
rational. |/x is an inteaer over an intecer, so it is rational. Therefore i£ x
Is rational, |/x is rational, so By contrapositive reasoning, i x is irrational,
[/x is irrational.

Evaluation

Proo$ 2. Assuwie that x is irrational. Then it cannot Be expressed as an
intecer over an intecer. Then clearly |/x cannot Be expressed as an intecer
over an integer.

Evaluation

Proot 3: Assuwe that xis rational. Then x = & where p and @ are intecers
| Q o . .
and @ # O. But then 1= F = . sO it is rational. Since we proved the

contrapositive, the statement is true.

Evaluation

40

Chapter 2

Proof 4+: We will prove the contrapositive. Assume that |/x is rational.
Since it is rational, |/x = a/B for some intecers a and B, with &8 # O.
Solving £or x we et x =B/a, sO x is rational.

Evaluation

Proof S: | will prove the contrapositive statement: £ |/x is rational, then
x is rational. Assume |/x is rational. Then | = 2 for some intecers a and
B Z 0. We know that [/x # O (since otherwise x-O =, which is impossigle),
so a # O. Muttiplying BOth sides of the previous equation By x we aet
x2 = Now i# we muttiply Both sides By £ (which we can do since a # O), we

Get x = £ Since 8 and & are intecers with a # O, x is rational.

Evaluation

xEvaluate 2.98. Mersenne primes are primes that are of the form 2P — 1, where p is prime.
Are all numbers of this form prime? Give a proof/counterexample.

Proo# |: Restate the proerlem as if 2P — | is prime then p is prime. Assume p
is NOt prime so p = st, where s and t are intecers. Thus 2P — =25t — | =
(25 —N(Qst—s42s5t-2s 4 ... 4925 4. Because neither of these factors is | or
2° —|
— 2P — | is not prime (contradiction)

— P is prime
— All numpers of the form 27 — | (with p a prime) are prime.

Evaluation

Proo$ 2: Numpers of the form 2P only have 2 as a factor. Since 2P — | is
clearly odd, it does not have 2 as a factor. Therefore it must Nnot have any
factors. So it is prime.

Evaluation

More Practice

41

xExercise 2.99. Let p be prime. Prove that not all numbers of the form 2P — 1 are prime.
Proof:

42 Chapter 2

2.9 Problems

Problem 2.1. Prove that a number and its square have the same parity. That is, the square of
an even number is even and the square of an odd number is odd.

Problem 2.2. Prove that the inverse of an implication is true if and only if the converse of the
implication is true.

Problem 2.3. Let a and b be integers. Consider the problem of proving that if at least one of
a or b is even, then ab is even. Is this equivalent to the statement from Evaluate 2.527 Explain,
using the appropriate terminology from this chapter.

Problem 2.4. Rephrase the statement from Evaluate 2.52 without using the words even or not.
Using terminology from this chapter, how did you come up with the alternative phrasing?

Problem 2.5. Prove or disprove that there are 100 consecutive positive integers that are not
perfect squares. (Recall: a number is a perfect square if it can be written as a? for some integer

a.)

Problem 2.6. Consider the equation n* + m?* = 625.

(a) Are there any integers n and m that satisfy this equation? Prove it.

(b) Are there any positive integers n and m that satisfy this equation? Prove it.

Problem 2.7. Consider the equation a® + b> = ¢3 over the integers (that is, a, b, and ¢ have to
all be integers).

(a) Prove that the equations has infinitely many solutions.

(b) If we restrict a, b, and ¢ to the positive integers, are there infinitely many solutions? Are
there any? Justify your answer. (Hint: Do a web search for “Fermat’s Last Theorem.”)

Problem 2.8. Prove that a is even if and only if a? is even.

Problem 2.9. Prove that ab is odd iff a and b are both odd.

Problem 2.10. Let n be an odd integer and k an integer. Prove that kn is odd iff k is odd.
Problem 2.11. Let n be an integer.

(a) Prove that if n is odd, then 3n + 4 is odd.

(b) Is it possible to prove that n is odd iff 3n + 4 is odd? If so, prove it. If not, explain why not
(i.e. give a counter example).

(c) If we don’t assume n has to be an integer, is it possible to prove that n is odd iff 3n + 4 is
odd? If so, prove it. If not, explain why not (i.e. give a counter example).

Problem 2.12. Let n be an integer.
(a) Prove that if n is odd, then 4n + 3 is odd.

(b) Is it possible to prove that n is odd iff 4n + 3 is odd? If so, prove it. If not, explain why not
(i.e. give a counter example).

Problems 43

Problem 2.13. Prove that the product of two rational numbers is rational.

Problem 2.14. Prove or disprove: Every positive integer can be written as the sum of the squares
of two integers.

Problem 2.15. Prove that the product of a non-zero rational number and an irrational number
is irrational.

Problem 2.16. Prove that if n is an integer and 5n + 4 is even, then n is even using a
(a) direct proof

(b) proof by contraposition

(¢) proof by contradiction

Problem 2.17. Prove or disprove that n? —1 is composite whenever n is a positive integer greater
than or equal to 1.

Problem 2.18. Prove or disprove that n?—1 is composite whenever n is a positive integer greater
than or equal to 3.

Problem 2.19. Prove or disprove that P = NP.2

2A successful solution to this will earn you an A in the course. You are free to use Google or whatever other
resources you want for this problem, but you must fully understand the solution you submit.

44

Chapter 2

Chapter 3

Programming Fundamentals and
Algorithms

The purpose of this chapter is to review some of the programming concepts you should have picked
up in previous classes while introducing you to some basic algorithms and new terminology that
we will find useful as we continue our study of discrete mathematics. We will also practice our
skills at proving things by sometimes proving that an algorithm does as specified.

Algorithms are presented in a syntax similar to Java and C++4. This can be helpful since you
should already be familiar with it. On the other hand, this sort of syntax ties our hands more
than one often likes when discussing algorithms. What I mean is that when discussing algorithms,
we often want to gloss over some of the implementation details. For instance, we may not care
about data types, or how parameters are passed (i.e. by value or by reference), but by using a
Java-like syntax we are forcing ourselves to use particular data types and pass parameters in a
certain way.

Consider an algorithm that swaps two values (we will see an implementation of this shortly).
The concept is the same regardless of what type of data is being swapped. But given our choice
of syntax, we will give an implementation that assumes a particular data type. Most of the time
the algorithms presented can be modified to work with other data types.

The issue of pass-by-value versus pass-by-reference is more complicated. We will have a brief
discussion of this later, but the bottom line is that whenever you implement an algorithm from
any source, you need to consider how this and other language-specific features might change how
you understand the algorithm, how you implement it, and/or whether you even can.

3.1 Algorithms

An algorithm is a set of instructions that accomplishes a task in a finite amount of time.

Example 3.1 (Area of a Trapezoid). Write an algorithm that gives the area of a trapezoid
with height A and bases a and b.

Solution: One possible solution is

double AreaTrapezoid(double a, double b, double h) {
return h*x(a+b)/2;
}

45

46 Chapter 3

Note: Notice that we use the return keyword to indicate what value should be passed to
whoever calls an algorithm. For instance, if someone calls x=AreaTrapazoid(a, b, h), then
x will be assigned the value h x (a + b)/2 since this is what was returned by the algorithm.
Those who know Java, C, C4++, or just about any other programming language should already
be familiar with this concept.

*Exercise 3.2. Write an algorithm that returns the area of a square that has sides of width
w.

double areaSquare(double w) {

Definition 3.3. The assignment operator, =, assigns to the left-hand argument the value
of the right-hand argument.

Example 3.4. The statement x = a + b means “assign to x the value of a plus the value of
b'”

Note: Most modern programming languages use = for assignment. Other symbols used
nclude 1=, =:, <<, <, etc.

As it turns out, the most common symbol for assignment (=) is perhaps the most confusing
for someone who is first learning to program. One of the most common assignment statements
isx = x + 1;. What this means is “assign to the x its current value plus one.” However,
what it looks like is the mathematical statement “r is equal to x + 17, which is false for every
value of x. If this has tripped you up in the recent past or still does, fear not. Eventually you
will instinctively interpret it correctly, probably forgetting you were ever confused by it.

Example 3.5 (Swapping variables). Write an algorithm that will interchange the values of
two variables, x and y. That is, the contents of z becomes that of y and vice-versa.

Solution: We introduce a temporary variable ¢ in order to store the contents of
z in y without erasing the contents of y. For simplicity, we will assume the data
is of type Object.

void swap(Object x, Object y) {

Object t = x; // Store x in a temporary variable
X = y; // x now has the original value of y
y = t; // y now has the original value of x

}

It can be very useful to be able to prove that an algorithm actually does what we think it
does. Then when an error is found in a program we can focus our attention on the portions of
the code that we are uncertain about, ignoring the code that we know is correct.

Algorithms 47

Example 3.6. Prove that the algorithm in Example 3.5 works correctly.

Proof: Assume the values a and b are passed into swap. Then at the beginning
of the algorithm, x = a and y = b. We need to prove that after the algorithm is
finished, z = b and y = a.

After the first line, x and y are unchanged and ¢t = a since it was assigned the
value stored in x, which is a. After the second line, x = b since it is assigned the
value stored in y, which is b. Currently x = b, y = b, and t = a. Finally, after the
third line, y = a since it is assigned the value stored in ¢, which is a. Since x is
still b, and y = a, the algorithm works correctly. O

Note: The correctness of this algorithm (and a few others in this chapter) is based on the
assumption that the variables are passed by reference rather than passed by value.

In C and C++, it is possible to pass by value or by reference, although we didn’t use the
proper syntaxr to do so. The * or & you sometimes see in argument lists is related to this.
In Java, everything is passed by value and it is impossible to pass by reference. However,
because non-primitive variables in Java are essentially reference variables (that is, they store
a reference to an object, not the object itself), in some ways they act as if they were passed by
reference. This is where things start to get complicated. I don’t want to get into the subtleties
here, especially since there are arguments about whether or not these are the best terms to
use. Let me give an analogy instead.®

If I share a Google Doc with you, I am passing by reference. We both have a reference
to the same document. If you change the document, I will see the changes. If I change the
document, you will see the changes. On the other hand, if I e-mail you a Word document, I am
passing by value. You have a copy of the document I have. FEssentially, I copied the current
value (or contents) of the document and gave that to you. If you change the document,
my document will remain unchanged. If I change my document, your document will remain
unchanged. This sounds pretty simple. However, it gets more complicated. In Java, you
can create a “primitive” Word document, but in a sense you can’t create an “object” Word
document. Instead, a Google Doc is created and you are given access (i.e. a reference) to it.
This is why in some ways primitive and object variables seem to act differently in Java.

I've already said too much. You will/did learn a lot more about this issue in another
course. Here is the bottom line: The assumption being made in the various swap algorithms
is that when a variable is passed in, the algorithm has direct access to that variable and not
just a copy of it. Thus if changes are made to that variable in the algorithm, it is changing
the variable that was passed in. This subtlety does not matter for most of the algorithms here.

“Inspired by a response on http://stackoverflow.com/questions/373419/whats-the-difference-between-
passing-by-reference-vs-passing-by-value

Note: We should be absolutely clear that it is impossible to implement the swap method
from Ezxample 3.5 in Java. In fact, there is no way to implement a method that swaps two
arbitrary values in Java. As we will see shortly, it is possible to implement a method that
swaps two elements from an array.

48 Chapter 3

Note: One final note before we move on. Whether or not the swap method (or any method)
can be implemented, we can still use it in other algorithms as if it can. This is because when
discussing algorithms we are usually more concerned about the idea behind the algorithm,
not all of the implementation details. Using a method like swap in another algorithm often
makes it easier to understand the overall concept of that algorithm. If we actually wanted to
implement an algorithm that uses swap, we would simply need to replace the call to swap with
some sort of code that accomplishes the task if swap is impossible to implement.

*Question 3.7. Does the following swap algorithm work properly? Why or why not?
void swap(Object x, Object y) {

X = y,
y = x5
}
Answer

Example 3.8. Write an algorithm that will interchange the values of two variables x and y
without introducing a third variable, assuming they are of some numeric type.

Solution: The idea is to use sums and differences to store the values. Assume
that initially x = @ and y = b.

void swap(number x, number y) {

x =x +y; // x = atb and y = Db
y=x-y; // x = atb and y = atb-b = a
x =x -y; // x = atb-a =b and y = a

}

Notice that the comments in the code sort of provide a proof that the algorithm
is correct, although keep reading for an important disclaimer.

Example 3.9. It was mentioned that the comments in the algorithm from Example 3.8
provide a proof of its correctness. What possibly faulty assumption is being made?

Solution: It is assumed that the arithmetic is performed with absolute preci-
sion, and that is not always the case. For instance, after the first line we are told
that x = a +b. What if a = 10,000, 000,000 and b =. 000000000017 Will = really
be exactly 10,000,000, 000. 000000000017 If it isn’t, the algorithm will not work

properly.

Problem 3.16 explores whether or not the algorithm in Example 3.8 works for integer types—
specifically 2’s complement numbers.

The mod operator and Integer Division 49

3.2 The mod operator and Integer Division

Definition 3.10. The mod operator is defined as follows: for integers a and n such that
a >0 andn >0, a mod n is the integral non-negative remainder when a s divided by n.
Observe that this remainder is one of the n numbers

0, 1, 2, ..., n—1.

Java, C, C++, and many other languages use % for mod (e.g. int x = a % n instead of
int x = a mod n).

Example 3.11. Here are some example computations:

234 mod 100 = 34 1961 mod 37 =0 6mod5=1
38 mod 15 = 8 1966 mod 37 = 5 11modb5=1
15 mod 38 = 15 lmodb=1 16 mod 5 =1

*Exercise 3.12. Compute the following:

(a) 345 mod 100 = (d) 15 mod 9 = (g) 19 mod 12 =
(b) 23 mod 15 = (e) 27T mod 9 = (h) 31 mod 12 =
(c) 15 mod 4 = (f) 7mod 12 = (i) 47 mod 12 =

Definition 3.13. For integers a, b, and n, where n > 0, we say that a is congruent to b
modulo n if n divides a —b (that is, a — b = kn for some integer k). We write this as a = b
(mod n).

There are a few other (equivalent) ways of defining congruence modulo n.

e a =b (mod n) iff a and b have the same remainder when divided by n.
e a =b (mod n) iff a— b is a multiple of n.

If a — b # kn for any integer k, then a is not congruent to b modulo n, and we write this
as a Zb (mod n).

Example 3.14. Notice that 21 —6 =15=3-5, so 21 =6 (mod 5).

Notice that if a = b (mod n) and 0 < b < n, then b is the remainder when a is divided by n.

50 Chapter 3

Example 3.15. Prove that for every integer n, (n? mod 4) is either 0 or 1.

Proof: Since every integer is either even (of the form 2k) or odd (of the form
2k + 1) we have two possibilities:

(2k)? = 4k?

0 (mod 4),or
(2k+1)2 = 4(k2+k)+1 1

(mod 4).

Thus, n? has remainder 0 or 1 when divided by 4. g

Example 3.16. Prove that the sum of two squares of integers leaves remainder 0, 1 or 2
when divided by 4.

Proof: According to Example 3.15, the squares of integers have remainder 0
or 1 when divided by 4. Thus, when we add two squares, the possible remainders
when divided by 4 are 0 (0+0),1 (0+1or 1+40),and 2 (1+1). O

Example 3.17. Prove that 2003 is not the sum of two squares.

Proof: Notice that 2003 = 3 (mod 4). Thus, by Example 3.16 we know that
2003 cannot be the sum of two squares.]

The proof of the following is left as an exercise.

Theorem 3.18. a =b (mod n) iff* a mod n = b mod n.

%ff is shorthand for if and only if.

Example 3.19. Since, 1961 mod 37 = 0 # 4 = 1966 mod 37, we know that 1961 # 1966
(mod 37) by Theorem 3.18.

Note: Our definition of mod required that n > 0 and a > 0. However, it is possible to define
a mod n when a is negative. Unfortunately, there are two possible ways of doing so based on
how you define the remainder when the dividend is negative. One possible answer is negative
and the other is positive. However, they always differ by n, so computing one from the other
8 easy.

Example 3.20. Since —13 = (—2) *5 — 3 and —13 = (—3) * 5 + 2, we might consider the
remainder of —13/5 as either —3 or 2. Thus, —13 mod 5 = —3 and —13 mod 5 = 2 both seem
like reasonable answers. Fortunately, the two possible answers differ by 5. In fact, you can
always obtain the positive possibility by adding n to the negative possibility.

The mod operator and Integer Division 51

xExercise 3.21. Fill in the missing numbers that are congruent to 1 (mod 4) (listed in
increasing order)

['117 [— '37 17 57 ’ ’ 177

Note: When using the mod operator in computer programs in situations where the dividend
might be negative, it is important to know which definition your programming language/com-
piler uses. Java returns a negative number when the dividend is negative. In C, the answer
depends on the compiler.

*Exercise 3.22. If you write a C program that computes —45 mod 4, what are the two
possible answers it might give you?

Answer

The next exercise explores a reasonable idea: What if we want the answer to a mod b to always
be between 0 and b— 1, even if a is negative? In other words, we want to force the correct positive
answer even if the compiler for the given language might return a negative answer.

*Evaluate 3.23. Although different programming languages and compilers might return
different answers to the computation @ mod b when a < 0, they always return a value between
—(b—1) and b — 1. Given that fact, give an algorithm that will always return an answer
between 0 and b — 1, regardless of whether or not a is negative. Try to do it without using
any conditional statements.

Solution |1 Use (8 (mod B)+e—N /2. Since it always returns a value retween
—(®& —D and B — | By adding & — | t0 BOth sides you et a value retween O
and 28 — 2. Mou then divide By 2 10 hit the taraet ranae of a return value
that is retween O and & — | whether the numger is positive or neaative.

Evaluation

Solution 2= Just return the arsolute value of a mod ..

Evaluation

52

Solution 3: Use the followina:
int ¢ = a % b;
if (c<0) {
return -c;
} else {
return c;

}

Evaluation

Chapter 3

Solution 4: Use (a mod B) mod ..

Evaluation

Answer:

xExercise 3.24. Devise a correct solution to the Evaluate 3.23.

that is greater than or equal to x.

Definition 3.25. The floor of a real number x, written |x|, is the largest integer that is
less than or equal to x. The ceiling of a real number x, written [z, is the smallest integer

Example 3.26. [4.5| =4, [4.5] =5, |7
In general, if n is an integer, then |n| =

The mod operator and Integer Division 53

xExercise 3.27. Determine each of the following.

L199)=___ 3. 9.00001] = 5. 9] =

2.[9.9=___ 4. [9.00001] = 6. [9] =

Theorem 3.28. Let a be an integer and x be a real number. Then a < x if and only if
a<|z].

Proof: If a < |z, then a < |x]| < x is clear. On the other hand, assume
a < z. Then a is an integer that is less than or equal to x. Since |x] is the largest
integer that is less than or equal to x, a < |z]. O

*Evaluate 3.29. Implement an algorithm that will round a real number x to the closest
integer, but rounds down at .5. You can only use numbers, basic arithmetic (+, —, *, /),
and floor(y) and/or ceiling(y) (which correspond to |y| and [y]). Don’t worry about
the data types (i.e. returning either a double or an int is fine as long as the value stored
represents an integer value).

Solution I: return floor(x+.49).

Evaluation

Solution 2—: return floor (x+1/2).

Evaluation

Solution 3: return ceiling(x+.5).

Evaluation

Solution 4: return ceiling(x-.5).

Evaluation

54 Chapter 3

Corollary 3.30. Let a, b, and ¢ be integers. Then a < b/c if and only if a < |b/c].

Proof: Since b/c is a real number, this is a special case of Theorem 3.28. [

The floor function is important because in many programming languages, including Java, C, and
C++, integer division truncates. That is, when you compute n/k for integers n and k, the result
is rounded so it is close to zero. That means that if n,k > 0, n/k rounds down to |n/k|. But
if n < 0, n/k rounds up to [n/k]. So in Java, C, and C++, 3/4 = —3/4 =0, 11/5 = 2 and
—11/5 = —2, for instance.

xExercise 3.31. Compute each of the following, assuming they are expressions in Java, C,
or C++.

(@) 9/10=__ (e) 15/10 = @ -5/10=
(b) 10/10=__ (f) 19/10 = G) -10/10 =
() 11/10=__ (g) 20/10 = (k) -15/10 =
(d) 14/10=_____ (h) 90/10 = 1) -20/10 =

*Evaluate 3.32. Let n and m be positive integers with m > 2. Assuming integer division
truncates, write an algorithm that will compute n/m, but will round the result instead of
truncating it (round up at or above .5, down below .5). For instance, 5/4 should return 1,
but 7/4 should return 2 instead of 1. You may only use basic integer arithmetic, not including
the mod operator.

Solution I: floor(n/m+0.5)

Evaluation

Solution 2—: floor((n/m) + 1/2)

Evaluation

Solution 3: (int) (n/m+0.5)

Evaluation

The mod operator and Integer Division 55

Although the previous example may seem like it is based on an unnecessary restriction, this is
taken from a real-world situation. When writing code for an embedded device (e.g. a thermostat
or microwave oven), code space is often of great concern. Performing just a single calculation
using doubles/floats can add a lot of code since it needs to add certain code to deal with the data
type. Sometimes the amount of code added is too much since embedded processors have a lot less
space than the processor in your laptop or desktop computer. Because of this, some embedded
programmers do everything they can to avoid all non-integer computations in their code when it
is possible.

*xExercise 3.33. Give a correct solution to round-instead-of-truncate problem from the pre-
vious example.
Answer:

56 Chapter 3

3.3 If-then-else Statements

Definition 3.34. The if-then-else control statement has the following syntax:

if(ezpression) {
block4
else {
blockB
}
and evaluates as follows. If expression is true then the statements in blockA are executed.

Otherwise, the statements in blockB are executed.

Example 3.35. Write an algorithm that will determine the maximum of two integers. Prove

your algorithm is correct.

Solution: The following algorithm will work.

int max(int x, int y) {
if(x >= y) {
return x;
} else {
return y;
}
}

There are three possible cases. If x > y, then x is the maximum, and it is returned
since the algorithm returns « if > y. If x = y, then they are both the maximum,
so returning either is correct. In this case it returns x, the correct answer. If
x < y, then y is the maximum and the algorithm returns gy, which is the correct
answer. In any case it returns the correct answer.

*Exercise 3.36. Write an algorithm that will determine the maximum of three numbers
that uses the algorithm from Example 3.35. Prove that your algorithm is correct.

int max(int x, int y, int z) {

Proof

If-then-else Statements 57

The previous exercise is an example of something that you are already familiar with: code
reuse. We could have written an algorithm from scratch, but it is much easier to use one that
already exists. Not only is the resulting algorithm simpler, it is easier to prove that it is correct
since we know that algorithm it uses is correct.

*Exercise 3.37. Write an algorithm that prints “Hello” if one enters a number between 4
and 6 (inclusive) and “Goodbye” otherwise. Use the function print(String s) to print.
You are not allowed to use any boolean operators like and, or, etc.

void HelloGoodbye(int x) {

For simplicity, we will sometimes use print to output results and not worry about whitespace
(e.g. spaces and newlines). Think of it as being equivalent to Java’s System.out.print(i+" ") or
C++'s cout<<i<<" " or C’s printf("%d ",1i) if you would like.

*Question 3.38. The solution given for the previous example uses three print statements,
with two identical print statements appearing in different places. Is it possible to write the
algorithm using only two print statements while maintaining the restriction that you cannot
use and and or? If so, give that version of the algorithm. If not, explain why not.

Answer:

58 Chapter 3

3.4 The for loop

Here is the first of the two types of loops we will consider.

Definition 3.39. The for loop has the following syntax:

for(initialize; condition; increment) {
block4
}

where

e initialize is one or more statements that set up the initial conditions and is executed
once at the beginning of the loop.

e condition is the condition that is checked each time through the loop. If condition is
true, the statements in blockA are executed followed by the code in increment. This
process repeats until condition is false.

e increment is code that ensures the loop progresses. Typically increment is just a
simple increment statement, but it can be anything.

Example 3.40. Write an algorithm that returns n! when given n.

Solution: Here is one possible algorithm.

int factorial(int n) {
if (n==0) { return 1;
} else {
int fact = 1;
for(int i=1;i<=n;i++) {
fact = factx*i;
}

return fact;

*Question 3.41. Does the factorial algorithm from Example 3.40 ever do something
unexpected? If so, what does it do, when does it do it, and what should be done to fix it?

Answer

The for loop

99

xEvaluate 3.42. Evaluate these algorithms that supposedly compute n! for values of n > 0.
Don’t worry about what they do when n < 0.

Solution [:
int fact = 1;
for(int i=0;i<=n;i++) {
fact = factx*xi;
¥

return fact;

Evaluation

Solution 2
int fact = 1;
for(int i=2;i<=n;i++) {
fact = factx*i;
}

return fact;

Evaluation

Solution 3:
int fact = 1;
for(int i=n;i>0;i--) {
fact = factx*xi;
¥

return fact;

Evaluation

Solution 4:
int fact = 1;
for(int i=1;i<mn;i++) {
fact = fact*x(n-i);
}

return fact;

Evaluation

60

Chapter 3

xExercise 3.43. Write an algorithm that will compute =", where x is a given real number
and n is a given positive integer.

double power (double x, int n) {

Arrays 61

3.5 Arrays

Definition 3.44. An array is an aggregate of homogeneous types. The length of the array
is the number of entries it has.

A 1-dimensional array is akin to a mathematical vector. Thus if X is 1-dimensional array of
length n then
X = (X[0], X[1],..., X[n —1]).

We will follow the convention of common languages like Java, C, and C++ by indexing the arrays
from 0. This means that the last element is X[n — 1]. We will always declare the length of the
array at the beginning of a code fragment by means of a comment.

A 2-dimensional array is akin to a mathematical matrix. Thus if Y is a 2-dimensional array
with 2 rows and 3 columns then

Example 3.45. Write an algorithm that determines the maximum element of a 1-dimensional
array of n integers.

Solution: We declare the first value of the array (the O-th entry) to be the
maximum (a sentinel value). Then we successively compare it to other n—1 entries.
If an entry is found to be larger than it, that entry is declared the maximum.

MaxEntry(int[] X, int n) {
int max = X[0];
for(int i=1;i<n;i++) {

if(X[i]l>max) {
max = X[i];
}
}
return max;

}

If your primary language is Java, you might wonder why we did not use X.length in the
previous algorithm. There are two reasons. First, not all languages store the length of an array as
part of the array. For examples, C and C++ do not. In these languages you always need to pass
the length along with an array. Second, sometimes you want to be able to process only part of an
array. Written as we did above, the algorithm will return the maximum of the first n elements of
an array. The algorithm works as long as the array has at least n elements.

Note: If an algorithm has an array and a variable n as parameters, you can probably assume
n is the length of the array unless it is otherwise specified.

62 Chapter 3

Example 3.46. Implement a method that swaps two elements of an array that works in Java
and other languages that can’t pass by reference.

Solution: Here is a method that swaps two elements of an integer array. Except
for the type of the parameter and temp variable, this works for any data type.

swap (int[] X, int a, int b) {
int temp = X[al;
X[al=X[b];
X[bl=temp;

}

I don’t want to get into the technical details of pass-by-value versus pass-by-
reference since that is really the subject of another course. But briefly, this works
because when the array is passed we have access to the individual array elements.
Therefore when we change them, they are changed in the original array.

Example 3.47. An array (X[0],... X[n — 1]) is given. Without introducing another array,
put its entries in reverse order.

Solution: Observe that we want to exchange the first and last element, the
second and second-to-last element, etc. That is, we want to exchange X|[0] <>
X[n—1], X[1] & X[n—2], ..., X[k] > X[n—k—1]. But what value of & is correct?
If we go all the way to n — 1, the result will be that every element is swapped and
then swapped back, so we will accomplish nothing. Hopefully you can see that if
we swap elements when k < n — k — 1, we will swap each element at most once.
The “at most once” is because if the array has an odd number of elements, the
middle element occurs when &k = n—k — 1, but we can skip it since it doesn’t need
to be swapped with anything. Notice that £k < n —k — 1 if and only if 2k < n — 1.
Since k and n are integers, this is equivalent to 2k < n — 2. This is equivalent
to k < [(n — 2)/2] by Corollary 3.30. Thus, we need to swap the elements
0,1,...,[(n—2)/2] with elements n—1,n—2,...,n—1—[(n—2)/2] =n—|n/2],
respectively. The following algorithm implements this idea.

reverseArray(int[] X, int n) {
for(int i=0;i<=(n-2)/2;i++) {
swap(X,i,n-i-1);

}

*Question 3.48. The previous algorithm went until ¢ was (n —2)/2, not [(n —2)/2]. Why
is this O.K.? Does it depend on the language? Explain.

Answer

Arrays 63

*Question 3.49. Does the following algorithm correctly reverse the elements of an array?
Explain.
reverseArray(int[] X, int n) {

for(int i=0;i<n/2;i++) {

swap(X,i,n-i-1);

}

Answer

Hopefully the previous example helps you realize that you need to be careful when working
with arrays. Formulas related to array indices change depending on whether arrays are indexed
starting at 0 or 1. In addition, formulas involving the number of elements in an array can be
tricky, especially when the formulas relate to partitioning the array into pieces (e.g. into two
halves). These can both lead to the so-called “off by one” error that is common in computer
science. The next example illustrates these problems, and one way to deal with it.

Example 3.50. Give a formula for the index of the middle element of an array of size n. If
there are two middle elements (e.g. n is even), use the first one.

Solution: Clearly the answer should be somewhere close to n/2. Unfortunately,
if n is odd, n/2 isn’t an integer. And clearly the answer won’t be the same when
indexing starting at both 0 and 1. Maybe we should try a few concrete examples.

Let’s first assume indexing starts at 1. If n = 9, the middle element is the 5th
element, which has index 5 = [9/2]. If n = 10, the middle element is also the
5th element. Then the index is 5 = 10/2 = [10/2]. Thus the formula [n/2]
should work. You should plug in a few more values to convince yourself that this
is correct.

Now let’s assume indexing starts at 0. There are a a few equivalent formulas we
can come up with. For starters, [n/2] —1 should work since this is just 1 less than
the answer above, and the indices are all shifted by one. But let’s come up with
a formula from scratch. If n = 9, the index of the middle element is 4 = |9/2]. If
n = 10, the index is 4 # [10/2]. So |n/2] works when n is odd, but not when n
is even. This one is not as obvious as it was when we started indexing at 1. With
a little thought, you may realize that |(n — 1)/2]| works.

*Question 3.51. The previous example seems to suggest that [n/2] —1 = |[(n —1)/2] for
all integers n. Is this correct? Do a few sample computations to try to convince yourself of
your answer.

Answer

64 Chapter 3

Note: Always be very careful with formulas related to the index of an array. Double-check
your logic by plugging in some values to be certain your formula is correct.

Definition 3.52. A boolean variable is a variable that can be either true or false.

Definition 3.53. The not unary operator changes the status of a boolean variable from true
to false and vice-versa. In Java, C, and C++, the not operator is ! and it appears before
the expression being negated (e.g. 'x).

The not operator is essentially the same thing as the negation we discussed earlier. The
difference is context—we are applying not to a boolean variable, whereas we applied negation to
a statement.

Example 3.54 (The Locker-Room Problem). A locker room contains n lockers, numbered
1 through n. Initially all doors are open. Person number 1 enters and closes all the doors.
Person number 2 enters and opens all the doors whose numbers are multiples of 2. Person
number 3 enters and toggles all doors that are multiples of 3. That is, he closes them if they
are open and opens them if they are closed. This process continues, with person ¢ toggling
each door that is a multiple of . Write an algorithm to determine which lockers are closed
when all n people are done.

Solution: Here is one possible approach. We use a boolean array Locker of
size n + 1 to denote the lockers (we will ignore Locker [0]). The value true will
denote an open locker and the value false will denote a closed locker.

LockerRoomProblem(boolean[] Locker, int n) {
// Person 1: Close them all
for(int i=1;i<=n;i++) {
Locker [i]l=false;
}
//People 2 through n: toggle appropriate ones
for(int j=2;j<=n;j++) {
for(k=j;k<=n;k++) A
if (k%j==0) {
Locker [k]

!Locker [k];
}
}
}
// Print the results
print("Closed:");
for(int 1=1;1<=n;1++) {
if (Locker[1]==false) {
print (1) ;
print (" ");

The while loop 65

3.6 The while loop

Definition 3.55. The while loop has syntax:

while(condition) {
blockA
}

The statements in blockA will execute as long as condition evaluates to true.

Example 3.56. An array X satisfies X[0] < X[1] <--- < X[n—1]. Write an algorithm that
finds the number of entries that are different.

Solution: Here is one possible approach.

int differentElements(int[] X, int n) {

int i = 0;
int different = 1;
while (i<n-1) {

i++;

if(x[i]'=x[i-1]) {

different++;

}

}

return different;

*Exercise 3.57. What will the following algorithm return for n = 57 Trace the algorithm
carefully, outlining all your steps.

mystery(int n) {
int x=0;
int i=1;
while(n>1) {
if (nxi>4) {
X=xX+2%n;
} else {
X=x+n;
}
n=n-2;
i++;
}

return Xx;

Answer

66 Chapter 3

Theorem 3.58. Let n > 1 be a positive integer. Fither n is prime or n has a prime factor
no greater than \/n.

Proof: If n is prime there is nothing to prove. Assume that n is composite.
Then n can be written as the product n = ab with 1 < a < b, where a and b
are integers. If every prime factor of n were greater than /n, then a > \/n and
b > \/n. But then n = ab > \/ny/n = n, which is a contradiction. Thus n must
have a prime factor no greater than /n. O

Example 3.59. To determine whether 103 is prime we proceed as follows. Observe that
|v/103| = 10 (According to Theorem 3.28, we only need concern ourselves with the floor).
We now divide 103 by every prime no greater than 10. If one of these primes divides 103, then
103 is not a prime. Otherwise, 103 is a prime. Notice that 103 mod 2 = 1, 103 mod 3 = 1,
103 mod 5 = 3, and 103 mod 7 = 5. Since none of these remainders is 0, 103 is prime.

*Exercise 3.60. Give a complete proof of whether or not 101 is prime.

Proof

xExercise 3.61. Give a complete proof of whether or not 323 is prime.

Proof

Example 3.62. Give an algorithm to determine if a given positive integer n is prime.

Solution: We first deal with a few base cases. If n = 1, it is not prime, and if
n =2 or n = 3 it is prime. Then we determine if n is even, in which case it is not
prime. Finally, we loop through all of the odd values, starting with 3 and going
to \/n, determining whether or not n is a multiple of any of them. If so, it is not
prime. If we get through all of this, then n has no factors less than or equal to \/n
which means it must be prime. Here is the algorithm based on this description.

boolean isPrime(int n) {
if(n<=1) { // Anything less than 2 is not prime.
return false; }
if(n==2 || n==3) { // 2 and 3 are special cases.
return true; }
if(n%2==0) { // Discard even numbers right away.

The while loop 67

return false;

} else {
// Determine if it has any odd factors.
int 1 = 1;
while(i <= sqrt(mn)) {
i =i+ 2;

if (n%i==0) {
return false; }
}

return true; // It had no factors.

Note: It should be noted that although this algorithm in Exzample 3.62 works, it is not very
practical for large values of n. In fact, there is no known algorithm that can factor numbers
efficiently on a “classical” computer. The most commonly used public-key cryptosystems rely
on the assumption that there is no efficient algorithm to factor a number. However, if you
have a quantum computer, you are in luck. Shor’s algorithm actually can factor numbers
efficiently.

*Question 3.63. Why did the algorithm in the previous example deal with even numbers
differently?

Answer

xExercise 3.64. Use the fact that integer division truncates to write an algorithm that
reverses the digits of a given positive integer. For example, if 123476 is the input, the output
should be 674321. You should be able to do it with one extra variable, one while loop, one
mod operation, one multiplication by 10, one division by 10, and one addition.

int reverseDigits(int n) {

68 Chapter 3

3.7 Problems

Note: For the remainder of the book, whenever a problem asks for an algorithm, always
assume it is asking for the most efficient algorithm you can find. You will likely lose points
if your algorithm is not efficient enough.

Problem 3.1. Let n be a positive integer. Recall that a = b (mod n) iff n divides a — b (that is,
a—b=Fk-n for some k € Z). Use this formal definition to prove each of the following:

(a) a=a (mod n). (Reflexive property)
(b) If a = b (mod n), then b = a (mod n). (Symmetric property)
(¢) If a=b (mod n) and b = ¢ (mod n), then a = ¢ (mod n). (Transitive property)

Problem 3.2. Implement the swap operation for integers without using an additional variable
and without using addition or subtraction. (Hint: bit operations)

Problem 3.3. Prove or disprove that the following method correctly computes the maximum of
two integers x and y, assuming that the minimum method correctly computes the minimum of x
and y.

int maximum(int x, int y) {
int min = minimum(x,y);
int max = x + y - min;
return max;

¥
Problem 3.4. Give a recursive algorithm that computes n!. You can assume n > 0.

Problem 3.5. What will the following algorithm return for n = 37

iCanDuzSomething(int n) {
int x = 0;
while(n>0) A
for(int i=1;i<=n;i++) {
for(int j=i;j<=n;j++) {
X = X + ix*j;

}

n--;
return Xx;

}

Problem 3.6. Give an algorithm that will round a real number x to the closest integer, rounding
up at .5. You can only use floor(y), ceiling(y), basic arithmetic (+, -, *, /) and/or numbers.
You cannot use anything else, including conditional statements! Prove that your algorithm is
correct.

Problem 3.7. Recall that Example 3.32 had the conditions that n > 0 and m > 2. Also recall
that you gave a solution to this in Exercise 3.33. Also recall that integer division always truncates
toward zero, so negative numbers truncate differently than positive ones.

(a) Does your solution work when m = 27 Justify your answer with a proof/counterexample.

Problems 69

(b) Does your solution work when n < 0?7 Justify your answer with a proof/counterexample.

(¢) Give an algorithm that will work for any integer n and any non-zero m. Give examples
that demonstrate that your algorithm is correct for the various cases and/or a proof that it
always works. Make sure you consider all relevant cases (e.g., when it should round up and
down, when n and m are positive/negative). You may only use basic integer arithmetic and
conditional statements. You may not use floor, ceiling, abs (absolute value), etc. You also
may not use the mod operator since how it works with negative numbers is not the same for
every language.

Problem 3.8. Assume you have a function random(int n) that returns a random integer between
0 and n — 1, inclusive. Give code/pseudocode for an algorithm random(int a, int b) that
returns a random number between a and b, inclusive of both a and b. You may assume that a < b
(although in practice, this should be checked). You may only call random(int n) once and you
may not use conditional statements. Prove that your algorithm returns an integer in the required
range.

Problem 3.9. Assume you have a function random() that returns a non-negative random integer.
Give code/pseudocode for an algorithm random(int a, int b) that returns a random integer
between a and b, inclusive of both a and b. Each possible number generated should occur with
approximately the same probability. You may assume that a and b are both positive and that
a < b (although in practice, this should be checked). You may use only basic integer arithmetic
(including the mod operator) and you may only call random() once. You may not use loops,
conditional statements, floor, ceiling, abs (absolute value), etc. Prove that your algorithm returns
an integer in the required range.

Problem 3.10. The following method is a simplified version of a method that might be used
to implement a hash table or in a cryptographic system. Assume that for one particular use the
number returned by this function has to have the opposite parity (even/odd) of the parameter.
For instance, hash_it (4) returns 49 which has the opposite parity of 4, so it works for 4. Prove
or disprove that this function always returns a value of opposite parity of the parameter.

int hash_it(int x) {
return x*x+6%x+9;

}

Problem 3.11. Give an algorithm that computes all of the primes that are less than or equal to
n. For simplicity, you can just print all of the prime numbers up to n. Your algorithm should be
as efficient as possible. One approach is to modify the algorithm from Example 3.62 by using an
array to make it more efficient.

Problem 3.12. Prove or disprove that the following method computes the absolute value of x.
For simplicity, assume that all of the calculations are performed with perfect precision. You may
use the fact that V22 = x when z > 0 if it will help.

double absoluteValue(double x) {
double square = x*Xx;
double answer sqrt (square) ;
return answer;

70 Chapter 3

Problem 3.13. Prove or disprove that the following method computes the absolute value of x.
For simplicity, assume that all of the calculations are performed with perfect precision. You may
use the fact that (/z)? = when z > 0 if it will help.

double absoluteValue(double x) {
double root = sqrt(x);
double answer = root*root;
return answer,;

}

Problem 3.14. Problems 3.12 and 3.13 both assumed that “all of the calculations are performed
with perfect precision”. Is that a realistic assumption? Give an example of an input for which the
each algorithm will work properly. Then give an example of an input for which each algorithm
will not work properly. You can implement and run the algorithms to do some testing if you wish.

Problem 3.15. The following method is supposed to do some computations on a positive number
that result in getting the original number back. Prove or disprove that this method always returns
the exact value that was passed in. Unlike in the previous problems, here you should assume that
although a double stores a real number as accurately as possible, it uses only a fixed amount
of space. Thus, a double is unable to store the exact value of any irrational number—it instead
stores an approximation.

double returnTheParameterUnmodified (double x) {
double a = sqrt(x);
double b = axa;
return b;

}

Problem 3.16. Prove or disprove that the algorithm from Example 3.8 actually does work
properly with integer data types stored using 2’s complement.! You may restrict to 8-bit numbers
if it will help you think about it more clearly—a proof/counterexample for 8-bit number can easily
be modified to work for 32- or 64-bit numbers. (Hint: If it doesn’t work, what sort of numbers
might it fail on?)

Problem 3.17. Use the first definition of congruence modulo n given in Definition 3.13 to prove
Theorem 3.18. (Note: This is an if and only if proof, so you need to prove both ways.)

"When we say “works,” we mean for all possible values of x and y.

Chapter 4

Logic

4.1 Propositional Logic

Definition 4.1. A boolean proposition (or simply proposition) is a statement which is
either true or false (sometimes abbreviated as T or F). We call this the truth value of
the proposition.

Whether the statement is obviously true or false does not enter in the definition. One only needs
to know that its certainty can be established.

Example 4.2. The following are propositions and their truth values, if known:
72 = 49. (true)

5> 6. (false)

If p is a prime then p is odd. (false)

There exists infinitely many primes which are the sum of a square and 1. (unknown)

)

)

)

)

e) There is a God. (unknown)

) There is a dog. (true)

) T am the Pope. (false)
) Every prime that leaves remainder 1 when divided by 4 is the sum of two squares. (true)
)

Every even integer greater than 6 is the sum of two distinct primes. (unknown)

xExercise 4.3. Give the truth value of each of the following statements.

(a) 0=1

(b) 17 is an integer.

71

72 Chapter 4

(c) “Psych” is a TV show that aired on the USA network.

(d) In 1999, it was possible to buy a red Swingline stapler.

Example 4.4. The following are not propositions, since it is impossible to assign a true or
false value to them.

(a) Whenever I shampoo my camel.
(b) Sit on a potato pan, Otis!

)
)
(¢) What I am is what I am, are you what you are or what?
(d) z=2+1.

)

(e) This sentence is false.

xExercise 4.5. For each of the following statements, state whether it is true, false, or not a
proposition.

(a) i can has cheezburger?

(b) “Psych” was one of the best shows on TV when it was on the air.

(c) I know, right?

(d) This is a proposition.

(e) This is not a proposition.

4.1.1 Compound Propositions

Definition 4.6. A logical operator is used to combine one or more propositions to form a
new one. A proposition formed in this way is called a compound proposition. We call the
propositions used to form a compound proposition variables for reasons that should become
evident shortly.

Next we will discuss the most common logical operators. Some of these will be familiar to
you. When you learned about Boolean expressions in your programming courses, you proba-
bly saw NOT (e.g. if(!'list.isEmpty())), OR (e.g. if(x>0 || y>0)), and AND (e.g.
if(list.size() > O && list.get(0) > 1)). The notation we use will be different, however.

Propositional Logic 73

This is because the symbols you are familiar with are specific choices made by whoever created
the programming language(s) you learned. Here we will use standard mathematical notation for
the operators.

For each of the following definitions, assume p and ¢ are propositions.

Definition 4.7. The negation (or NOT) of p, denoted by —p is the proposition ‘it is not
the case that p”. —p is true when p is false, and vice-versa. Other notations include P,
~ p, and 'p. Many programming languages use the last one.

Example 4.8. If p is the proposition “x < 0”, then —p is the proposition “It is not the case
that z < 0,” or “x > 0.”

*Fill in the details 4.9. Let p be the proposition “I am learning discrete mathematics.”

Then —p is the proposition

The truth value of —p is

*Exercise 4.10. Consider the statement “This is not a proposition.”

(a) Use the fact that “This is a proposition” is a proposition to prove that “This is not a
proposition” is a proposition. Then prove that its truth value is false.

Proof

(b) Use a contradiction proof to prove that “This is not a proposition” is a proposition. Then
prove that its truth value is false.

Proof

74 Chapter 4

xExercise 4.11. You need a program to execute some code only if the size of a list is not
0. The variable is named 1ist, and its size is list.size (). Give the expression that should
go in the if statement. In fact, give two different expressions that will work.

Definition 4.12. The conjunction (or AND) of p and q, denoted by p A q, is the propo-
sition “p and q”. The conjunction of p and q is true when p and q are both true and false
otherwise. Many programming languages use && for conjunction.

Example 4.13. Let p be the proposition “z > 0” and ¢ be the proposition “x < 10.” Then
p A q is the proposition “z > 0 and z < 10,” or “0 < z < 10.” In a Java/C/C++ program, it
would be “x>0 && x<10.”

Example 4.14. Let p be the proposition “z < 0” and ¢ be the proposition “xz > 10.” Then
p A q is the proposition “z < 0 and x > 10.” Notice that p A g is always false since if x < 0,
clearly x » 10. But don’t confuse the proposition with its truth value. When you see the
statement ‘p A ¢ is “x < 0 and x > 10”7’ and ‘p A ¢ is false,” these are saying two different
things. The first one is telling us what the proposition is. The second one is telling us its
truth value. ‘p A q is false’ is just a shorthand for saying ‘p A ¢ has truth value false.’

*Fill in the details 4.15. If p is the proposition “I like cake,” and ¢ is the proposition “I

like ice cream,” then p A g is the proposition

Example 4.16. Write a code fragment that determines whether or not three numbers can
be the lengths of the sides of a triangle.

Solution: Let a, b, and ¢ be the numbers. For simplicity, let’s assume they are
integers. First we must have a > 0, b > 0, and ¢ > 0. Also, the sum of any two of
them must be larger than the third in order to form a triangle. More specifically,
we need a+b > ¢, b+ ¢ > a, and ¢+ a > b. Since we need all of these to be true,
this leads to the following algorithm.

IsItATriangle(int a, int b, int c) {
if (a>0 && b>0 && c>0 && a+b>c && b+c>a && a+c>b) {
return true;
} else { return false; }

Propositional Logic 75

Definition 4.17. The disjunction (or OR) of p and q, denoted by pV q, is the proposition
“por q”. The disjunction of p and q is false when both p and q are false and true otherwise.
Put another way, if p is true, q is true, or both are true, the disjunction is true. Many
programming languages use || for disjunction.

Example 4.18. Let p be the proposition “xr < 5” and ¢ be the proposition “z > 15.”
Then p V g is the proposition “z < 5 or > 15.” In a Java/C/C++ program, it would be
“x<5 || x>15.”

*Fill in the details 4.19. Let p be the proposition “x > 0” and g be the proposition

“r < 10.” Then pV q is the proposition

Notice that p V ¢ is always since it is if x >0, and if z # 0,

then clearly , S0 it is then as well.

*Exercise 4.20. Let p be “you must be at least 48 inches tall to ride the roller coaster,”
and ¢ be “you must be at least 18 years old to ride the roller coaster.” Express each of the
following propositions in English.

1. —pis

2. pVgqis

3. pAqis

76

Chapter 4

xExercise 4.21. Give an algorithm that will return true if an array of integers either starts
or ends with a 0, or false otherwise. Assume array indexing starts at 0 and that the array is
of length n. Use only one conditional statement. Be sure to deal with the possibility of an
empty array.

boolean startsOrEndsWithZero(int[] a, int n) {

*Question 4.22. Does the solution given for the previous exercise properly deal with arrays
of size 0 and 17 Prove it.

Answer

Definition 4.23. The exclusive or (or XOR) of p and q, denoted by p @ q, is the propo-
sition “p is true or q is true, but not both”. The exclusive or of p and q is true when

exactly one of p or q is true. Put another way, the exclusive or of p and q is true iff p and
q have different truth values.

Example 4.24. Let p be the proposition “x > 10” and g be the proposition “x < 20.” Then
p @ q is the proposition “x > 10 or z < 20, but not both.”

Note: Notice that V is an inclusive or, meaning that it is true if both are true, whereas ®
is an exclusive or, meaning it is false if both are true. The difference between V and & is
complicated by the fact that in English, the word “or” to can mean either of these depending
on context. For instance, if your mother tells you “you can have cake or ice cream” she is

likely using the exclusive or, whereas a prerequisite of “Math 110 or demonstrated competency
with algebra” clearly has the inclusive or in mind.

Propositional Logic

7

XOR for each.

()

*Exercise 4.25. For each of the following, is the or inclusive or exclusive? Answer OR or

The special includes your choice of a salad or fries.

The list is empty or the first element is zero.

The first list is empty or the second list is empty.

You need to take probability or statistics before taking this class.

You can get credit for either Math 111 or Math 222.

Answer

*Exercise 4.26. Let p be “list 1 is empty” and g be “list 2 is empty.” Explain the difference
in meaning between pV ¢ and p @ q.

Answer

*Question 4.27. Let p be the proposition “x < 5” and ¢ be the proposition “x > 15.”

(a) Do the statements p V ¢ and p ® ¢ mean the same thing? Explain.

Answer

(b) Practically speaking, are p V ¢ and p @ ¢ the same? Explain.

XOR is not used as often as AND and OR in logical expressions in programs. Some languages
have an XOR operator and some do not. The issue gets blurry because some languages, like Java,

78 Chapter 4

have an explicit Boolean type, while others, like C and C++, do not. All of these languages have
a bitwise XOR operator, but this is not the same thing as a logical XOR operator. We will return
to this topic later. In the next section we will see how to implement & using V, A, and —.

Definition 4.28. The conditional statement (or implies) involving p and q, denoted by
P — q, is the proposition ‘if p, then q”. It is false when p is true and q is false, and true
otherwise. In the statement p — q, we call p the premise (or hypothesis or antecedent)
and q the conclusion (or consequence).

Example 4.29. Let p be “you earn 90% in the class,” and ¢ be “you will receive an A.”
Then p — ¢ is the proposition “If you earn 90% in the class, then you will receive an A.”

*Question 4.30. Assume that the proposition “If you earn 90% in this class, then you will
receive an A” is true.

(a) What grade will you get if you earn 90%? Explain.

Answer

(b) If you receive an A, did you earn 90%? Explain.

Answer

(c¢) If you don’t earn 90%, does that mean you didn’t get an A7 Explain.

Answer

Note: The conditional operator is by far the one that is the most difficult to get a handle
on for at least two reasons. First, the conditional statement p — q is not saying anything
about p or q by themselves. It is only saying that if p is true, then q has to also be true. It
doesn’t say anything about the case that p is not true. This brings us to the second reason.
Should F — T be true or false? Although it seems counterintuitive to some, it should be true.
Again, p — q is telling us about the value of ¢ when p is true (i.e., if p is true, the ¢ must
be true). What does it tell us if p is false? Nothing. As strange as it might seem, when p is
false, the whole statement is true regardless of the truth value of q.

If in the end you are still confused, you can (and should) simply fall back on the formal
definition: p — q is false when p is true and q is false, and is true otherwise. In
other words, if interpreting p — q as the English sentence “p implies q” is more harmful than
helpful in understanding the concept, don’t worry about why it doesn’t make sense and just

Propositional Logic

remember the definition.®

“In mathematics, one tries to define things so they make sense immediately. Sometimes this is not possible
(if the concept is very complicated and/or it just doesn’t relate to something that is familiar). Sometimes a
term or concept is defined poorly but because of prior use the definition sticks. Sometimes it makes perfect
sense to some people and not to others, probably based on each person’s background. I think this last possibility
may be to blame in this case.

Definition 4.31. The biconditional statement involving p and q, denoted by p <> q, is
the proposition “p if and only if ¢” (or abbreviated as “p iff q”). It is true when p and q
have the same truth value, and false otherwise.

Example 4.32. Let p be “you earn 90% in this class,” and ¢ be “you receive an A in this

class.” Then p <> ¢ is the proposition “You earn 90% in this class if and only if you receive
an A.”

*Question 4.33. Assume that the proposition “You will receive an A in the course if and
only if you earn 90%” is true.

(a) What grade will you get if you earn 90%?

Answer

(b) If you receive an A, did you earn 90%?

Answer

(c¢) If you don’t earn 90%, does that mean you didn’t get an A?

Answer

Now let’s bring all of these operations together with a few more examples.

Example 4.34. Let a be the proposition “I will eat my socks,” b be “It is snowing,” and c
be “I will go jogging.” Here are some compound propositions involving a, b, and ¢, written
using these variables and operators and in English.

‘ With Variables/Operators ‘ In English ‘

(bv-b) —c Whether or not it is snowing, I will go jogging.
b— —c If it is snowing, I will not go jogging.
b— (a N —c) If it is snowing, I will eat my socks, but I will not go jogging.
a <> c When I eat my socks I go jogging, and when I go jogging 1
eat my socks.
or I eat my socks if and only if I go jogging.

79

80 Chapter 4

*F'ill in the details 4.35. Let p be the proposition “Iron Man is on TV,” ¢ be “I will
watch Iron Man,” and r be “I own Iron Man on DVD.” Fill in the missing information in

the following table.
‘ With Variables/Operators ‘ In English ‘

p—q

If I don’t own Iron Man on DVD and it is on TV, I will
watch it.

pAT A —q

I will watch Iron Man every time it is on TV, and that is
the only time I watch it.

I will watch Iron Man if I own the DVD.

4.1.2 Truth Tables

Sometimes we will find it useful to think of compound propositions in terms of truth tables.

Definition 4.36. A truth table is a table that shows the truth value of a compound propo-
sition for all possible combinations of truth assignments to the variables in the proposition.
If there are n variables, the truth table will have 2™ rows.

The truth table for — is given in Table 4.1 and the truth tables for all of the other operators
we just defined are given in Table 4.2. In the latter table, the first two columns are the possible
values of the two variables, and the last 5 columns are the values for each of the two-variable
compound propositions we just defined for the given inputs.

p | p
T | F
F\| T

Table 4.1: Truth table for —

p q|(rhg | (Ve |pDqg|p—q) | (peq)
T T T T F T T
T F F T T F F
F T F T T T F
F F F F F T T

Table 4.2: Truth tables for the two-variable operators

Propositional Logic 31

Example 4.37. Construct the truth table of the proposition a V (=b A ¢).

Solution: Since there are three variables, the truth table will have 23 = 8 rows.
Here is the truth table, with several helpful intermediate columns.

J
Sy
>
o

aV (

J

S

>
&

NN NSNS
NN NN
NN N NS
NSRS YL
N TmT RNy
HNTTNNNS

Note: Notice that there are several columns in the truth table besides the columns for the
variables and the column for the proposition we are interested in. These are “helper” or
“intermediate” columns (those are not official definitions). Their purpose is simply to help
us compute the final column more easily and without (hopefully) making any mistakes.

xExercise 4.38. Construct the truth table for (p — ¢q) A q.

B Bes|Ran | Ran IS
5o an | na] lan || S

Note: As long as all possible values of the variables are included, the order of the rows of
a truth table does not matter. However, by convention one of two orderings is usually used.
Since there is an interesting connection to the binary representation of numbers, let’s take a
closer look at this connection in the next example.

Example 4.39 (Ordering the rows of a Truth Table). Notice that the values of the variables
can be thought of as the index of the row. So if a proposition involves two variables, the values
in the first two columns are used as a sort of index. We can order the rows by assigning a
number to each row based on the values in these columns. The order used here essentially
computes an index as follows: For the “index” columns, think of each T as a 0 and each
F as a 1. Now treat the numbers in these columns as binary numbers and order the rows
appropriately. For instance, if there are three variables, we can think of it as shown in the
following table.

82 Chapter 4

index

Eoes Bies Bes Mo B e M | =
NN
S5 BEs Hon Bie> B B L | Y
e ===
e N = =R S I =)
RO R ORORO
N <G, IS JUR

This is the ordering you should follow so that you can easily check your answers with those
in the solutions. It also makes grading your homework easier.

The other common ordering does the same thing, but maps T to 1 and F to 0.

There is also a way of thinking about this recursively. That is, given an ordering for a
table with n variables, we can compute an ordering for a table with n + 1 variables. It works
as follows: Make two copies of the columns corresponding to the variables, appending a T to
the beginning of the first copy, and an F to the beginning of the second copy.

xExercise 4.40. Construct the truth table of the proposition (a V —b) A ¢. You're on your
own this time to supply all of the details.

4.1.3 Precedence Rules

Consider the compound proposition aV—-bAc. Should this be interpreted as aV (=bAc), (aV-b)Ac,
or even possibly aV—(bAc)? Does it even matter? You already know that 34 (4%5) # (3+4) %5,
so it should not surprise you that where you put the parentheses in logical expressions matters,
too. In fact, Example 4.37 gives the truth table for one of these and you just computed the truth
table for another one in Exercise 4.40. If you compare them, you will see that they are not the
same. The third interpretation is also different from both of these.

To correctly interpret compound propositions, the operators have an order of precedence. The
order is =, A, @, V, —, and <. Also, — has right-to-left associativity, all other operators listed

Propositional Logic 83

have left-to-right associativity. Based on these rules, the correct way to interpret a V —b A c¢ is
aV ((=b) Ac).

It is important to know the precedence rules for the logical operators (or at least be able to
look it up) so you can properly interpret complex logical expressions. However, I generally prefer
to always use enough parentheses to make it immediately clear, especially when I am writing code.
It isn’t difficult to remember that — is first (that is, it always applies to what is immediately after
it) so sometimes I don’t use parentheses for it.

Example 4.41. According to the precedence rules, —a — a V b should be interpreted as

(ma) — (a VD).

Example 4.42. According to the precedence rules, a A =b — ¢ should be interpreted as
(a A (=b)) — c.

xExercise 4.43. According to the precedence rules, how should a A bV ¢ be interpreted?

Answer

*Question 4.44. Are (a Ab) Vc and a A (bV ¢) equivalent? Prove your answer.

Answer

*Evaluate 4.45. According to the associativity rules, how should a — b — ¢ be interpreted?

Solution: K should Be interpreted as (a8 — B) — ¢ -However,a — (B — @)
is equivalent, so it really doesnt matter.

Evaluation

84 Chapter 4

4.2 Propositional Equivalence

We have already informally discussed two propositions being equivalent. In this section, we will
formally develop the notion of what it means for two propositions to be equivalent (or, more
formally, logically equivalent). We will also provide you with a list of the most important logical
equivalences, along with some examples of some that aren’t necessarily as important, but make
interesting examples. But first, we need some new terminology.

Definition 4.46. A proposition that is always true is called a tautology. One that is always
false is a contradiction. Finally, one that is neither of these is called a contingency.

Example 4.47. Assume that x is a real number.

(a) The proposition “x < 0” is a contingency since its truth depends on the value of z.
e proposition “z® < 0” is a contradiction since it is false no matter what x is.

b) Th ition “z? < 07 i tradiction since it is fal tter what z i

(c) The proposition “z% > 07 is a tautology since it is true no matter what = is.

*F'ill in the details 4.48. State whether each of the following propositions is a tautology,
contradiction, or contingency. Give a brief justification.

(a) pV-pisa since either p or —p has to be true.
(b) pA—pisa since
(¢c) pVgisa since

To prove something is a tautology, one must prove that it is always true. One way to do this
is to show that the proposition is true for every row of the truth table. Another way is to argue
(without using a truth table) that the proposition is always true, often using a proof by cases.

Example 4.49. Prove that p V —p is a tautology.
Here are several proofs.

Proof 1: Since every row in the following truth table for p V —p is T, it is a tautology.

p|p|pVp
T\ F T
P\ T T

Proof 2: By definition of disjunction, if p is true, then pV —p is true. On the other hand,
if p is false, —p is true. In this case, pV —p is still true, again by definition of disjunction.
Since p V —p is true regardless of the value of p, it is a tautology.

Propositional Equivalence

85

xEvaluate 4.50. Prove that [p A (p — q)] — ¢ is a tautology.

Proo#t |:
Plallp—=alPAP—=) |PAP—- Q) @
T T T T T
T|F F F T
F|T T F T
F|F T F T
Evaluation

filling out a truth tarle, as follows:

Proot 2: One way to show that PA(P — @) — @ is indeed a tautoloay is By

PAP—= @) - @

-
c
c
c

Plallp—alPAP =)
T T T
T|F F
F|T T
F|IF T

=
-
T
-

tautoloay.

Evaluation

Since they all return true for pAKP — Q) — @, this proves that it is a

Evaluation

Proo$ 3: One way to prove that this is a tautoloay is to make a couple of
assumptions. First, since we know that for any statement x — y where
y is true, then x can Be either true or false. So let us assumve that Q is
false for this case. From the left side of the statementt, if p is true, we
would have true and (true implies false), which is false, thus we would have
false implies false, which Is true, and I£ p is false, then we would have false
and (false implies true), which comes out false. So in BOth cases where @
Is false, the statement equals out to false implies false, which is true, thus
all four cases are true, therery proving that P A (P — Q) — @ is a tautoloay.

86 Chapter 4

Proo#$ 4: Since an implication can only Be false when the premise is true
and the concdusion is false, we only need to prove that this cant happen.
So let’s assume that PAKP — Q) is true But that @ is false. Since pA(P — Q)
is true, p is true and p — @ is true (By definition of conjunction). But if p
is true and @ is false, p — @ is false. This is a8 contradiction, so it must e
the case that our assumption that p AP — Q) is true But that a is false is
incorrect. Since that was the only possigle way for pA (P — Q) — @ to Be
false, it cannot Be false. Therefore it is a tautoloay.

Evaluation

Proot S: Because 'merica.

Evaluation

Now we are ready to move on to the main topic of this section.

Definition 4.51. Let p and q be propositions. Then p and q are said to be logically
equivalent if p <+ q is a tautology. An alternative (but equivalent) definition is that p and
q are equivalent if they have the same truth table. That is, if they have the same truth value
for all assignments of truth values to the variables.

When p and q are equivalent, we write p = q. An alternative notation is p = q.

Note: p = q is not a compound proposition. Rather it is a statement about the relationship
between two propositions.

There are many logical equivalences (or identities/rules/laws) that come in handy when work-
ing with compound propositions. Many of them (e.g. commutative, associative, distributive) will
resemble the arithmetic laws you learned in grade school. Others are very different. The most
common ones are given in Table 4.3.

We will provide proofs of some of these so you can get the hang of how to prove propositions
are equivalent. One method is to demonstrate that the propositions have the same truth tables.
That is, they have the same value on every row of the truth table. But just drawing a truth table
isn’t enough. A statement like “since p and ¢ have the same truth table, p = ¢” is necessary to
make a connection between the truth table and the equivalence of the propositions. Let’s see a
few examples.

Example 4.52. Prove the double negation law: —(—p) = p.

Proof: The following is the truth table for p and —(—p).

Propositional Equivalence 87

p|—p —(=p)
T | F T
F| T F
Since the entries for both p and —(—p) are the same for every row, =(-p) = p. O

The two versions of De Morgan’s Law are among the most important propositional equiva-
lences for computer scientists. It is easy to make a mistake when trying to simplify expressions
conditional statements, and a solid understanding of De Morgan’s Laws goes a long way. In light
of this, let’s take a look at them next.

Example 4.53. Prove the first version of DeMorgan’s Law: —(pV q) = —=p A ~q

Proof: We can prove this by showing that in each case, both expression have
the same truth table. Below is the truth table for =(p V ¢) and —p A —¢q (the gray

columns).
p q|pVqg| (Ve | -p|q| PAg
T T| T F F | F F
T F| T F F| T F
F T| T F T | F F
F F| F T T | T T

Since they are the same for every row of the table, =(pV q) = —p A —q.

Name ‘ FEquivalence
commutativity | pVqg=qVDp
PANG=qAD
associativity pV(gVvr)=(pVq Vr
pPA(gAT)=(@AG AT
distributive pA(gVr)=((pAqV(pAT)
pV(gAT)=(@VgA(pVr)
identity pVF=p
pAT =p
negation pV-op=T
pAp=F
domination pVT =T
pANF=F
idempotent pVp=p
PAP=Dp
double negation | =(—p) =p
DeMorgan's =(pVq)=-pA—q
~(pAg)=-pV—q
absorption pV(pAqg)=p
pA(pVg =p

Table 4.3: Common Logical Equivalences

88 Chapter 4

xExercise 4.54. Prove the second version of De Morgan’s Law: =(p A q) = —pV —q.

Proof

pAqg| ~(pAq) | | —q|pVg

NN
N TN

Truth tables aren’t the only way to prove that two propositions are equivalent. You can also
use other equivalences. Let’s see an example.

*Fill in the details 4.55. Prove the idempotent laws (p V p = p and p A p = p) by using
the other equivalences.

Proof: We have

p = pVF (by identity)
= pV(pA-p) (by)
= (Vp)AlpV-p) (by)
= (pVp)AT (by negation)

= (by identity)

Thus, pV p = p. Similarly,

p = (by identity)

= (by negation)

= (by distributive)

= (by negation)

= pAp (by)

Thus, . O

Propositional Equivalence 89

Although it is helpful to specifically state which rules are being used at every step, it isn’t
always required.

Example 4.56. Prove that (p Aq) V (p A —q) = p.

Proof: It is not too difficult to see that

PAQV(PA-q) =pA(qV—q)=pAT =p.

xExercise 4.57. Use the other equivalences (not a truth table) to prove the Absorption
laws.

(a) Prove that pV (p Aq) = p.
Proof:

(b) Prove that p A (pV q) = p.
Proof:

One use of propositional equivalences is to simplify logical expressions.
Example 4.58. Simplify —(p V —q).
Solution: Using DeMorgan’s Law and double negation, we can see that
=(pV—g) =-pA=(g) =-pAg.

Of course, this also applies to simplifying conditional expressions in code.

90 Chapter 4

Example 4.59. Simplify the following code as much as possible.

if (!'(a==null || a.size()<=0)) {
a.clear () ;

}

Solution: First, notice that by DeMorgan’s Law, ! (a==null || a.size()<=0)
is equivalent to ! (a==null) && !(a.size()<=0). Simplifying a bit more, we get
a!=null && a.size()>0. Thus, the code becomes:

if (a'!=null && a.size()>0) {
a.clear();

}
This may not look much simpler, but it is much easier to understand.

This simplification can also be done by defining p to be a==null and ¢ to be
a.size()<=0. Then the expression is —=(pV¢q). Applying De Morgan’s Law, this is
the same as =p A —q, which we translate back to ! (a==null) && ! (a.size()<=0)
and simplify as in the final step above.

As the previous example demonstrates, you can apply the rules to propositions in various
form. Sometimes it is useful to explicitly define p and ¢ (and sometimes r) and write expressions
using formal mathematical notation, but at other times it is just as easy to apply the rules the
the expressions as they are. In the previous example, we didn’t gain that much by defining p and
g. But with more complicated expressions it certainly can be helpful.

Note: A common mistake is to forget to use De Morgan’s law when dealing with negation. For
instance, in the last example, replacing the code ! (a==null || a.size()<=0) with the code
I (a==null) || !(a.size()<=0) would be incorrect. You cannot just distribute a negation
among other terms. Always remember to use De Morgan’s law: —(pV q) # —pV —q.

xExercise 4.60. Simplify the following code as much as possible.
Hint: Example 4.56 might be of use.

if ((x>0 && x<y) || (x>0 && x>=y)) {
X=y;

}

Propositional Equivalence

91

xEvaluate 4.61. Simplify the following code as much as possible.

if (x>0) {
if(x<y |l x>0) {
X=y;
}
}

Solution: Because the second if is in the first one which is if (x > O)
then x > O is duplicated But at the same tive to satisfy the second
one we just Nneed to keep the second If and cut the first one. x <yand
x > O are independent conditions so they cannot Be more simplified.
So the answer is:

if(x<y |l x>0) {
x=y;

}

Evaluation

xExercise 4.62. Simplify the following code as much as possible.

if (x>0) {
if(x<y |l x>0) {
X=y;
}
}

Although some of these examples may seem a bit contrived, in some sense they are realistic.
As code is refactored, code is added and removed in various places, conditionals are combined or
separated, etc. and sometimes it leads to conditionals that are more complicated than they need
to be. In addition, when working on large teams, you will often work on code written by others.
Since some programmers don’t have a good grasp on logic, you will certainly run into conditional
statements that are way more complicated and convoluted than necessary. As I believe these
examples demonstrate, simplifying conditionals is not nearly as easy as one might think. It takes

great care to ensure that your simplified version is still correct.

92 Chapter 4

Note: There is an important difference between the logical operators as discussed here and how
they are implemented in programming languages such as Java, C, and C++. It is something
that is sometimes called short circuiting. You are probably familiar with the concept even
if you haven’t heard it called that before. It exploits the domination laws:

FAhq=F

TVg=T

Let’s see an example.

Example 4.63. Consider the statement if (x>=0 && al[x]!=0). The first domination law
implies that when x < 0, the expression in the if statement will evaluate to false regardless of
the truth value of a[x]!=0. Therefore, many languages will simply not evaluate the second
part of the expression—they will short circuit.

The same thing happens for statements like if (x<0 || x>a.length). When z < 0, the
expression is true regardless of the truth value of x>a.length. Again, many languages don’t
evaluate the second part of this expression if the first part is true. Of course, if the first part
is false, the second part is evaluated since the truth value now depends on the truth value of
the second part.

There are at least two benefits of this. First, it is more efficient since sometimes less code
needs to be executed. Second, it allows the checking of one condition before checking a second
condition that might cause a crash. You have probably used it in statement like the above to
make sure you don’t index outside the bounds of an array. Another use is to avoid attempting
to access methods or fields when a variable refers to null (e.g. if (a!=null && a.size()>0)).

But this has at least two consequences that can cause subtle problems if you aren’t careful.
First, although the AND and OR operators are commutative (e.g. pV q and gV p are equiv-
alent), that is not always the case for Boolean expressions in these languages. For instance,
the statement if (x>=0 && al[x]!=0) is not equivalent to if (a[x]!=0 && x>=0) since the
second one will cause a crash if x < 0. Second, if the second part of the expression is code
that you expect will always be executed, you may spend a long time tracking down the bug
that this creates.

*Evaluate 4.64. Rewrite the following segment of code so that it is as simple as possible
and logically equivalent.

if ('(list.isEmpty() && list.get(0)>=100) && !(list.get(0)<100))

{

X++;
} else
{

x--;

}

Propositional Equivalence 93

Solution I: The second and third statements mean the same thina Also,
I$ the second is true then we aot a value so we know the list is Nnot
empty, so the first statement is unnecessary. This leads to the followina
eQuivalent code:

if(list.get(0) >= 100) {x++;} else {x——;}

Evaluation

Solution 2: | used DeMoraan’s law to ortain:

if(11list.isEmpty() || list.get(0) < 100) {
X+
} else {
X==;

}

Evaluation

Solution 3: Let a Be list.isEmpty() and & Be list.get(0)>=100. But then
—-B =1list.get (0)<100. The oriainal expression is —(a AR A «(—B). But

—(a ANBYA=(—B) = —(aABYABR
(-aV-B)AB
(=a ABY V(=B AR)
(-aNBYVF

= -aAB

So my simplified code is

if('list.isEmpty() && list.get(0)>= 100) {
X++;
} else {
==

¥

Evaluation

94 Chapter 4

*Question 4.65. In the solutions to the previous problem we said that the final solution
was correct. But there might be a catch. Go back to the original code and the final solution
and look closer. Is the final solution really equivalent to the original? Explain why or why
not.

Evaluation

The previous question serves as a reinforcement of a point previously made. When dealing
with logical expressions in programs, we have to be careful about our notion of equivalence. This
is because of short-circuiting and the fact that expressions in programs, unlike logical statements,
can crash instead of being true or false.

*Exercise 4.66. Let p be “x > 07, ¢ be “y > 0,” and r be “Exactly one of = or y is greater
than 0.”

(a) Express r in terms of p and ¢ using @ (and possibly —).

Answer

(b) Express r in terms of p and g without using ®.

Answer

Table 4.4 contains some important identities involving —, <+, and &. Since these operators
are not always present in a programming language, identities that express them in terms of Vv, A,
and — are particularly important.

p&q= (Vg A-(pAq) perqg=@®—q N(q—Dp)
p®qg=@A=qQ)V(opAq)| |pqg=—p g

-(p®g =peq perg=@ANqV(=pA-q)
p—q=-qg——p ~(pe g =pe g
p—q=-pVyq —(pe g =pdyq

Table 4.4: Logical equivalences involving —, <+, and &
Here is the proof of one of these.

Example 4.67. Prove that p® q= (p A —q) V (-p A q).

Solution: It is straightforward to see that (p A —q) V (—p A q) is true if p is true
and q is false, or if p is false and ¢ is true, and false otherwise. Put another way,
it is true iff p and ¢ have different truth values. But this is the definition of p ® gq.
Thus, p@ q=(pA—q)V (-pAq).

The previous example demonstrates an important general principle. When proving identities
(or equations of any sort), sometimes it works best to start from the right hand side. Try to keep
this in mind in the future.

Propositional Equivalence 95

xEvaluate 4.68. Show that p <> ¢ and (p A q) V (=p A —q) are logically equivalent.

Proot |: p <> @is true when p and @ are Both true, and so is (PAQ)V(-PA-Q).
Therefore they are loaically equivalent.

Evaluation

Proot 2. They are Both true when p and @ are Both true or roth false.
Therefore they are loaically equivalent.

Evaluation

Proos 3: Each of these is true precisely when p and @ are Both true.

Evaluation

Proos 4: Each of these is true when p and @ have the same truth value
and false otherwise, so they are equivalent.

Evaluation

In the previous example, you should have noticed that just a subtle change in wording can be
the difference between a correct or incorrect proof. When writing proofs, remember to be very
precise in how you word things. You may know what you mean when you wrote something, but
a reader can only see what you actually wrote.

96 Chapter 4

4.3 Predicates and Quantifiers

Definition 4.69. A predicate or propositional function is a statement containing one
or more variables, whose truth or falsity depends on the value(s) assigned to the variable(s).

We have already seen predicates in previous examples. Let’s revisit one.

Example 4.70. In a previous example we saw that “x < 0” was a contingency, “x® < 0” was
a contradiction, and “z? > 0” was a tautology. Each of these is actually a predicate since
until we assign a value to z, they are not propositions.

Sometimes it is useful to write propositional functions using functional notation.

Example 4.71. Let P(z) be “x < 0”. Notice that until we assign some value to z, P(x) is
neither true nor false.

P(3) is the proposition “3 < 0,” which is false.

If we let Q(x) be “z? > 0,” then Q(3) is “3%2 > 0,” which is true.

Notice that both P(z) and “x < 0” are propositional functions. In other words, we don’t
have to use functional notation to represent a propositional function. Any statement that has a
variable in it is a propositional function, whether we label it or not.

xExercise 4.72. Which of the following are propositional functions?

() 2?2+22+1=0

(b) _ 3%42-34+1=0

(¢c) __ John Cusack was in movie M.

(d) _ x is an even integer if and only if = 2k for some integer k.

Definition 4.73. The symbol ¥ is the universal quantifier, and it is read as “for all”, “for
each”, “for every”, etc. For instance, Yx means “for all x”. When it precedes a statement,
it means that the statement is true for all values of x.

As the name suggests, the “all” refers to everything in the universe of discourse (or

domain of discourse, or simply domain), which is simply the set of objects to which the
current discussion relates.

Example 4.74. Let P(x)=“c < 0”. Then P(x) is a propositional function, and VaxP(x)
means “all values of x are negative.” If the domain is Z, VxP(z) is false. However, if the
domain is negative integers, Vo P(x) is true.

Predicates and Quantifiers 97

Hopefully you recall that N is the set of natural numbers ({0,1,2,...}) and Z is the set of
integers. We will use these in some of the following examples.

Example 4.75. Express each of the following English sentences using the universal quantifier.
Don’t worry about whether or not the statements are true. Assume the domain is real
numbers.

(a) The square of every number is non-negative.

(b) All numbers are positive.

Solution:

(a) Vx(x

2 > 0)
(b) Yz(x > 0)

xExercise 4.76. Express each of the following using the universal quantifier. Assume the
domain is Z.

(a) Two times any number is less than three times that number.

Answer

(b) n!is always less than n".

Answer

Example 4.77. The expression Vz(z? > 0) means “for all values of z, 2 is non-negative”.

But what constitutes all values? In other words, what is the domain? In this case the most
logical possibilities are the integers or real numbers since it seems to be stating something
about numbers (rather than people, for example). In most situations the context should make
it clear what the domain is.

Example 4.78. The expression Yz > 0,22 > 0 means “for all positive values of z, > >
0.” There are several other ways of expressing this idea, but this one is probably the most
convenient. One alternative would be to restrict the domain to positive numbers and write
it as Vo (2> > 0). But sometimes you don’t want to or can’t restrict the domain.

Another way to express it is Va(z > 0 — 23 > 0).

+xExercise 4.79. Use the universal quantifier to express the fact that the square of any
integer is not zero as long as the integer is not zero.

Answer

98 Chapter 4

Definition 4.80. The symbol 3 is the existential quantifier, and it is read as “there
exists”, “there is”, “for some”, etc. For instance, 3x means “For some x”. When it precedes
a statement, it means that the statement is true for at least one value of x in the universe.

Example 4.81. Prove that Jz(y/z = 2) is true when the domain is the integers.

Proof. Notice that when = = 4, \/z = /4 = 2, proving the statement. O

*Exercise 4.82. Express the sentence “Some integers are positive” using quantifiers. You
may assume the domain of the variable(s) is Z.

Answer

Sometimes you will see nested quantifiers. Let’s see a few examples.

Example 4.83. Use quantifiers to express the sentence “all positive numbers have a square
root,” where the domain is real numbers.

Solution: We can express this as V(z > 0)Jy(v/z = y).

xEvaluate 4.84. Express the sentence “Some integers are even” using quantifiers. You may
assume the domain of the variable(s) is the integers.

Solution |1 Ix(x is even).

Evaluation

Solution 2: Ix(x/2 € 7.

Evaluation

Solution 3: IxAyx = 24).

Evaluation

Example 4.85. Translate ¥V3d into English.

Solution: It means “for every upside-down A there exists a backwards E.”
This is a geeky math joke that might make sense if you paid attention in calculus
(assuming you ever took calculus, of course). If you don’t get it, don’t worry

Predicates and Quantifiers

about it. Move along. These aren’t the droids you're looking for.

99

+xExercise 4.86. Express the following statement using quantifiers: “Every integer can be
expressed as the sum of two squares.” Assume the domain for all three variables (did you
catch the hint?) is Z.

Answer

*F'ill in the details 4.87. Prove or disprove the statement from the previous example.

Proof: The statement is false. Let x = 3. We need to show that no choice

of will yield 4% + 2?2 = 3. We can restrict ¥ and z to

since the square of a negative integer is the same
as the square of its absolute value. We will do a proof by cases, considering the
possible values of y.

y # 0 since 3 is not

If y =1, we need , which is impossible.

If y > 2, y? > 4, so we need ,

Since we have and none of them
work, the statement is false. O

Example 4.88. Prove or disprove that the following statement is true
VneNImeN (n>3—>(n—|—7)2>49—|-m)

Solution: First, you need to convince yourself that if we can always find some
value of m based on a given value of n > 3 such that (n + 7)2 > 49 + m, the
statement is true. Notice that (n + 7)% > 49 + m iff n? + 14n > m. So if we take
m to be any number smaller than n? + 14n, for instance m = n? + 14n — 1, then
the statement is true.

Example 4.89. Prove or disprove that the following statement is equivalent to the statement
from the Example 4.88.

ImeNVREN (n>3= (n+7)%>49+m)

Solution: This is almost the same as the expression from the previous example,
but the Vn € N and 3m € N have been reversed. Does that change the meaning?

100 Chapter 4

Let’s find out.

The expression in the previous example is saying something like “For any natural
number n, there is some natural number m...” In English, the statement in this
example is saying something like “There exists a natural number m such that
for any natural number n...” Are these different? Indeed. The one from the
previous example lets us pick a value of m based on the value of n. The one from
this example requires that we pick a value of m that will work for all values of n.
Can you see how that is saying something different?

Example 4.90. Prove or disprove that the following statement is true.
Im e NVn eN (n>3—>(n+7)2>49+m)

Solution: This statement is true. We need there to be some value of m such
that for any n > 3, n? + 14n > m (we worked this out in Example 4.88). Can we
find an m such that m < n?+ 14n for all values of n > 3? Sure. It should be clear
that m = 32 + 14 - 3 < n? + 14n for all values of n > 3.

xExercise 4.91. Find a predicate P(x,y) such that Vz3yP(z,y) and JyVzP(x,y) have
different true values. Justify your answer. (Hint: Think simple. Will something like “x = y”
or “r < y” work if we choose the appropriate domain?)

Answer:

Example 4.92. Let P(z)=“c < 0”. Then —VzP(x) means “it is not the case that all values
of x are negative.” Put more simply, it means “some value of = is not negative”, which we
can write as Jz—P(z).

What we saw in the last example actually holds for any propositional function.

Predicates and Quantifiers 101

Theorem 4.93 (DeMorgan’s Laws for quantifiers). If P(x) is a propositional function, then
Ve P(x) = Jz—-P(x), and
—3JxP(z) = Vz—P(z).

Proof: We will prove the first statement. The proof of the other is very similar.
Notice that =VzP(x) is true if and only if VxP(x) is false. YxP(x) is false if and
only if there is at least one x for which P(x) is false. This is true if and only if
—P(x) is true for some x. But this is exactly the same thing as Jx—P(x), proving
the result. O

Example 4.94. Negate the following expression, but simplify it so it does not contain the —
symbol.
VYn3am(2m = n)

Solution:

—VYnIm(2m =n) = In—-Im(2m =n)
= InVYm—(2m =n)
= dnVm(2m # n)

xExercise 4.95. Answer the following questions about the expression from Example 4.94,
assuming the domain is Z.

(a) Write the expression in English. You can start with a direct translation, but then smooth
it out as much as possible.

Answer

(b) Write the negation of the expression in English. State it as simply as possible.

Answer

(c) What is the truth value of the expression? Prove it.

Answer

102 Chapter 4

Let’s see how quantifiers connect to algorithms. If you want to determine whether or not
something (e.g. P(z)) is true for all values in a domain (e.g., you want to determine the truth
value of VxP(x)), one method is to simply loop through all of the values and test whether or not
P(zx) is true. If it is false for any value, you know the answer is false. If you test them all and
none of them were false, you know it is true.

Example 4.96. Here is how you might determine if YxP(z) is true or false for the domain
{0,1,2,...,99}:
boolean isTrueForAll() {
for(int i=0;i<100;i++) {
ifC 'P(i)) Ao
return false;
3
}

return true;

}
Notice the negation in the code—this can trip you up if you aren’t careful.

Example 4.97. Let P(z) and Q(z) be predicates and the domain be {0, 1,2,...,99}. What
is isTrueForA112() determining?

boolean isTrueForAll2() {
for(int i=0;i<100;i++) {
if(C 'P(i) && !'Q(i))

return false;

}

return true;

Solution: Notice that if both P(i) and Q(i) are false for the same value of 4, it
returns false, and otherwise it returns true. Put another way, it returns true if for
every value of ¢, either P(i) or Q(7) is true. Thus, isTrueForAl12 is determining
the truth value of Vi(P(i) V Q(1)).

+xExercise 4.98. Rewrite the expression (!'P(i) && 'Q(i)) from the previous example
so that it uses only one negation.
Answer:

Predicates and Quantifiers 103

xExercise 4.99. Let P(z) and Q(x) be predicates and the domain be {0,1,2,...,99}. What
is isTrueForA113() determining?

boolean isTrueForAl113() {

boolean result = true;
for(int i=0;i<100;i++) {
if('P(1)) Ao
result = false;
}
}

if (result==true) {
return true;

}
for(int i=0;i<100;i++) {
if(1QCi)) A
return false;
}
}

return true;

Answer

Example 4.100. Now we are ready for the million dollar question:® Are isTrueForAll2
and isTrueForAll3 determining the same thing?

Solution: At first glance, it looks like they might be. But we need to dig
deeper, and we need to prove one way or the other. To prove it, we would need to
show that these expressions evaluate to the same truth value, regardless of what
P and @ are. To disprove it, we just need to find a P and a @ for which these
expressions have different truth values. But let’s first talk it through to see if we
can figure out which answer seems to be correct.

Vi(P(i) V Q(7)) is saying that for every value of 4, either P(i) or Q(i) has to be
true. ViP(i) V ViQ(7) is saying that either P(i) has to be true for every i, or that
Q(i) has to be true for every i. These sound similar, but not exactly the same,
so we cannot be sure yet. In particular, we cannot jump to the conclusion that
they are not equivalent because we described each with different words. There are
many ways of wording the same concept.

At this point we either need to try to tweak the wording so that we can see that
they are really saying the same thing, or we need to try to convince ourselves they
aren’t. Let’s try the latter.

What if P(7) is always true and Q(i) is always false? Then both statements are
true. But that doesn’t prove that they are always both true, so this doesn’t help.

104 Chapter 4

Let’s try something else. What if we can find a P(i) and a Q(¢) such that for any
given value of i, we can ensure that either P(i) or Q(4) is true, but also that there
is some value j such that P(j) is false and some value k # j such that Q(k) is
false? Then Vi(P(i)V Q(i)) would be true, but ViP(i) V ViQ() false, so this would
work. But in order to be certain, we have to know that such a P and Q exist.?

What if we let P(i) be “i is even”, Q(i) be “i is odd”, and the universe be Z.
Then ViP(i) = ViQ(:) = F, so ViP(i) V ViQ(i) = F, but Vi(P(i) V Q7)) = T.
Now we have all of the pieces. Let’s put this all together in the form of a proof.

Proof: (that Vi(P(i) v Q(3)) # ViP(i) V ViQ(7))

Let P(i) be “i is even”, Q(i) be “i is odd”, and the universe be Z.
Then Vi(P(i) V Q(i)) is true since every integer is either even or odd.
On the other hand, ViP(i) is false since there are integers that are
not even and ViQ)(i) is false since there are integers that are not odd.
Thus, ViP(i) V ViQ(i) is false. Since they have different truth values,
Vi(P(i) vV Qi) # ViP(i) v ViQ(7) O

“There is no million dollars for answering this question. It’s just an expression.

*Consider this: If I can find an even number that is prime but is not 2, then there would be at least 2 even
primes. That’s great. Unfortunately, I can’t find such a number.

Normal Forms 105

4.4 Normal Forms

Earlier we saw identities that express logical operators in terms of V, A, and —. It turns out that
even if there isn’t an identity that does it, there is a straightforward technique to convert any
logical expression into one only using V, A, and —. That is the topic of this section.

Definition 4.101. A literal is a boolean variable or its negation.

Definition 4.102. A conjunctive clause is a conjunction of one or more literals.

Example 4.103. Let p, g, and r be boolean variables. Then p, —p, g, —¢q, 7, and —r are all
literals. pAgAr, =pAr, and r A =g A p are all conjunctive clauses.

Definition 4.104. A logical expression is in disjunctive normal form (DNF) (or sum-
of-products expansion) if it is expressed as a disjunction of conjunctive clauses.

Example 4.105. Let p, ¢, and r be boolean variables. Then the following are in disjunctive
normal form:

e (pAgAT)V (=pAT)

e pV(gA-p)V(rA-p)

e rANgADp

These are not in disjunctive normal form.
*p—q

e pA(gVr)

* pV(gA=p)A(rV—q)

Given a truth table for an expression we can create its disjunctive normal form as follows.

Procedure 4.106. This will convert a boolean expression to disjunctive normal form.
1. Create the truth table for the expression.
2. Identify the rows having output T.

3. For each such row, create a conjunctive clause that includes all of the variables which
are true on that row and the negation of all of the variables that are false.

4. Combine all of the conjunctive clauses by disjunctions.

106 Chapter 4

Example 4.107. Express p @ ¢ in disjunctive normal form.

Solution: The truth table for p @ ¢ is given to the right.

The second row yields conjunctive clause p A —q, and P4 |p®q
. . . . T T F
the third row yields conjunctive clause —p A q. The T F T
disjunction of these is (pA—q)V (—pAgq). Thus, pdqg = 7o T
(PA=g)V(=pAg). 7l F

The previous example is essentially just another proof of the identity that was proven in
Example 4.67.

xExercise 4.108. Express p <> ¢ in disjunctive normal form.

P4

NN
BB B B IS

Example 4.109. Express Z in disjunctive normal form.

S e B B> B B M B I
SRS N B B B> B B
e B B B e B 1
NN TN NN

Solution: Z=(PAgAT)V(PAgGA-T)V(=pAgA—r)V (=pA-gA-—r).

The solution from the previous example can be simplified to Z = (pAq)V (=pA—r). Although
this can be done by applying the logical equivalences we learned about earlier, there are more
sophisticated techniques that can be used to simplify expressions that are in disjunctive normal
form. This is beyond our scope, but you will likely learn more about this when you take a
computer organization class and discuss circuit minimization. The important point I want to
make here is that computing the disjunctive normal form of an expression using the technique
we describe will not always produce the most simple form of the expression. In fact, much of the
time it won’t be.

Normal Forms 107

xExercise 4.110. Express Y in disjunctive normal form.

ST > B Bl B T
MmN YT
i e B B e e B T
NNSNNYT T

There is another important form that is very similar to disjunctive normal form.

Definition 4.111. A disjunctive clause is a disjunction of one or more literals. A logical
expression is in conjunctive normal form (CNF) (or product-of-sums expansion) if
it is expressed as a conjunction of disjunctive clauses.

There are several methods for converting to conjunctive normal form. They generally involve
using double negation, distributive, and De Morgan’s laws either based on the truth table or
based on the disjunctive normal form. However, we won’t discuss these techniques here. The
main reason to introduce you to these forms is that they each have connections to important
areas of computer science. They are used in circuit design and minimization, artificial intelligence
algorithms, automated theorem proving, and the study of algorithm complexity.

108 Chapter 4

4.5 Bitwise Operations

In this section we will consider bitwise operations. But first we need to review a few concepts you
are probably already familiar with.

In your programming class you learned that a Boolean variable is one that is either true or
false. You may or may not have learned about the connection between Boolean variables and
bits. Recall that a bit can have the value 0 or 1. A bit can be used to represent a Boolean variable
by assigning 0 to false and 1 to true. Table 4.5 shows the truth tables for the various Boolean
operators that are available in many languages. Notice that they are identical to the operators
we discussed earlier except that we have replaced T'/F with 0/1 and have used the notation from
Java/C/C++ instead of the mathematical notation.

AND | OR | XOR IFF

p q| (p&&q) | (pllg) |P'=q | (p==1¢q)
11 1 1 0 1
10 0 1 1 0
01 0 1 1 0
0 0 0 0 0 1

Table 4.5: Truth tables for the Boolean operators

We don’t usually think about !'= being XOR and == being IFF (or biconditional). We usually
think of them in their more natural interpretation: ‘not equal’ and ‘equal’.

Note: A note of caution: Although Java is a lot like C and C++, how it deals with logical
expressions is very different. Java has an explicit boolean type and you can only use the
logical operators on boolean values. Further, conditional statements in Java require boolean
values. In C and C++, the int type is used as a boolean value, where 0 is false, and anything
else is true. This is very convenient, but can also cause some confusion.

Example 4.112. In C/C++, (5&&6), (5]10), (4!=5) are all true. In Java the first two
statements are illegal.

Now it’s time to extend the concept of Boolean operators to integer data types (including int,
short, long, byte, etc.).

Definition 4.113. A bitwise operation is a boolean operation that operates on the indi-
vidual bits of its argument(s).

Definition 4.114. The compliment or bitwise NOT, usually denoted by ~, just flips each
bit.

Bitwise Operations 109

Example 4.115. Assume 10011001 is in binary. Then “10011001=01100110. If this were a
32-bit integer, the answer would be 11111111111111111111111101100110 since the leading
24 bits (which we assume to be 0) would be flipped.

Note: For simplicity, the rest of the examples will assume numbers are represented with 8
bits. The concept is exactly the same regardless of how many bits are used for a particular
data type.

*F'ill in the details 4.116. 255 is 11111111 in binary. “11111111=00000000, which is 0 in
decimal. Therefore, ~255=0.

Similarly, we can see that “240=15 since 240 is in binary, and

= , which is in decimal.

xExercise 4.117. ~11000110=

Definition 4.118. The following are the two-operator bitwise operators.

e The bitwise AND, usually denoted by &, applies N to the corresponding bits of each
argument.

e The bitwise OR, usually denoted by |, applies V to the corresponding bits of each
argument.

e The bitwise XOR, usually denoted by ~, applies @& to the corresponding bits of each
argument.

We will present examples in table form rather than ‘code form’ since it is much easier to see
what is going on when the bits are lined up.

Example 4.119. 01011101 01011101 01011101
& 11010100 11010100 ~ 11010100
01010100 11011101 10001001

Note: [t is important to remember that & and && are not the same thing! The same holds for
| and ||. It is equally important to remember that ~ does not mean exponentiation in most
programming languages.

110 Chapter 4

xExercise 4.120. 11110000 11110000 11110000
& 11001100 11001100 = 11001100

Note: A final reminder: It is important to understand the difference between the Boolean
operators and the bitwise operators.

Problems 111

4.6 Problems

Problem 4.1. Draw a truth table to represent the following.

(a) =pVgq

(b) p—aq)V-p

(c) (pA—q)Vr

d) (pva)A=(pVa)Vr
(e) (pv-r)ng

() o) AlgVr)

Problem 4.2. Give 2 different proofs that [(p V q) A —p] — ¢ is a tautology.
Problem 4.3. Prove —(p <+ q) = p ® ¢ without using truth tables.

Problem 4.4. Use Procedure 4.106 to find the disjunctive normal form for each of the expressions
from Problem 4.1.

Problem 4.5. Express pV ¢V r using only A and — .

Problem 4.6. The NAND of p and ¢, denoted by plg, is the proposition “not both p and ¢”.
The NAND of p and q is false when p and ¢ are both true and true otherwise.

(a) Draw a truth table for NAND
(b) Express p|q using V, A, and/or — (you may not need all of them).

(c) Express p A ¢ using only |. Your answer should be as simple as possible. Give a truth table
that shows they are the same.

(d) Express —pV ¢ using only |. Your answer should be as simple as possible. Give a truth table
that shows they are the same.

Problem 4.7. The NOR of p and ¢, denoted by p | ¢, is the proposition “neither p nor ¢”. The
NOR of p and ¢ is true when p and g are both false and false otherwise.

(a) Draw a truth table for |
(b) Express p | ¢ using V, A, and/or — (you may not need all of them).

(c) Express p A ¢ using only |. Your answer should be as simple as possible. Give a truth table
that shows they are the same.

(d) Express —pV q using only |. Your answer should be as simple as possible. Give a truth table
that shows they are the same.

Problem 4.8. A set of logical operators is functionally complete if any possible operator can
be implemented using only operators from that set. It turns out that {—,A} is functionally
complete. So is {—,V}. To show that a set if functionally complete, all one needs to do is show
how to implement all of the operators from another functionally complete set. Given this,

112 Chapter 4

(a) Show that {|} is functionally complete. (Hint: Since {—, A} is functionally complete, one way
is to show how to implement both A and — using just |.)

(b) Show that {]} is functionally complete.

Problem 4.9. Write each of the following expressions so that negations are only applied to
propositional functions (and not quantifiers or connectives).

)
) =(VzIyP(z,y) A Jz—VyP(z,y))
) Vz(3yP(z,y) vV VyQ(z,y))
) ~Vax—IJy(=VzP(x,z) = 32Q(z,y, 2))
) —Jz(=Vy[3z(P(y,z,2) A Py, z,x2) A P(z,y,2))] V32Q(z, 2))

Problem 4.10. Let P(z,y)="“z likes y”, where the universe of discourse for x and y is the set of
all people. Translate each of the following into English, smoothing them out as much as possible.
Then give the truth value of each.

(a) VaVyP(z,y)

(b) VaIyP(z,y)

(c) VyJaP(z,y)

(d) VaP(z, Raymond)

(e) ~VaVyP(z,y)

(f) Va-VyP(z,y)

(8) VzVy—-P(z,y)
2

Problem 4.11. Let P(z,y, 2)="“z% + y?* = 22", where the universe of discourse for all variables
is the set of integers. What are the truth values of each of the following?

Problems 113

Problem 4.12. Write each of the following sentences using quantifiers and propositional func-

tions. Define propositional functions as necessary (e.g. Let D(x) be the proposition ‘@ plays disc
golf.”)

(a) All disc golfers play ultimate Frisbee.

(b) If all students in my class do their homework, then some of the students will pass.

(c) If none of the students in my class study, then all of the students in my class will fail.
(d) Not everybody knows how to throw a Frisbee 300 feet.
(e) Some people like ice cream, and some people like cake, but everybody needs to drink water.
(f

)

)

) Everybody loves somebody.
(g) Everybody is loved by somebody.
(h) Not everybody is loved by everybody.
(i) Nobody is loved by everybody.

)

(j) You can’t please all of the people all of the time, but you can please some of the people some
of the time.

(k) If only somebody would give me some money, I would buy a new house.
(1) Nobody loves me, everybody hates me, I'm going to eat some worms.

(m) Every rose has its thorn, and every night has its dawn.

(n) No one ever is to blame.

Problem 4.13. Express the following phrase using quantifiers. “There is some constant ¢ such
that f(x) is no greater than c- g(x) for all > z(for some constant z¢.” Your solution should
contain no English words.

Problem 4.14. Consider the following expression:
Ve>036>0Vz(0 < |z — | < d — |f(z) — L| < e).
(a) Express it in English. Be as concise as possible.
(b) (Difficult if you have not had calculus.) This is the definition of something. What is it?

Problem 4.15. You are helping a friend debug the code below. He tells you “The code in the
if statement never executes. I have tried it for x=2, x=4, and even x=-1, and it never gets to the
code inside the if statement.”

if ((x%2==0 && x<0) || !'(x%2==0 || x<0)) {
// Do something.
}

(a) Is he correct that the code inside the if statement does not execute for his chosen values?
Justify your answer.

114 Chapter 4

(b) Under what conditions, if any, will the code in the if statement execute? Be specific and
complete.

Problem 4.16. Simplify the following code as much as possible:

if (x<=0 && x>0) A
doSomething () ;

} else {
doAnotherThing () ;

}

Problem 4.17. Consider the following code.

boolean notBothZero(int x, int y) {
if (1 (x==0 && y==0)) {
return true;
} else {
return false;
}
}
boolean unknownl(int x, int y) {
if(x!=0 && y'=0) {
return true;
} else {
return false;

}
}
boolean unknown2(int x, int y) {
if(xt=0 || y!=0) {
return true;
} else {
return false;
}
}

(a) Is unknownl equivalent to notBothZero? Prove or disprove it.
(b) Is unknown2 equivalent to notBothZero? Prove or disprove it.

(c) Are unknownl and unknown2 equivalent to each other? Prove or disprove it.

Problem 4.18. Simplify the following code as much as possible. (It can be simplified into a
single if statement that is about as complex as the original outer if statement).

if (('x.size()<=0 && x.get(0)!=11) || x.size(D>0) {
if (!'(x.get(0)==11 && (x.size()>13 || x.size()<13))
&% (x.size()>0 || x.size()==13)) A

// Do a few things.

Problems 115

Problem 4.19. The following method returns true if and only if none of the entries of the array
are 0:

boolean noZeroElements(int[] a, int n) {
for(int i=0;i<n;i++) {
if(ali] == 0)
return false;
}
return true;
}
The two methods below implement this idea for two arrays. Assume listl and list2 have
the same size for both of these methods.

boolean unknownl(int[] 1listl, int[] 1list2, int n) {
for(int i=0;i<n;i++) {
if(list1[il==0 && 1list2[il==0)
return false;
}
return true;

}

boolean unknown2(int[] 1listl, int[] 1list2, int n) {
if(noZeroElements(listl, n)) {
return true;
} else if(noZeroElements(list2, n) {
return true;
} else {
return false;
}
}

(a) What is unknown1 determining? (Give answer in terms of 1istl and 1list2 and the appro-
priate quantifier(s).)

(b) What is unknown2 determining? (Give answer in terms of 1listl and 1list2 and the appro-
priate quantifier(s).)

(¢) Prove or disprove that unknownl and unknown2 are determining the same thing.

116 Chapter 4

Chapter 5

Sets, Functions, and Relations

5.1 Sets

Definition 5.1. A set is an unordered collection of objects. These objects are called the
elements of the set. If a belongs to the set A, then we write a € A, read “a is an element
of A.” If a does not belong to the set A, we write a € A, read “a is not an element of A.”
Generally speaking, repeated elements in a set are ignored.

Definition 5.2. The number of elements in a set A, also known as the the cardinality of

A, will be denoted by card (A) or |A|. If the set A has infinitely many elements, we write
|A| = oo.

Example 5.3. Let D = {0,1,2,3,4,5,6,7,8,9} be the set of the ten decimal digits. Then
4 € D but 11 ¢ D. Also, |D| = 10.

Notice that the elements in a set are listed between curly braces. You should do the same
when you specify the elements of a set.

xExercise 5.4. What is the set of prime numbers less than 107

Answer

Example 5.5. The sets {1,2,3}, {3,2,1}, and {1,1,1,2,2,3} actually represent the same
set since repeated values are ignored and the order elements are listed does not matter. The
cardinality of each of these sets is 3.

Definition 5.6. We say two sets are equal if they contain the same elements. That is
Ve(x € A+ x € B). If A and B are equal sets, we write A = B.

117

118 Chapter 5

Note: We will normally denote sets by capital letters, say A, B,S,N, etc. Elements will be
denoted by lowercase letters, say a,b,w,r, etc.

~Exercise 5.7. Let A = {1,2,3,4,5,6}, B=1{1,2,3,4,5,4,3,2,1}, and C = {6, 3,4, 5,1, 3,2}.
Then |A| = , |B| = ,and |C| =

Which of A, B, and C represent the same sets?

Definition 5.8. The following notation is pretty standard, and we will follow it in this book.

N=1{0,1,2,3,...} the set of natural numbers.
Z={..—2,—-1,0,1,2,...} the set of integers.

7zt =1{1,2,3,...} the set of positive integers.
Z-={-1,-2,-3,...} the set of negative integers.
Q the rational numbers.

R the real numbers.

C the complex numbers.
o=} the empty set or null set.

Note: There is no universal agreement of the definition of N. Although here it is defined as
{0,1,2,3,...}, it is sometimes defined as N = Z*. The only difference is whether or not 0 is
included. I prefer the definition given here because then we have a notation for the positive
integers () as well as the non-negative integers (N).

Example 5.9. Notice that [N| = |Z| = |R| = co. But this may be a bit misleading. Do all
of these sets have the same number of elements? Believe it or not, it turns out that N and Z
do, but that R has many more elements than both of these. If it seems strange to talk about
whether or not two infinite sets have the same number of elements, don’t worry too much
about it. We probably won’t bring it up again.

xExercise 5.10. (a) |C| = ,(b) |ZT| = , (¢) 9] =

Example 5.11. Let S be the set of the squares of integers. We can express this as S =
{n%n € Z} or S = {n? : n € Z}. We call this set builder notation. We read the : or | as “such
that.” Thus, S is the set containing “numbers of the form n? such that n is an integer.”

Sets 119

Example 5.12. Use set builder notation to express C, the set of complex numbers.

Solution: C={a+bi:a,becR}.

*Exercise 5.13. Use set builder notation to express the set of even integers.

Answer

xExercise 5.14. Use set builder notation to express QQ, the set of all rational numbers.

Answer

Definition 5.15. If every element in A is also in B, we say that A is a subset of B and
we write this as A C B. If A C B and there is some x € B such that x ¢ A, then we say
A is a proper subset of B, denoting it by A C B.

If there is some x € A such that x & B, then A is not a subset of B, which we write as
A< B.

Note: Some authors use C to mean subset without necessarily implying it is a proper subset.
Sometimes you will need to consider the context in order to interpret it correctly.

Example 5.16. Let S = {1,2,...,20}, that is, the set of integers between 1 and 20, inclusive.
Let E = {2,4,6,...,20}, the set of all even integers between 2 and 20, inclusive. Notice that
ECS. Let P={2,3,5,7,11,13,17,19}, the set of primes less than 20. Then P C S.

*xExercise 5.17. Let S = {n?n € Z} and A = {1,4,9,16}. Answer each of the following,
including a brief justification.

(a) s AC S?

(b) Is A C S?

(c) Is S C 87

(d) Is S c S?

(e) Is S C A?

120 Chapter 5

xExercise 5.18. Let A be the set of integers divisible by 6, B be the set of integers divisible
by 2, and C be the set of integers divisible by 3. Answer each of the following, giving a brief
justification.

(a) Is AC B?

(b) Is AC C?

(c) Is BC A?

(d) Is BC C?

(e) IsC C A?

(f) Is C C B?

Example 5.19. The set
S = {Roxan, Jacquelin, Sean, Fatimah, Wakeelah, Ashley, Ruben, Leslie, Madeline }

is the set of students in a particular course. This set can be split into two subsets: the set
F = {Roxan, Jacquelin, Fatimah, Wakeelah, Ashley, Madeline } of females in the class, and the
set M = {Sean, Ruben, Leslie} of males in the class. Thus we have F' C S and M C S. Notice
that it is not true that ' C M or that M C F.

Example 5.20. Find all the subsets of {a,b, c}.
Solution: They are @, {a}, {b},{c}, {a,b},{d,c},{a,c}, and {a,b,c}.

Notice that there are 8 subsets. Also notice that 8 = 23. As we will see shortly, that is not a
coincidence.

Notice that we wrote @ and not {@} in the previous example. It turns out that & # {&}. &
is the empty set—that is, the set that has no elements. {@} is the set containing the empty set.
Thus, {@} is a set containing the single element &. You can use either & or {} to denote the
empty set, but not {@}.

Sets 121

xExercise 5.21. Find all the subsets of {a,b,c,d}.

Definition 5.22. The power set of a set is the set of all subsets of a set. The power set of
a set A is denoted by P(A).

Example 5.23. If A = {a,b,c}, example 5.20 implies that P(A) = {&, {a}, {b},{c},{a, b},
{b,c},{a,c},{a,b,c}}. Notice that the solution is a set, the elements of which are also sets.

An incorrect answer would be {9, a,b,c,{a,b},{b,c},{a,c},{a,b,c}}. This is incorrect
because a is not the same thing as {a} (the set containing a). {a} € P(A), but a ¢ P(A).
This is a subtle but important distinction.

xExercise 5.24. Find P({a,b,c,d}).

We will prove the following theorem in the next section after we have developed the appropriate

notation to do so.

122 Chapter 5

Theorem 5.25. Let A be a set with n elements. Then |P(A)| = 2".

*xExercise 5.26. Let A be a set with 4 elements.

(a) |P(A)] =

(b) [P(P(A))| =

(e) [P(P(P(A)))] =

*Exercise 5.27. If one element is added to a finite set A, how much larger is the power
set of A after the element is added (relative to the size of the power set before it is added)?
Explain your answer.

Answer

Set Operations 123

5.2 Set Operations

We can obtain new sets by performing operations on other sets. In this section we discuss the
common set operations. Venn diagrams are often used as a pictorial representation of the rela-
tionships between sets. We provide Venn diagrams to help visualize the set operations. In our
Venn diagrams, the region(s) in the darker color represent the elements of the set of interest.

Definition 5.28.

The union of two sets A and B is the set containing
elements from either A or B. More formally,

AUB
AUB={z:z€ Aor z € B}.

Notice that in this case the or is an inclusive or. That
18, x can be in A, or it can be in B, or it can be in both.

Example 5.29. Let A = {1,2,3,4,5,6}, and B = {1,3,5,7}. Then AUB = {1,2,3,4,5,6,7}.

xExercise 5.30. Let A be the set of even integers and B be the set of odd integers. Then

AU B=

Definition 5.31.

The intersection of two sets A and B is the set contain-
ing elements that are in both A and B. More formally, ANB

ANB={z:2€ A and x € B}.

Example 5.32. Let A ={1,2,3,4,5,6}, and B = {1,3,5,7,9}. Then AN B = {1,3,5}.

*Exercise 5.33. Let A be the set of even integers and B be the set of odd integers. Then

ANB=

124 Chapter 5

Definition 5.34.

The difference (or set-difference) of sets A and B
is the set containing elements from A that are not in B.
More formally,

A\ B
A\B={z:z€ A and x ¢ B}.

The set difference of A and B is sometimes denoted by
A— B.

Example 5.35. Let A =1{1,2,3,4,5,6}, and B ={1,3,5,7,9}. Then A\ B = {2,4,6} and
B\ A={7,9}.

xExercise 5.36. Let A be the set of even integers and B be the set of odd integers. Then

A\ B= and B\ A=

We can now prove Theorem 5.25.

Example 5.37. Let A be a set with n elements. Then |P(A)| = 2".

Proof: We use induction® and the idea from the solution to Exercise 5.21.
Clearly if |A] = 1, A has 2! = 2 subsets: @ and A itself.

Assume every set with n — 1 elements has 2”1 subsets. Let A be a set with n
elements. Choose some x € A. Every subset of A either contains x or it doesn’t.
Those that do not contain x are subsets of A\ {z}. Since A\ {z} hasn —1
elements, the induction hypothesis implies that it has 2"~! subsets. Every subset
that does contain x corresponds to one of the subsets of A\ {z} with the element
x added. That is, for each subset S C A\ {z}, SU{x} is a subset of A containing
x. Clearly there are 2"~ such new subsets. Since this accounts for all subsets of
A, A has 2771 4 27~1 = 2" subsets. O

“We will cover induction more fully and formally later. But since this use of induction is pretty intuitive,
especially in light of Example 5.21, it serves as a useful foreshadowing of things to come.

Definition 5.38.
Let A C U. The complement of A with respect to U is
Just the set difference U \ A. More formally,

N

A={zeU:zg A} =U\ A.

In words, A is the set of everything not in A. Other
common notations for set complement include A and A’.

Set Operations 125

Note: Often the set U, which is called the universe or universal set, is implied and we
just use A to denote the complement. We usually follow this convention here. Further, when
talking about several sets, we will usually assume they have the same universal set.

Example 5.39. Let U = {0,1,2,3,4,5,6,7,8,9} be the universal set of decimal digits and
A = {0,2,4,6,8} C U be the set of even digits. Then A = {1,3,5,7,9} is the set of odd
digits.

*Exercise 5.40. Let A be the set of even integers and B be the set of odd integers, and let the

universal set be U = Z. Then A= and B=

It should not be too difficult to convince yourself that the following theorem is true.
Theorem 5.41. Let A be a subset of some universal set U. Then

ANA = o, and
AUA = U.

The various intersecting regions for two and three sets can be seen in Figures 5.1 and 5.2.

Fi 5.1: Venn di for t ts.
gure enn clagram for tWo Sets Figure 5.2: Venn diagram for three sets.

Definition 5.42. Two sets A and B are disjoint or mutually exclusive if AN B = &.
That is, they have no elements in common.

Example 5.43. Let A be the set of prime numbers, B be the set of perfect squares, and C
be the set of even numbers. Then A and B are clearly disjoint since if a number is a perfect
square, it cannot possibly be prime (although 0 and 1 are not prime for different reasons than
the rest of the elements of B). On the other hand, A and C are not disjoint since they both
contain 2, and B and C are not disjoint because they both contain 4.

126 Chapter 5

+xExercise 5.44. Let A be the set of even integers and B be the set of odd integers. Are A
and B disjoint? Explain.

Answer

Set identities can be used to show that two sets are the same. Table 5.1 gives some of the
most common set identities. In these identities, U is the universal set. We won’t provide proofs
for most of these, but we will present a few examples and a technique that will allow you to verify
that they are correct.

‘ Name ‘ Identity ‘
commutativity AUB=BUA
ANB=BnNA
associativity Au(BUC)=(AUB)U
AN(BNC)=(AnB)N
distributive AN(BUC)=(ANnB)U (A ne)
AU(BNC)=(AUuB)N(AUQ)
identity Aug=A
ANnU=A
complement AUA=U
ANA=9o
domination AuU =U
AN =9
idempotent AUA=A
ANA=A
complementation @ =A
DeMorgan's AUB=ANB
ANB= ZUE
absorption AU(ANB) =
AN(AUB) = A

Table 5.1: Set Identities

These identities may look somewhat familiar. They are essentially the same as the logical
equivalences presented in Table 4.3. In fact, if we equate T to U, F to @, V to U, A to N, and — to
-, the laws are identical. This is because logic operations and sets are both what we call Boolean
algebras. We won’t go into detail about this connection, but in case you run into the concept in
the future, you heard it here first!

The following theorem can be used to prove set identities.

Theorem 5.45. Two sets A and B are equal if and only if AC B and B C A.

Let’s see this theorem in action.

Set Operations 127

Example 5.46. Prove that A\ B = AN B.

Proof: Let z € A\ B. Then by definition of difference, z € A and = ¢ B.
But if 2 € B, then 2 € B by definition of complement. Since x € A and = € B,
x € AN B by definition of intersection. Since whenever A\ B, z € AN B, we have
shown that A\ B C AN B.

Now assume that 2 € ANB. Then x € A and z € B by definition of intersection.
By definition of complement, x ¢ B. But if z € A and z ¢ B, then z € A\ B
by definition of difference. Since whenever z € AN B, z € A\ B, we have that

ANBC A\ B.
Since we have shown that A\ B C ANB and that ANB C A\ B, by Theorem 5.45
A\B=ANB. O

That was the long, drawn-out version of the proof. The purpose of all of the detail is to
make the technique clear. Here is a proof without any extraneous details.

Proof: We will prove this by showing set containment both ways.

Let z € A\ B. Then z € A and z ¢ B. This implies that z € B. Therefore
r € ANB. Since A\ B impliesx € ANB, A\ BC AN B.

Now assume that 2 € AN B. Then x € A and x € B. Then z € B, and therefore
z € A\ B. Since z € AN B implies z € A\ B, ANB C A\ B. O

The proofs in the previous example are called set containment proofs since we showed set
containment both ways. The technique is pretty straightforward: Theorem 5.45 tells us that if
X CY and Y C X, then X =Y. Thus, to prove X =Y, we just need to show that X C Y and
Y C X. But how do we show that one set is a subset of another? This is easy: To show that
X CY, we show that every element from X is also in Y. In other words, we assume that z € X
and use definitions and logic to show that z € Y. Assuming we do not use any special properties
about x other than the fact that x € X, then z is an arbitrary element from X, so this shows
that X C Y. Showing that Y C X uses exactly the same technique.

Note: Be careful. To prove that X =Y, you generally need to prove two things: X CY and
Y C X. Do not forget to do both. On the other hand, if you are asked to prove that X C Y,
you do not need to (and should not) show that Y C X.

Let’s see another example of this type of proof. This proof will provide a few more details
than necessary in order to further explain the technique.

Theorem 5.47. Prove the first De Morgan’s Laws: Given sets A and B, (AU B) = AN B.

Proof: Letz € (AUB). Then x ¢ AU B (by definition of complement). Thus
x & A and x ¢ B (by definition of union), which is the same thing as x € A
and x € B (by definition of complement). But then we have that x € AN B (by
definition of intersection). Notice that x was an arbitrary element from (AU B),
and we showed that x € AN B. Therefore, every element in (AU B) is also in

AN B. In other words, (AUB) C AN B.

128 Chapter 5

Now, let x € ANB. Then x € A and v € B. This means that v ¢ A and x ¢ B
which is the same as © ¢ AU B. But this last statement asserts that © € (AU B).
Hence ANB C (AU B).

Since we have shown that the two sets contain each other, they are equal by The-
orem 5.49.]

You have already seen a few correct ways to prove that A\ B = AN B. Can you spot the

problem(s) in the following ‘proofs’ of this? These proofs use the alternative notation of A — B
for set difference.

xEvaluate 5.48. Use a set containment proof to prove that if A and B are sets, then
A—-B=AnNB.

Proof I: Assume x € {A —B} soxc A and x is not € B. This means x € A and
B Therefore xc ANB. Thus A-B=AnNB

Evaluation

Proof 2: B is the other part of the universal that does Not contain any
part of B. A UB means all intersection part of A and the universal that
does Not contain any part of B Therefore it returns all elements that
are in A But Nnot in B which are A —B. Thus, A - B =ANB.

Evaluation

Proot 3: To prove that A —B = ANB, first let x € A —B. By definition of
the difference of sets, this means that x is an element of A that is not
in B, or in other words, x € A and x € B. This is the same as x € ANB, thus
Proving that A —BR C ANB.

Now let x € ANB. This means that x € A and x ¢ B, so it is in A, But not in

B, which is what we just proved in the previous statement, thus proving
that A-B=ANB.

Evaluation

Sometimes we can do a set containment proof in one step instead of two. This only works if
every step of the proof is reversible. We illustrate this idea next.

Set Operations 129

Example 5.49. Prove that A\ (BUC) = (A\ B)N(A\ ().
Proof: We have

xe A\ (BUCQO) x€ANz & (BVQO)

(weA) A (& gB) A (@ ¢0))
(xeANzxzdB)AN(zeANxg)
(xe A\B) A (x€ A\C)
xe(A\B)N(A\CO).

T

g

Note: The proof in the previous example works because every step is reversible. You can only
write something like ‘a <> B’ in a proof if « — B and B — « are both true. When attempting
to shortcut proofs with this technique, make sure each step truly is reversible.

xF'ill in the details 5.50. Use a set containment proof to show that
(AUB)NC=(AnC)u(BnO).
Solution: We have,

xe(AUuB)NC

< z€(AUB)A by definition of intersection
—~ (zeAv YAz el by
< (rteAnxelC)V by
“ V(ze BNO) by
« ze(ANC)U(BNC). by

Example 5.51. In Java, the TreeSet class is one implementation of a set that has several
methods with perhaps unfamiliar names, but they do what should be familiar things. Let’s
discuss a few of them.” Let A and B be TreeSets.

(a) The method retainAll(TreeSet other) “retains only the elements in this TreeSet that
are contained in the other TreeSet. In other words, removes from this TreeSet all of its el-
ements that are not contained in other.” It is not too difficult to see that A.retainAll (B)
is computing AN B.°

(b) The method boolean containsAll(TreeSet other) “returns true if this set contains
all of the elements of other (and false otherwise).” Thus, A.containsAl1(B) returns

130 Chapter 5

true iff B C A.
(¢) Even without documentation, it seems likely that A.size() is determining |A].

(d) It is also seems likely that A.isEmpty () is determining if A = (.

“The method signatures and documentation have been modified from the official definition so we can focus
on the point at hand.

Technically it is doing more than that. It is storing the result in A. So it is like it is doing A = A N B,
where = here means assignment, not equals.

Sometimes you need to find the number of elements in the union of several sets. This is easy
if the sets do not intersect. If they do intersect, more care is needed to make sure no elements are
missed or counted more than once. In the following examples we will use Venn diagrams to help us
do this correctly. Later, we will learn about a more powerful tool to do this—inclusion-exclusion.

Example 5.52. Of 40 people, 28 smoke and 16 chew tobacco. It is also known that 10 both
smoke and chew. How many among the 40 neither smoke nor chew?

Solution: We fill up the Venn diagram below as follows. Since |[Smoke N
Chew| = 10, we put a 10 in the intersection. Then we put 28 — 10 = 18 in
the part that Smoke does not overlap Chew and 16 — 10 = 6 in the part of
Chew that does not overlap Smoke. We have accounted for 10 + 18 + 6 = 34
people that are in at least one of the sets. The remaining 40 — 34 = 6 people
outside these sets don’t smoke or chew (and probably don’t date girls who do).

Smoke Chew

We should note that we truly hope that these numbers are not representative of
the number of people who smoke and/or chew in real life. It’s bad for you. Don’t
do it. Really.

Set Operations 131

xExercise 5.53. In a group of 30 people, 8 speak English, 12 speak Spanish and 10 speak
French. It is known that 5 speak English and Spanish, 7 Spanish and French, and 5 English
and French. The number of people speaking all three languages is 3. How many people speak
at least one of these languages?

Definition 5.54. The Cartesian product of sets A and B is the set A x B = {(a,b)|a €
ANb e B}. In other words, it is the set of all ordered pairs of elements from A and B.

Example 5.55. If A ={1,2,3} and B = {a,b}, then
A X B = {(17a)7 (17 b)’ (27 a)7 (27 b)7 (37 a)? (37 b)}? and

B x A ={(a,1),(a,2),(a,3), (b, 1), (b,2), (b,3)}.
Notice that A x B # B x A. If A # B, this is always the case.

xExercise 5.56. Let A ={1,2,3,4}, and B = {3}. Compute A x B.

AXx B=

Definition 5.57. If A is a set, then A2=A x A, and A" = A x A" 1,

Example 5.58. If B = {a,b}then
B* = {(a7 CL), (a7 b)? (b7 CL), (b7 b)}7 and

B3 = {(a,a,a),(a,b,a),(b,a,a),(bd,a),(a,a,b),(a,b,b),(b,a,b), (b b b)}

132 Chapter 5

xExercise 5.59. Let A = {0,1}. Find A% and A3.

A% =

A3 =

It shouldn’t be too difficult to convince yourself of the following.

Theorem 5.60. If A and B are finite sets with |A| = n and |B| = m, then |A X B| =n-m.

Example 5.61. Let A and B be finite sets with |A| = 100 and |B| = 5. Then |A x B| =
100 * 5 = 500, |A?| = 100 * 100 = 10,000, and |B*| = 5* = 625.

xExercise 5.62. Let A, B, and C be sets with |A| = 10, |B| = 50, and |C| = 20. Determine
the following

(a) |A x B| =

(b) |4 % C| =

() |42 =

(d) [B% =

(e) [Ax BxC(C|=

Set Operations 133

xEvaluate 5.63. If A x B = &, what can we conclude about A and B?

Solution I Assume A and B are not empty. We know the Cartesian prod-
uct of A and B, denoted By A xB | is the set of all ordered pairs (a3,8), where
a € AandrcbB Therefore, we can conclude that our assumption was in-
correct Because if each set is NoOt empty, (8,8) is in the cross product, But
A xB =g so at least one of the sets must Be empty.

Evaluation

Solution 2: Notice that i A =g and B = g, A xB = @ Therefore, i
AxB=g then A=gand B =g

Evaluation

Solution 3: We can conclude that Both A and B are empty. [l prove it By
contradiction. Assume that A x B = g, But that it is not the case that
BOth A and B are empty. Then neither A nor B is empty. But then there is
some a € A and some B € B and (3,B) € A x B, which implies that A xB # &
This contradicts our assumption. Therefore Both A and B are empty.

Evaluation

Solution 4: At least one of A or B is empty By contradiction. Assume that
A xB = g But that it is noOt the case that at least one of A or B is empty.
Then neither A nor B is empty. Then there is some a € A and some B € B,
But then (3,8) € A x B, which implies that A x B # & This contradicts our
assumption. Therefore at least one of A or B is emvipty.

Evaluation

134 Chapter 5

5.3 Functions

This section is meant as a review of what you hopefully already learned in an earlier course,
probably in high school. Thus, it is pretty brief. But we do try to cover all of the important
material and provide enough examples to illustrate the concepts.

Definition 5.64. Let A and B be sets. Then a function f from A to B assigns to each
element of A exactly one element from B. We write f : A — B if f is a function from A
to B. If a € A and f assigns to a the value b € B, we write f(a) =b. We also say that f
maps a to b.

If A = B, we sometimes say f is a function on A.

Example 5.65. If A = B = N, we can define a function f : A — B by f(z) = 22. Then

f(1) =1, f(2) =4, f(3) =9, etc. Although f(x) is defined for all z € A, not every b € B is
mapped to by f. For instance, there is no a € A for which f(a) = 5.

Example 5.66. Notice that we can define f(z) = /x on the positive real numbers, but
we cannot define it on the positive integers since v/2 is not an integer. Similarly, since
V-1 =1 ¢ R, we cannot define it on the real numbers. We can let it be a function from
R to C, though. But we won’t because this course is complex enough even without complex
numbers.

Definition 5.67. Let f be a function from A to B.
1. We call A the domain of f.
2. We call B the codomain of f.

3. The range of f is the set {b|f(a) = b for some a € A}. In other words the range is
the subset of B that are actually mapped to by f.

Example 5.68. Let A= B =N and f: A — B be defined by f(z) = 22. Then the domain
and codomain of f are both N, and the range is {a?|a € N}, which is a proper subset of the
codomain.

Figure 5.3 gives a pictorial representation of a function. Notice that in this example every
element in A has precisely one arrow going from it. So if I ask “what is f(z)?”, there is always
an answer and it is always unique. On the other hand, there is a point in B that has two arrows
going to it and several points that have no arrows going to them. This is fine.

Figure 5.4 does not represent a function since there are several points in A which have two
arrows going from them and several with no arrows at all. The problem here is that if I ask “what
is f(x)?”, sometimes there is no answer and sometimes there are multiple answers. Thus, f would
not represent a function.

Functions 135

Figure 5.3: A pictorial repre-
sentation of a function from A to
B.

Figure 5.4: This picture does
not represent a function.

Note: In figures 5.3 and 5.4, the dots represent all of the elements of the sets A and B and
the gray ovals are mainly there to help identify which dots are in which set. However, in these
sorts of diagrams it is more common for the dots to represent only some of the elements. You
need to let the context help you determine how to properly interpret these diagrams.

Example 5.69. Give a formal definition of a function that assigns to an age the number of
complete decades someone of that age has lived. For instance, f(34) = 3 and f(5) = 0. Be
sure to indicate what the domain and codomain are.

Solution: It isn’t hard to see that the domain and codomain are both N. Thus
we want a function f : N — N. One way to define f is by f(z) = [z/10].

xExercise 5.70. Give a formal definition of a function that returns the parity of an integer.
That is, it returns 0 for even numbers and 1 for odd numbers. Be sure to indicate what the
domain and codomain are.

Answer

Definition 5.71. Let f: A — B be a function.

e f is said to be injective or one-to-one if and only if f(a) = f(b) implies that a = b.
In other words, f maps every element of A to a different element of B.

e f is said to be surjective or onto if and only if for every b € B, there exists some
a € A such that f(a) =b. In other words, every element in B gets mapped to by some
element in A.

e f is said to be bijective or a one-to-one correspondence if it is both injective and
surjective.

136 Chapter 5

Figure 5.5: A pictorial repre-
sentation of a one-to-one func-
tion.

Figure 5.6: A pictorial repre- Figure 5.7: A pictorial repre-
sentation of an onto function. sentation of an bijective function.

Procedure 5.72. To show that a function f is one-to-one, you just need to show that
whenever f(a) = f(b), then a = b.

Example 5.73. Let f(x) = 2x — 3 be a function on the integers. Show that f is one-to-one.

Solution: Let a,b € Z and assume that f(a) = f(b). Then 2a —3 = 2b — 3.
Adding 3 to both sides, we get 2a = 2b. Dividing both sides by two, we obtain
a = b. Therefore, f(x) = 2x — 3 is one-to-one.

*Question 5.74. Previously we mentioned that ‘working both sides’ was not an appropriate
proof technique. Why is it O.K. in the previous example?

Answer

xExercise 5.75. Prove that f(x) = 5z is one-to-one over the real numbers.

Proof

Procedure 5.76. To show that a function f is not one-to-one, we simply need to find two
values a # b in the domain such that f(a) = f(b). That is, we just need to show that there
are two different numbers in the domain that are mapped to the same value in the codomain.

Functions 137

Example 5.77. Let f(x) = 22 be a function on the integers. Show that f is not one-to-one.

Solution: Notice that f(—1) = f(1) = 1. Thus, f(x) is not one-to-one.

xExercise 5.78. Let f(z) = [z] be a function on R. Prove that f is not one-to-one.

Proof

Procedure 5.79. To show that a function f is onto, we need to show that for an arbitrary

b € B, there is some a € A such that f(a) = b. That is, show that every value in B is
mapped to by f.

Example 5.80. Let f(x) = 23 be a function on the real numbers. Show that f is onto.

Solution: Let b € R. Then f (%) = (%)3 = b3/3 = b. Since every b € R is
mapped to (from v/b), f is onto.

xExercise 5.81. Let f(z) = 2x + 1 be a function on R. Show that f is onto.

Proof

Procedure 5.82. To show that a function f is not onto, we just need to find some b € B

such that there is no a € A with f(a) = b. In other words, we just need to find one value
that isn’t mapped to by f.

Example 5.83. Let f(z) = 23 be a function on the integers. Show that f is not onto.

Solution: There is no integer a such that a® = 2. In other words, 2 is not
mapped to. Thus, f(x) is not onto.

138 Chapter 5

xExercise 5.84. Let f(z) = [z] be a function on R. Prove that f is not onto.

Proof

It is important to remember that whether or not a function is one-to-one or onto might depend
on the domain/codomain over which the function is defined. For instance, notice that in the last
two examples we used the same function but on different domains/codomains. In one case the
function was onto, and in the other case it wasn’t.

xExercise 5.85. Consider the function f(z) = 22.

2

(a) Prove or disprove that f(z) = x* is one-to-one on Z.

Answer

b) Prove or disprove that f(z) = 22 is one-to-one on R.
(p

Answer

2

(c) Prove or disprove that f(x) = z* is one-to-one on N.

Answer

Functions 139

xExercise 5.86. Determine which of the following functions from Z to Z is one-to-one and /or
onto. Prove your answers.

(a) fle)=a+2

Answer

(b) g(x) = 2?

Answer

(c) h(z) =2z

Answer

(d) r(z) = [2/2]

Answer

The functions in the previous exercise were specifically chosen to demonstrate that all four
possibilities of being or not being one-to-one and onto (one-to-one and onto, one-to-one and not
onto, not one-to-one but onto, and not one-to-one or onto) are possible.

The following theorem should come as no surprise if you take a few minutes to think about it
(and you should take a few minutes to think about it until you are convinced it is correct).

140 Chapter 5

Theorem 5.87. Let f: A — B be a function, and let A and B be finite.
1. If f is one-to-one, then |A| < |B).
2. If f is onto, then |A| > |B].

3. If f is bijective, then |A| = |B|.

*Exercise 5.88. Let’s test your understanding of the material so far. Answer each of the
following true/false questions, giving a very brief justification/counterexample.

(a) If f: A — B is onto, then the domain and range are not only the same size, but they
are the same set.

(b) __If f: A— A, then f must be one-to-one and onto.

(¢) __If f: A— B is both one-to-one and onto, then A and B have the same number of
elements.

(d) ___Let f(1) =2and f(1) = 3. Then f is a valid function.

(e) __Let f:R — R be defined by f(z) = 23. Then f is one-to-one and onto.

(f) __Let f: R™ — R be defined by f(x) = /. Then f is a function that is neither

one-to-one nor onto.

(g) ___The range of a function is always a subset of the codomain.

(h) A function that is one-to-one is guaranteed to be onto.

(i) __ Leta,b € Z, with a # 0, and define f : Z — Z by f(z) = ax+b. Then f is one-to-one
and onto.

Functions 141

(j) __Let a,b € Z, with a # 0, and define f : N — N by f(z) = ax+b. Then f is one-to-one
and onto.

(k) ___Leta,be R, with a # 0, and define f : R — R by f(x) = ax+b. Then f is one-to-one
and onto.

Definition 5.89. Let f be a one-to-one correspondence from A to B. The inverse of f,
denoted by {1, is the function such that f~1(b) = a whenever f(a) = b.

A function that has an inverse is called invertible. Said another way, a function is invert-
ible if and only if it is one-to-one and onto.

Note: It is important to note that the function f~' is not the same thing as 1/f. This is
an unfortunate case when a notation can be interpreted in two different ways. That is, in
some contexts, a~' means the inverse function and in other contexts it means 1/a. Usually
the context will help you determine which one is the correct interpretation.

Procedure 5.90. One method of finding the inverse of a function is to replace f(x) (or
whatever the name of the function is) with y and solve for x (or whatever the variable is).
Finally, replace y with x and you have the inverse.

Example 5.91. Let f : Z — Z be defined by f(x) = x + 2. Notice that f is a one-to-one
correspondence, so it has an inverse. We let y = x 4 2. Solving for z, we get z = y — 2. Thus,

fiz)=z-2.

Example 5.92. Let f : R — R be defined by f(z) = 2. Then f does not have an inverse
since it is not one-to-one.

Example 5.93. Let f : R — R be defined by f(z) = 2. We leave it to the reader to prove
that f is one-to-one and onto. Given that, we can find it’s inverse.

Let y = 23. Taking the third root of both sides, we obtain Sy = Va3 =z. Orz = Y.
Thus, the inverse of f is given by f~!(x) = /.

142 Chapter 5

xExercise 5.94. Let f(x) = 3z — 5 be a function over R. Prove that f has an inverse and
then find it.

Definition 5.95. Let g be a function from A to B and f a function from B to C. The
composition of f and g, denoted by f o g, is defined as (f og)(x) = f(g(x)) for any x € A.

In other words, to compose f with g, we first compute g(x). Then we plug in g(z) into the
formula for f.

Note: Look closely at the notation. f o g has f before g, so it might seem like it should be
g9(f(x))—in other words, apply f first, then then g. But that is not how it is defined.

Also notice that to compose f with g, it is necessary that the range of g is a subset of the
domain of f since otherwise it would be impossible to compute.

Example 5.96. Let f and g be functions on Z defined by f(z) = 22 and g(z) = 2z — 5.
Compute f o g and g o f, simplifying your answers.

Solution:

(fog)x) = flg(z)) = f(2x —5) = (2 — 5)% = 42 — 20z + 25.
(go (@) = g(f(x)) = g(a®) =22 5.

Notice that in the previous example, f o g # g o f. In other words, the order in which we
compose functions matters since the result is not always the same (although occasionally it is).

xExercise 5.97. Let f and g be functions on R defined by f(z) = |z]| and g(z) = z/2.
Compute f o g and g o f, simplifying your answers.

(fog)(z) =

(gof)(x) =

Functions 143

Example 5.98. Let f be a function from B to C, and g be a function from A to B. If both
f and g are one-to-one, prove that f o g is one-to-one.

Direct Proof:
For any distinct elements z,y € A, g(x) # g(y), since g is one-to-one. Since f is

also one-to-one, then f(g(z)) # f(g(y)), which is the same as (fog)(z) # (fog)(y).
Therefore f o g is one-to-one. O

Proof by Contradiction:

Assume f o g is not one-to-one. Then there exist distinct elements x,y € A such
that (f o g)(z) = (f o ¢g)(y). This is equivalent f(g(z)) = f(g(y)). Since f is
one-to-one, it must be the case that g(x) = g(y). But z # y, and g is one-to-one,
so g(z) # g(y). This is a contradiction. Therefore f o g is one-to-one. g

Definition 5.99. We define the identity function, 14 : A — A, by ta(z) = x.
The subscript can be omitted if the domain/codomain is clear.

Theorem 5.100. Let f be an invertible function from A to B. Then fo f~' = 1p and
flof=14
Proof: Let a € A and define b = f(a). Then by definition, f~(b) = a, so
(f~to f)la) = F7H(f(a)) = f71(b) = a. Thus, f~'o f =1a.

Conversely, if b € B and we define a = f=1(b), then (f o f~1)(b) = f(f~1(b)) =
fla) =b. Thus, fo f~'=p. O

Example 5.101. Prove or disprove that f(z) = 2x + 1 and g(z) = 2z — 1, defined over the
real numbers, are inverses.

Solution: Notice that (fog)(z) = f2z—1) =22z —1)+1 =4z — 1 # =.
According to Theorem 5.100, this implies that f and g are not inverses.

*Exercise 5.102. Let’s test your understanding of the material so far. Answer each of the
following true/false questions, giving a very brief justification/counterexample.

(a) ___Let a,b € Z and define f : Z — 7Z be defined by f(x) = ax +b. Then f is invertible.

(b) __Let a,b € Z and define f : N — N be defined by f(z) = ax +b. Then f is invertible.

(¢) __Let a,b € R and define f : R — R be defined by f(z) = ax +b. Then f is invertible.

144 Chapter 5

(d) ___If f(x) = 22, then f~1(x) = 1/22.

(e) Let n be a positive integer. Then the function {/z is invertible on R.

(f) Let n be a positive integer. Then the function {/z is invertible on N.

(g) Let n be a positive integer. Then the function {/z is invertible on R* (the positive
real numbers).

(h) __Let f and g be functions on Z* defined by f(z) = 2? and g(x) = 1/x. Then
fog=gof.

(i) __ Let f and g be functions on Z defined by f(z) = (z + 1)? and g(z) = + 1. Then
fog=gof.

(j) __Let f(x) = |z] and g(x) = [z] be defined on the real numbers. Then fog = go f.

(k) ___Let f(z) = |z] and g(x) = [z] be defined on the real numbers. Then f and g are
inverses of each other.

(1) __ Let f(z) = 2% and g(z) = v/ be defined over the positive real numbers. Then f and
g are inverses of each other.

Partitions and Equivalence Relations 145

5.4 Partitions and Equivalence Relations

Partitions and equivalence relations are useful in computer science in several contexts. One of the
most obvious is software testing. When creating test cases, you always want to ensure that you
are covering ‘all of the cases’. But what does that mean? It means you are thinking about how
to partition all of the possible inputs into several sets, where the elements in one set are somehow
different from those in another set, and are quite a lot like the other elements in the set. Let’s
see an example.

Example 5.103. Consider the following function that returns n! if n > 0, and returns —1 if
n < 0 (n! is undefined for negative values of n, but we have to return something, so why not
a negative number?)

int factorial(int n) {
if (n<0) { return -1; }
else if (n==0) { returm 1; %}
else {
int fact 1;
for(int i=1;i<=n;i++) {
fact factx*i;

}

return fact;
}
}
What values of n should we use to test factorial?

Solution: There seems to be three different types of values based on the
structure of the code: 0, numbers less than 0, and numbers greater than 0. So
we should test at least one number from each of these sets. Since boundaries can
sometimes cause problems, we should include those. In light of this, we might test
0, —1, =2, —10, 1, 2, and 8. Since these cover all of the cases, they should provide
pretty good evidence of whether or not factorial is implemented properly.®

“But remember, testing never proves that code is correct!

Definition 5.104. Let S # & be a set. A partition of S is a collection of non-empty,
pairwise disjoint subsets of S whose union is S.

Example 5.105. Define E = {2k : k € Z} and O = {2k + 1: k € Z}. Clearly E is the set of
even integers and O is the set of odd integers. Since ENO =@ and EUO =Z, {E,0} is a
partition of Z. Put another way, we can partition the integers based on parity.

Example 5.106. We can partition the socks in our sock drawer by color. In other words,
we put all of the black socks in one set, the white ones in another, the green ones in another,
etc. For simplicity, we can put all of the multi-color socks in a single set.

146 Chapter 5

Example 5.107. We can partition the set of all humans by putting each person into a set
based on the first letter of their first name. So Adam and Adele go into set A and Zeek goes
into set Z, for instance. The sets in the partition are A, B, ... Z.¢

“For simplicity, we assume everyone’s name is written using the Roman alphabet.

Example 5.108. Let A = {1,5,8}, B ={2,3}, C = {4}, D = {6,9}, and E = {7,10, 11, 12}.
Then the sets A, B, C, D, and F form a partition of the set {1,2,3,4,5,6,7,8,9,10,11,12}.

Example 5.109. When choosing test cases for the factorial method in Example 5.103, we
thought about 3 subsets of Z: {0}, Z*, and Z~. These cases form a partition of Z since they
are disjoint and Z = {0} UZT UZ~. This is good since it means we covered at least one value
of the different types, and we didn’t ‘overtest’ any of the cases by unknowingly duplicating
values from the same case.

*xExercise 5.110. You need to decide on test cases for a method int maximum(int a,int b)
that returns the maximum of its arguments. How would you partition the possible inputs
into sets such that if it is correct for one (or a few) tests of cases from that set, it is probably
correct for the rest of the cases in that set? Notice that the set of inputs is Z x Z.

Answer

Most of the partitions we talk about will be based on some meaningful characteristic of the
elements of a set—like parity, color, or sign. But this is not inherent in the definition. For instance,
the sets in the partition from Example 5.108 do not seem to have any significant meaning. Some,
like the one in Example 5.105, will have a precise mathematical definition. Others, like the one
in Examples 5.106 will not.

*Exercise 5.111. Define a partition on Z that contains more than one subset.

Answer

Example 5.112. Let 3Z ={3k : k€ Z},32+1={3k+1: k€ Z},and 3Z+ 2= {3k + 2:
k € Z}.* Since
(3Z) U (3Z + 1) U (3Z + 2) = Z and

(3Z)N(3Z+1) =@, (3Z)N (3Z+2) = @, (3Z + 1) N (3Z + 2) = &,

Partitions and Equivalence Relations 147

{3Z,37 + 1,3Z + 2} is a partition of Z.

“The notation in this example may seem a bid odd at first. How are you supposed to interpret “3Z + 1”7
Is this 3 times the set Z plus 17 What does it mean to do algebra with sets and numbers? I won’t get into
all of the technical details, but here is a short answer. You can think of “3Z + 1”7 as just a name. Sure, it
may seem like an odd name, but why can’t we name a set whatever we want? Some people name their kids
Jon Blake Cusack 2.0 and get away with it. You can also think of “3Z 4 1”7 as describing how to create the
set—Dby taking every element from Z, multiplying it by 3, and then adding 1. Thus, you can think of “3Z + 1”
as being both an algebraic expression and a name.

*Exercise 5.113. Let I = R\ Q (the set of irrational numbers). Prove that {Q,I} is a
partition of R.

Proof

Recall that when a list of number is given between parentheses (e.g. (1,2,3)), it typically
denotes an ordered list. That is, the order that the element are listed matters. So, for instance,
(1,2) and (2,1) are not the same thing.

Next we will develop an alternative way of thinking about partitions: equivalence relations.
After defining some terms and providing a few examples, we will make the connection between
partitions and equivalence relations more clear.

Definition 5.114. Let A, B be sets. A relation (or binary relation) from A to B is a
subset of the Cartesian product A X B.

Given a relation R, we say that x is related to y if (x,y) € R. We sometimes write
this as vRy. An alternative notation is x ~ y.

If R is a relation from A to A, we sometimes say R is a relation on A.

Example 5.115. Let A be the set of all students at this school and B be the set of all courses
at this school. We can define a relation R by saying that xRy if student x has taken course
y. Said another way, we can define R by saying that (x,y) € R if student x has taken course
Y.

Example 5.116. We can define a relation R = {(a,a?) : a € Z}. That is, z is related to y if

y = 22

Example 5.117. We can define a relation on Z by saying that x is related to y if they have
the same parity. Thus, (2,0), (234, —342), (3,17) are all in R, but (2,127) is not.

148 Chapter 5

*Question 5.118. Define R = {(a,b) : a,b € Z and a < b}. Is R a relation? Explain.

Answer

Question 5.119. Is {(1,2), (345, 7), (43,8675309), (11,11)} a relation on Z? Explain.

Answer

Definition 5.120. A relation R on set A is said to be reflexive if for all x € A, xRz (or
(x,x) € R).

*Exercise 5.121. Let P be the set of all people. Which of the following relations on P are

reflexive? Explain why or why not.
(a) T ={(a,b) : a,b € P and a is taller than b}
(b) N is the relation with a related to b iff a’s name starts with the same letter as b’s name.
(c) C is the relation defined by (a,b) € C' if a and b have been to the same city.
(d) K ={(a,b):a,be P and a does not know who b is}

)

(e) R = {(Barack Obama, George W. Bush)}.

Partitions and Equivalence Relations 149

Definition 5.122. A relation R on set A is said to be symmetric if for all z,y € A, xRy
implies yRx (or (x,y) € R implies (y,x) € R).

*Exercise 5.123. Which of the relations from Example 5.121 are symmetric? Explain why
or why not.

Definition 5.124. A relation R on set A is said to be anti-symmetric if for all x,y € A,
xRy and yRx implies x =y (or (z,y) € R and (y,z) € R implies v = y).

150 Chapter 5

*Question 5.125. Let R be a relation on Z.

(a) If (1,1) € R, can you tell whether or not R is anti-symmetric? Explain.

Answer

(b) What if (1,2) and (2,1) are both in R? Can you tell whether or not R is anti-symmetric?

Answer

*Question 5.126. An alternative definition of anti-symmetric is that if x # y, then (z,y)
and (y,x) are not both in the relation. Why is this definition equivalent?

Answer

Note: This definition is sometimes misunderstood. Let’s call elements of the form (z,x)
diagonal elements and elements of the form (z,y) where © # y off-diagonal elements.”
Then the definition of anti-symmetric is only dealing with off-diagonal elements. It is saying
nothing about the diagonal elements. In other words, it is not saying that (z,x) € R for any,
let alone all, values of x. But it also isn’t saying (x,x) & R. It is simply saying that the only
way for both (z,y) and (y,x) to be in R is if x = y.

The alternative definition given in the previous question may help a little. Notice that the
definition there starts with ‘if x # y...” So what does the definition say about the case x = y?
Nothing. It never mentions it.

You could redefine it as follows: R is anti-symmetric if for all non-diagonal elements
(z,y) € R, (y,z) € R. But that can be problematic if you forget that x # y is required.

“These terms come from thinking about the elements of a relation as elements in a matrix indexed by the
members of the set. If this doesn’t make sense, don’t worry too much about it.

*Exercise 5.127. Which of the relations from Example 5.121 are anti-symmetric? Explain
why or why not.

(a) T

Partitions and Equivalence Relations 151

*Question 5.128. Answer each of the following. Include a brief justification/example.

(a) If a relation is not symmetric, is it anti-symmetric?

Answer

(b) If a relation is not anti-symmetric, is it symmetric?

Answer

(c) Can a relation be both symmetric and anti-symmetric?

Answer

*Exercise 5.129. Give an example of a relation on any set of your choice that is both
symmetric and anti-symmetric. Justify your answer.

Answer

152 Chapter 5

Definition 5.130. A relation R on set A is said to be tramsitive if for all z,y,z € A,
xRy and yRz implies xRz (or ((z,y) € R and (y, z) € R) implies (z,z) € R).

*Exercise 5.131. Which of the relations from Example 5.121 are transitive? Explain why
or why not.

Definition 5.132. A relation which is reflexive, symmetric and transitive is called an equiv-
alence relation.

Example 5.133. Let S ={All Human Beings}, and define the the relation M by (a,b) € M
if a has the same (biological) mother?® as b. Show that M is an equivalence relation.

Proof: (Reflexive) a has the same mother as a, so (a,a) € M and M is
reflexive.

(Symmetric) If a has the same mother as b, then b clearly has the same mother
as a. Thus, (a,b) € M implies (b,a) € M, so M is symmetric.

(Transitive) If a has the same mother as b, and b has the same mother as ¢, then
clearly a has the same mother as c¢. In other words, (a,b) € M and (b,c) € M
implies that (a,c) € M, so M is transitive.

Since M is reflexive, symmetric, and transitive, it is an equivalence relation. [

Partitions and Equivalence Relations 153

“The important assumption we are making is that each person has exactly one mother.

*xExercise 5.134. Which of the relations from Example 5.121 are equivalence relations?
Explain why or why not.

Definition 5.135. A relation which is reflexive, anti-symmetric and transitive is called a
partial order.

xExercise 5.136. Which of the relations from Example 5.121 are partial orders? Explain
why or why not.

154 Chapter 5

*xExercise 5.137. Let X be a collection of sets. Let R be the relation on X such that A is
related to B if A C B. Prove that R is a partial order on X.

Proof: (Reflexive)

(Anti-symmetric)

(Transitive)

O

Labeling the lines of these proofs with what property we are proving isn’t strictly necessary.
However, it does make the proofs a little easier to read.

xExercise 5.138. Consider the relation R = {(1,2),(1,3),(1,5), (

2,2),(3,5),(5,5)} on the
set {1,2,3,4,5}. Prove or disprove each of the following.

(a) R is reflexive

Answer

(b) R is symmetric

Partitions and Equivalence Relations 155

Answer

(¢) R is anti-symmetric

Answer

(d) R is transitive

Answer

(e) R is an equivalence relation

Answer

(f) R is a partial order

Answer

It turns out that congruence modulo n is an equivalence relation. (See Definition 3.13 if
necessary).

Theorem 5.139. Let n be a positive integer. Then R = {(a,b) : a =b (mod n)} is a relation
on the set of integers. Show that R is an equivalence relation.

Proof: We need to show that R is reflexive, symmetric, and transitive.
(Reflexive) Clearly a —a =0-n, so a =a (mod n). Thus, R is reflexive.
(Symmetric) Assume (a,b) € R. Then a =b (mod n), which implies a —b = kn
for some integer k. So b—a = (—k)n, and since —k is an integer, b = a (mod n).
Therefore, (b,a) € R. Thus, R is symmetric.

(Transitive) Assume (a,b), (b,c) € R. Then a =b (mod n) and b = ¢ (mod n).
Thus, a — b = kn for some integer k and b — ¢ = In for some integer l. Given
these, we can see that

a—c=(a—-b)+(b—c)=kn+in=(k+1Dn.

Since k + 1 is an integer, a = ¢ (mod n). Thus (a,c) € R, so R is transitive. [

Notice that if we let n = 2 in the previous theorem, we essentially have the relation from
Example 5.117.

156 Chapter 5

*Fill in the details 5.140. Let R be the relation on the set of ordered pairs of positive
integers (that is, Z*T x Z™) such that ((a,b), (c,d)) € R if and only if ad = be. Show that R
is an equivalence relation.®

Proof: We need to show that R is reflexive, symmetric, and transitive.

(Reflexive) Since ab = ba for all positive integers, €ER
for all (a,b). Thus R is reflexive.

(Symmetric) Assume ((a,b),(c,d)) € R. Then we know that ad =

We can rearrange this as cb = . Thus, € R, so R is

(Transitive) Assume.that ((a,b),(c,d)) € R and ((¢,d),(e,f)) € R. Then

we know that and . Solving the
second for ¢, we get ¢ = . Plugging it into the first we get
ad = . Multiplying both sides by f, and canceling the d on both
sides yields . Thus, € R, so R is
transitive. 0

“In this example, R is a relation on a set of ordered pairs. Thus, the elements of R are ordered pairs of
ordered pairs. Don’t let this confuse you. The elements of a relation are always ordered pairs. What each
part of the pair is depends on the underlying set. If it is the set of animals, then the elements of the relation
are ordered pairs of animals. If it is Z, then the elements of the relation are ordered pairs of integers. And if
it is Z* x ZT, then the elements of the relation are ordered pairs of ordered pairs of positive integers.

Definition 5.141. Let R be an equivalence relation on a set S. Then the equivalence
class of a, denoted by [a], is the subset of S containing all of the elements that are related
to a. More formally,

[a] = {z € S : zRa}.

If x € [a], we say that x is a representative of the equivalence class [a]. Note that any
element of an equivalence class can serve as a representative.

Example 5.142. The equivalence class of 3 modulo 8 is [3] = {8k + 3 : k € Z}. Notice that
1] ={8k+11:ke€Z} ={8k+3:keZ}=3]. In fact, [3] = [8] + 3] for all integers [. In
other words, any element of the form 8[43, where [is an integer, can serve as a representative
of [3]. Further, we can call this class [3], [11], [19], etc. It doesn’t really matter since they all
represent the same set of integers. Of course, [3] is the most logical choice.

Partitions and Equivalence Relations 157

Example 5.143. Notice that if our relation is congruence modulo 3, we can define three
equivalence classes:

0] = {3k:keZ},
1] {3k +1:ke€Z}, and
2] = {3k+2:keZ).

It isn’t too difficult to see that Z = [1] U [2] U [3], and that these three sets are disjoint. In
other words, the equivalence classes {[1],[2], [3]} form a partition of Z. As we will see shortly,
this is not a coincidence.

Lemma 5.144. Let R be an equivalence relation on a set S. Then two equivalence classes
are either identical or disjoint.

Proof: Let a,b € S, and assume [a] N [b] # @. We need to show that [a] = [b].
First, let © € [a] N [b] (which exists since [a] N [b] # @). Then xRa and xRb, so by
symmetry aRx and by transitivity aRb.

Now let y € [a]. Then yRa. Since we just showed that aRb, then yRb by transi-
tivity. Thus y € [b]. Therefore [a] C [b].

A symmetric argument proves that [b] C [a]. Therefore, [a] = [b]. O

Let’s bring together some of the examples of partitions with examples of equivalence relations
and classes.

Example 5.145. We just saw that congruence modulo 3 is an equivalence relation with three
equivalence classes, {3k : k € Z}, {3k +1: k € Z}, and {3k +2 : k € Z}. In Example 5.112,
we defined a partition of Z using these same three subsets.

Example 5.146. In Example 5.117 we defined a relation on Z based on parity. It is not
difficult to see that the equivalence classes of that relation are [0] = E and [1] = Q. Notice
these are the same subsets we used to partition Z in Example 5.105.

Example 5.147. In Example 5.107 we defined a partition of people according to the first
letter of their first name. The sets in the partition were A, B, ..., Z.

We can define an equivalence relation on the set of all people by saying a is related to b if a’s
name starts with the same letter of the alphabet as b’s name. In a series of previous exercises,
you proved that this defines an equivalence relation. Notice that the equivalence classes
are the sets A, B,...,Z (which we can think of as, for instance [Adam], [Betty], ..., [Zeek]).
Again, these are the same sets that we used to partition people into in Example 5.107.

In these examples, there seems to be a connection between the equivalence classes of the
relation and the sets in a partition. As the next theorem illustrates, this is no coincidence.

158 Chapter 5

Theorem 5.148. Let S # @ be a set. Every equivalence relation on S induces a partition of
S and vice-verse.

Proof: By Lemma 5.144, if R is an equivalence relation on S then

§= Ul

a€esS

and [a] N [b] = & if a is not related to b. This proves the first half of the theorem.

Conversely, let

S=JSa SaNSp=2 if a#p,

be a partition of S. We define the relation R on S by letting aRb if and only if
they belong to the same S,. Since the S, are mutually disjoint, it is clear that R
is an equivalence relation on S and that for a € S,, we have [a] = S,. O

Put in simple terms, equivalence classes of an equivalence relation and partitions of sets are
essentially the same thing. The main difference is in how we are looking at it. When thinking
about equivalence relations/classes, we are focused on what it means for two things to be related.
When thinking about partitions, we are focused on what it means for an element to be in a
particular subset of the partition.

Example 5.149. In light of Theorem 5.148, we can say that the relation defined by congru-
ence modulo 4 partitions the set of integers into precisely 4 equivalence classes: [0], [1], [2],
and [3]. That is, given any integer, it is contained in one (and only one) of these classes.

More generally, if n > 2, Z can be partitioned into n sets, [0], [1], ..., [n—1], each of which
is an equivalence class of the relation defined by congruence modulo n.

When we think about the partition, we are focused on the concept that each number z
goes into one of the n subsets based on the value mod n. On the other hand, when we think
about the relation of congruence modulo n, we are focused on the idea that x and y are in
the same equivalence class iff z =y (mod n).

Problems 159

5.5 Problems

Problem 5.1. Draw a Venn diagram showing AN (B UC), where A, B, and C are sets.

Problem 5.2. Assume A, B, and C are sets. Prove each of the following using a set containment
proof.

(a) (ANBNC)C (AN B).
(b) ANBC AU B.

(
d

)

)

¢) (AUB)\ (ANB) = (A\B)U(B\ A).

) (A—B)\C C A\C.
)

() AU(BNC)=(AUB)N(AUC).

Problem 5.3. Prove each of the following set identities using a set containment proof based on
the basic definitions of N, U, etc. (see examples 5.46, 5.49, and 5.50).

(a) AU(ANB) = A.

(b) Au(BNC)=(AUuB)N(AUC)

(¢) (A\NB)\C=(A\NC)\(B\C).

(d) AU(BNC) = (CUB)NA. (This one is a little tricky.)

Problem 5.4. Rusty has 20 marbles of different colors: black, blue, green, and yellow. Seventeen
of the marbles are not green, five are black, and 12 are not yellow. How many blue marbles does
he have?

Problem 5.5. Let A and B be TreeSets (See Example 5.51).

(a) The method addAll(TreeSet other) adds all of the elements in other to this set if they’re
not already present. What is the result of A.addA11(B) (in terms of A and B and set operators)?

(b) The method removeAll (TreeSet other) removes from this set all of its elements that are
contained in other. What is the result of A.removeAll(B) (in terms of A and B and set
operators)?

(c) Write A.contains(x) using set notation, where = is an element that can be stored in a
TreeSet.

Problem 5.6. You need to settle an argument between your boss (who can fire you) and your
professor (who can fail you). They are trying to decide who to invite to the Young Accountants
Volleyball League. They want to invite freshmen who are studying accounting and are at least 6
feet tall. They have a list of all students.

(a) Your boss says they should make a list of all freshmen, a list of all accounting majors, and a
list of everyone at least 6 feet tall. They should then combine the lists (removing duplicates)
and invite those on the combined list. Is he correct? Explain. If he is not correct, describe in
the simplest possible terms who ends up on his guest list.

160 Chapter 5

(b) Your professor says they should make a list of everyone who is not a freshman, a list of
everyone who does not do accounting, and a list of everyone who is under 6 feet tall. They
should make a fourth list that contains everyone who is on all three of the prior lists. Finally,
they should remove from the original list everyone on this fourth list, and invite the remaining
students. Is he correct? Explain. If he is not correct, describe in the simplest possible terms
who ends up on his guest list.

(c) Give a simple description of how the guest list should be created.

Problem 5.7. Let a,b € R, a # 0, and define f : R — R by f(x) = ax + b. Prove that f is
one-to-one and onto.

Problem 5.8. Let a and b be real numbers with a # 0. Show that the function f(z) =az +b
is invertible.

Problem 5.9. Prove or disprove: if a, b, and ¢ are real numbers with a # 0, then the function
f(x) = ax® + bz + c is invertible.

Problem 5.10. Prove that if f and g are onto, then f o ¢ is also onto.

Problem 5.11. Let f(z) =+ |x] be a function on R. (This one is a little tricky.)
(a) Prove or disprove that f is one-to-one.

(b) Prove or disprove that f is onto.

(c) Prove or disprove that f is invertible.

Problem 5.12. Find the inverse of the function f(x) = 2® + 1 over the real numbers.

Problem 5.13. Let f be the function on Z* that maps x to the number of bits required to
represent x in binary. For instance, f(1) =1, f(2) =2, f(3) =2, f(4) =3, f(10) = 4, etc. Hint:
The number 2" requires n + 1 bits to represent (a single 1 followed by n zeros). You may be able
to use this fact in one of your proofs.

(a) Prove or disprove that f is one-to-one.
(b) Prove or disprove that f is onto.
(¢) Prove or disprove that f is invertible.

Problem 5.14.
Consider the relation R = {(1,2), (1,3), (3,5),(2,2),(5,5),(5,3),(2,1),(3,1)} on theset {1,2,3,4,5}.

Is R reflexive? symmetric? anti-symmetric? transitive? an equivalence relation? a partial order?

Problem 5.15. Let X be the set of all people. Which of the following are equivalence relations?
Prove it.

Problems 161

(e) Rs = {(a,b) € X?|a has the same kind of pet as b}
Problem 5.16. Repeat the previous problem, but which are partial orders? Prove it.

Problem 5.17. Define three different equivalence relations on the set of all TV shows. For each,
give examples of the equivalence classes, including one representative from each. Prove that each
is an equivalence relation.

Problem 5.18. Define a relation on the set of all Movies that is not an equivalence relation.

Problem 5.19. Let A = {1,2,...,n}. Let R be the relation on P(A) (the power set of A) such
that a,b € P(A) are related iff |a| = |b|. Prove that R is an equivalence relation. What are the
equivalence classes of R?

Problem 5.20. The class Relation is a partial implementation of a relation on a set A. It has a
list of Element objects.

e An Element stores an ordered pair from A. Element has methods getFrom() and getTo()
(using the language of the directed graph representation). So if an Element is storing (a,b),
getFrom() returns a and getTo() returns b. The constructor Element (Object a, Object b)
creates an element (a,b).

e The Relation class has methods like areRelated(Object a,0Object b), getElements(), and
getUniverse().

e Methods in the Relation class can use for(Element e : getElements()) to iterate over
elements of the relation.

e Similarly, the loop for(Object a : getUniverse()) iterates over the elements of A.
Given all of this, implement the following methods in the Relation class:
(a) isReflexive()
(b) isSymmetric()

(c) isAntiSymmetric()

162 Chapter 5

Chapter 6

Sequences and Summations

6.1 Sequences

Definition 6.1. A sequence of real numbers is a function whose domain is the set of natural
numbers and whose output is a subset of the real numbers. We usually denote a sequence by
one of the notations

agp, a1,a2, . - -
or
{an n= 0
or

{an}.

The last notation is just a shorthand for the second notation.

Note: Since sequences are functions, sometimes function notation is used. That is, a(n)
instead of an.

We will be mostly interested in two types of sequences. The first type are sequences that have
an explicit formula for their n-th term. They are said to be in closed form.

Example 6.2. Let a, =1 — 2n ,n=0,1,.... Then {an o is a sequence for which we have
an explicit formula for the n-th term. The ﬁrst five terms are

ag = 1-3 1-1 = ¢,
a; = 1-— i1 = _% %7
az = 1-— i2 = _% = %7
o = 1-% = 1-} = [
ag = 1-% = 1-4& = B

163

164 Chapter 6

Note: Sometimes we may not start at n = 0. In that case we may write

Ay A1, AmA42, - - -

or

{an jz_gom 9

where m is a non-negative integer. Most sequences we will deal with will start with m =0 or
m=1.

xExercise 6.3. Let {x,} be the sequence defined by z, = 1+ (=2)",n = 0,1,2,.... Find
the first five terms of {z,}.

(a) zo =

(b) z1 =

(d) x5 =

(e) zq4 =

xExercise 6.4. Find the first five terms of the following sequences.

1 n
(a) xn:1+(—§> ,n=0,1,2,...

Tog = I = xI9

r3 = Ty =

(b) z,=n!+1,n=0,1,2,...

Tog = T = o =

1‘3: ,1'4:

Sequences 165

1
(C) Tn = m,n:2,3,4,...
To = xr3 = Ty =
T5 = Te =

Tr1 = 9 = Tr3 —

T4 = Iy =

The second type of sequence are defined recursively. That is, each term is based on previous
term(s). We call these recurrence relations.

Example 6.5. Let

1
T = 1, xn:<1+g)xn_1, forn=1,2,....

Then {z, :S(’] is a recursively defined sequence. The terms 1, 2o, ..., z5 are
21 = (1+Hao = (1+3)1 = 141 = 2
vy = (1+3)m (1+4)2 = 241 = 3
zs = (1+3)ze = (1+3)3 = 341 = 4
g = (1+3)ws = (1+4)4 = 441 = 5
zs = (14+%)as = (1+34)5 = 541 = 6

Notice that in the previous example, we gave an explicit definition of xg. This is called an
initial condition. Every recurrence relation needs one or more initial conditions. Without them,
we have an abstract definition of a sequence, but cannot compute any values since there is no
“starting point.”

When we find an explicit formula (or closed formula) for a recurrence relation, we say we have
solved the recurrence relation.

Example 6.6. Given the values we computed in Example 6.5, it seems relatively clear that
T, = n + 1 1is a solution for that recurrence relation.

166 Chapter 6

Note: [t is important to be careful about jumping to conclusions too quickly when solving
recurrence relations.® Although it turns out that in the previous example, x, = n + 1 is the

correct closed form (we will prove it shortly), just because it works for the first 5 terms does
not necessarily imply that the pattern continues.

“These comments also apply to other problems that involve seeing a pattern and finding an explicit formula.

xExercise 6.7. Let {x,} be the sequence defined by
ro=1,2, =5 -2,_1, form=1,2,....

Find a closed form for z,. (Hint: Start by computing x, z2, x3, etc. until you see the
pattern.)

xExercise 6.8. Let {x,} be the sequence defined by
zo=1l,xp=n-xp_1, form=1,2,....

Find a closed form for z,,.

Sequences 167

xEvaluate 6.9. Define {a,} by a(0) =1, a(1) = 2, and

for n > 2. Find a closed form for a,,.

Solution: We can see that

a, = {% xa,J—l-ao = {% ><2_J—H = 4
33 = {% X87_J+6| = {% ><'+J+2_ = 8
3y = \\% XagJ +87_ = {% ><8J +4 = b

(Mou can verify these with a caleulator). At this point it seems rela-
tively clear that a, = 2"

Evaluation

Did you catch what happened in the previous Evaluate exercise? The ‘obvious’ solution wasn’t
correct. If you missed this, go back and read the solution.

Generally speaking, you need to prove that the closed form is correct. One way to do this
is to plug it back into the recursive definition. If we can plug it into the right hand side of the
recursive definition and are able to simplify it to the left hand side, then it must be a solution.
We also have to verify that it works for the initial condition(s).

As an analogy, how do you know that = —1 is a solution to the equation 22 + 2z + 1 = 0?
You plug it in to get (—1)242(—=1)+1=1—-2+1 = 0. Since we got 0, z = —1 is a solution. We
do something similar for recurrence relations, except that what we are plugging in is a formula
instead of just a number.

Example 6.10. Prove that x,, = n + 1 is a solution to the recurrence relation given by

1
xo = 1, xn:(l—l—;)mn_l, n=12....

Proof: To prove that x,, = n + 1 is a solution for n > 0, we need to show two
things. First, that it works for the initial condition. Since zg = 1 = 0+ 1, it works
for the initial condition. Second, that if we plug it into the right hand side of the
recursive definition, that we can simplify it to z,. Doing so, we get

(14 ans = (14) (-1)+1)

- ().

= n+1

=5 $n

168 Chapter 6

Since plugging the solution back in verifies the recurrence relation, x, =n + 1 is
a solution to the recurrence relation.

If you are confused by the first step of algebra, remember that we are assuming
that x, = n+ 1 for n > 0. Thus, 2,1 = (n — 1) + 1 = n, since we are just
plugging in n — 1 instead of n. |

*Exercise 6.11. Prove that your solution to Exercise 6.7 is correct.

*Exercise 6.12. Prove that your solution to Exercise 6.8 i