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Preface

This book is an attempt to present some of the most important discrete mathematics concepts to computer
science students in the context of algorithms. I wrote it foruse as a textbook for half of a course on discrete
mathematics and algorithms.

Much of the material is drawn from several open-source booksby David Santos. Other material is
from handouts I have written and used over the years. I have extensively edited the material from both
sources, both for clarity and to emphasize the connections between the material and algorithms where
possible.

I should mention that I never met David Santos, who apparently died in 2011. I stumbled upon his
books this summer (2013) when I was searching for a discrete mathematics book to use in a new course.
When I discovered that I could adapt his material for my own use, I decided to do so. Since clearly he
has no knowledge of this book, he bears no responsibility forany of the edited content. Any errors or
omissions are therefore my fault.

This is still a work in progress, so I appreciate any feedbackyou have. Please send it tocusack@hope.edu.

Charles A. Cusack
August, 2013
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Chapter 1
Proof Methods

In this chapter we will introduce you to the basics of mathematical proofs. Along the way we will review
some mathematical concepts/definitions you have probably already seen, and introduce you to some new
ones that we will find useful as we proceed.

1.1 Direct Proofs

A direct proofis one that follows from the definitions. Facts previously learned help many a time when
making a direct proof.

1 Definition Recall that

• aneven integeris one of the form 2k, wherek is an integer.

• anodd integeris one of the form 2l +1 wherel is an integer.

2 Example Prove that

➊ the sum of two even integers is even,

➋ the sum of two odd integers is even,

➌ the sum of an even integer and an odd integer is odd,

➍ the product of two odd integers is odd,

➎ the product of an even integer and an odd integer is even.

Solution: We argue from the definitions. We assume as known that the sum of two integers
is an integer.

➊ If x andy are even integers, thenx = 2a andy = 2b for some integersa andb. Then
x+y= 2a+2b= 2(a+b). Sincea+b is an integer, 2(a+b) is even.

➋ If x andy are odd, thenx = 2c+ 1 andy = 2d+ 1 for some integersc andd. Then
x+y= 2c+1+2d+1= 2(c+d+1). Now c+d+1 is an integer, so 2(c+d+1) is an
even integer.

1



2 Chapter 1

➌ Let 2f be an even integer and 2g+1 be an odd integer. Then 2f +2g+1= 2( f +g)+1.
Since f +g is an integer, 2( f +g)+1 is an odd integer.

➍ Let 2l +1 and 2m+1 be odd integers. Then

(2l +1)(2m+1) = 4ml+2l +2m+1= 2(2ml+ l +m)+1.

Since 2ml+ l +n is an integer, 2(2ml+m+ l)+1 is an odd integer.

➎ Let 2n be an even integer and let 2o+1 be an odd integer. Then

(2n)(2o+1) = 4no+2n= 2(2no+1).

Since 2no+1 is an integer, 2(2no+1) is an even integer.

3 Definition Let b anda be integers witha 6= 0. We say thatb is divisible by aif there exists an integerc
such thatb= ac. If b is divisible bya, we also say thatb is amultipleof a, a is a factor or divisor of b,
and thata divides b, written asa|b. If a does not divideb, we writea ∤ b.

4 Example Since 6= 2 ·3, 2|6, and 3|6. But 4∤ 6 since we cannot write 6= 4 ·c for any integerc.

5 Example Prove that the product of two even integers is divisible by 4.

Solution: Let 2h and 2k be even integers. Then(2h)(2k) = 4(hk). Sincehk is an integer,
4(hk) is divisible by 4.

☞ A common mistake when writing proofs is to make one or more invalid assumptions without realizing
it. The problem with this is that it generally means you are not proving what you set out to prove, but since
the proof seems to “work”, the mistake isn’t obvious. The next examples should illustrate what can go
wrong if you aren’t careful.

6 Example What is wrong with this proof that the sum of two even integersis even?

Proof: Let x andy be even integers. Thenx= 2a for some integera andy= 2a for some
integera. Sox+ y = 2a+2a= 2(a+a). Sincea+a is an integer, 2(a+a) is even, so the
sum of two even integers is even. �

Solution: The problem is that this is actually a proof thatx+ x is even ifx is even since
x= 2a= y was assumed.

Although this may not seem like a big deal since the statementis true, consider the next example.

7 Example What is wrong with the following proof that the sum of two evenintegers is divisible by 4?

Proof: Let x andy be to even integers. Thenx= 2a for some integera andy= 2a for some
integera. Sox+y= 2a+2a= 4a. Sincea is an integer, 4a is divisible by 4, so the sum of
two even integers is divisible by 4. �

Solution: Notice that 4 and 6 are even, but 4+ 6 = 10 is not divisible by 4. So clearly
the statement is incorrect. Therefore, there must be something wrong with the proof. The
problem is the same as it was above–the proof assumedx= y, even if that was not the intent
of the writer. So what was proven was that ifx is even, thenx+x is divisible by 4.

2



Direct Proofs 3

Let’s continue with some more examples of proper proofs.

8 Example Prove that ifn is an integer, thenn3−n is divisible by 6.

Proof: We haven3−n= (n−1)n(n+1), the product of three consecutive integers. Among
three consecutive integers there is at least an even one, andexactly one of them which is
divisible by 3. Since 2 and 3 do not have common factors, 6 divides the quantity(n−1)n(n+
1), and son3−n is divisible by 6. �

9 Definition The symbol∀ is theuniversal quantifier, and it is read as “for all”, “for each”, “for every”,
etc. For instance,∀x means “for allx”. When it precedes a statement, it means that the statement is true
for all values of x.

As the name suggests, the “all” refers to everything in theuniverse of discourse(or domain of dis-
course, or simplydomain), which is simply the set of objects to which the current discussion relates.

10 Example When you see the notation∀x ≥ 0, it means “for allx, x is greater than or equal to 0.”
However, what is the domain? In this case, the most logical possibilities are the integers or real numbers.
Generally speaking, the context of its use should make it clear what the universe is.

As long as we are introducing quantifiers, I suppose we shouldintroduce the other one that is often used.

11 Definition The symbol∃ is theexistential quantifier, and it is read as “there exists”, “there is”, “for
some”, etc. For instance,∃x means “For somex”. When it precedes a statement, it means that the statement
is true forat least one value of xin the universe.

Notice that¬∀= ∃ and¬∃= ∀.

12 Example Use the fact that the square of any real number is non-negative in order to prove theArith-
metic Mean-Geometric Mean Inequality:∀x≥ 0,∀y≥ 0

√
xy≤ x+y

2
.

Proof: Sincex andy are non-negative,
√

x and
√

y are real numbers, so
√

x−√y is a real
number. Since the square of any real number is greater than orequal to 0 we have

(
√

x−√y)2≥ 0.

Expanding (recall the FOIL method?) we get

x−2
√

xy+y≥ 0.

Subtracting 2
√

xy from both sides and dividing by 2, we get

x+y
2
≥√xy,

yielding the result. �
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4 Chapter 1

The previous example illustrates the creative part of writing proofs. The proof started out considering√
x−√y, which doesn’t seem to be related to what we wanted to prove. But hopefully after you read the

entire proof you see why it makes sense. If you are saying to yourself “I would never have thought of
starting with

√
x−√y?,” or “How do you know where to start?,” I am afraid there are no easy answers.

Writing proofs is as much of an art as it is a science. There arethree things that can help, though. First,
don’t be afraid toexperiment. If you aren’t sure where to begin, try starting at the end. Think about the
end goal and work backwards until you see a connection. Sometimes working both backward and forward
can help. Try some algebra and see where it gets you. But in theend, make sure your proof goes from
beginning to end. In other words, the order that you figured things out should not necessarily dictate the
order they appear in your proof.

The second thing you can do is toread example proofs. Although there is some creativity necessary
in proof writing, it is important to follow the proper proof writing techniques. Although there are often
many ways to prove the same statement, there is often one technique that works best for a given type of
problem. As you read more proofs, you will begin to have a better understanding of the various techniques
used, know when a particular technique might be the best choice, and become better at writing your own
proofs. If you see several proofs of similar problems, and the proofs look very similar, then when you
prove a similar problem, your proof should probably resemble those proofs. This is one area where some
students struggle—they submit proofs that look nothing like any of the examples they have seen, and they
are often incorrect. Perhaps it is because they are afraid that they are plagiarizing if they mimic another
proof too closely. However, mimicking a proof is not the sameas plagiarizing a sentence. To be clear, by
‘mimic’, I don’t mean just copy exactly what you see. I mean that you should read and understand several
examples. Once you understand the technique used in those examples, you should be able to see how to
use the same technique in your proof. For instance, in many ofthe examples related to even numbers, you
may have noticed that they start with statement like“Assume x is even. Then x= 2a for some integer a.”
So if you need to write a proof related to even numbers, what sort of statement might make sense to begin
your proof?

The third thing that can help ispractice. This applies not only to writing proofs, but to learning many
topics. An analogy might help here. Learning is often like sports—you don’t learn how to play basketball
(or insert your favorite sport, video game, or other hobby that takes some skill) by reading books and/or
watching people play it. Those things can be helpful (and in some cases necessary), but you will never
become a proficient basketball player unless you practice. Practicing a sport involves running many drills
to work on the fundamentals and then applying the skills you learned to new situations. Learning many
topics is exactly the same. First you need to do lots of exercises to practice the fundamental skills. Then
you can apply those skills to new situations. When you can do that well, you know you have a good
understanding of the topic. So if you want to become better atwriting proofs, you need to write more
proofs.

Let’s get back to some examples. But first another definition.

13 Definition The mod operator is defined as follows: fora≥ 0, n > 0, a modn is the integral non-
negative remainder whena is divided byn. Observe that this remainder is one of then numbers

0, 1, 2, . . . , n−1.

Java, C, and C++ all use% for mod (e.g.int x = a % n instead ofint x = a mod n).

14 Example Here are some example computations:

4



Proof by Contradiction 5

234 mod 100= 34
38 mod 15= 8
15 mod 38= 15

1961 mod 37= 0
1966 mod 37= 5
1 mod 5= 1

6 mod 5= 1
11 mod 5= 1
16 mod 5= 1

☞ Our definition ofmod required that n> 0 and a≥ 0. However, it is possible to define amodn
when a is negative. Unfortunately, there are two possible ways of doing so based on how you define
the remainder when the dividend is negative. One possible answer is negative and the other is positive.
However, they always differ by n, so computing one from the other is easy.

15 Example Since−13= (−2) ∗ 5− 3 and−13= (−3) ∗ 5+ 2, we might consider the remainder of
13/5 as either−3 or 2. Thus,−13 mod 5= −3 and−13 mod 5= 2 both seem like reasonable answers.
Fortunately, the two possible answers differ by 5. In fact, you can always obtain the positive possibility by
addingn to the negative possibility.

☞ When using themod operator in computer programs in situations where the dividend might be
negative, it is important to know which definition your programming language/compiler uses.Javareturns
a negative number when the dividend is negative. InC , the answer depends on the compiler.

16 Example Show that for every integern, n2 mod 4 is either 0 or 1.

Proof: Since every integer is either even (of the form 2k) or odd (of the form 2k+1) we
have two possibilities:

(2k)2 = 4k2 ≡ 0 (mod n),or
(2k+1)2 = 4(k2+k)+1 ≡ 1 (mod n).

Thus,n2 has remainder 0 or 1 when divided by 4. �

17 Example Prove that the sum of two squares of integers leaves remainder 0, 1 or 2 when divided by 4.

Proof: According to Example16, the squares of integers have remainder 0 or 1 when divided
by 4. Thus, when we add two squares, the possible remainders when divided by 4 are 0 (0+0),
1 (0+1 or 1+0) , and 2 (1+1). �

1.2 Proof by Contradiction

In this section we will see examples ofproof by contradiction. For this technique, when trying to prove
a premise, we assume that its negation is true and deduce incompatible statements from this. This implies
that the original statement must be true.

18 Definition Given a statementp, thenegationof p, written¬p, is the statement “notp” or “it is not the
case thatp.”

19 Example If p is the statement “x≤ y” then¬p is the statement “it is not the case thatx≤ y,” or “x> y”.

20 Example Prove that 2003 is not the sum of two squares.

Proof: Assume that 2003 is the sum of two squares. In Example17 we showed that the
sum of two squares leaves a remainder of 0, 1, or 2 when dividedby 4. But 2003 leaves a
remainder of 3. This is a contradiction. So it must be the casethat 2003 is not the sum of two
squares. �
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6 Chapter 1

☞ Here is the basic concept of contradiction proofs: You want to prove that a statement p is true. You
“test the waters” by seeing what happens if p isnot true. So you assume p is false and use proper proof
techniques to arrive at a contradiction. By “contradiction” I mean something that cannot be possible
true. Since you proved something that is not true, and you used proper proof techniques, then it must be
that your assumption was incorrect. Therefore the negationof your assumption—which is the original
statement you wanted to prove—must be true.

For some students, the trickiest part of contradiction proofs is what to contradict. Sometimes the
contradiction is the fact that p is true. At other times you arrive at a statement that is clearly false (e.g.
0 > 1). Generally speaking, you should just try a few things (e.g.do some algebra) and see where it
leads. With practice, this gets easier. In fact, with enoughpractice, this will become one of your favorite
techniques.

21 Example Show, without using a calculator, that 6−
√

35<
1
10

.

Proof: Assume that 6−
√

35≥ 1
10

. Then 6− 1
10
≥
√

35. Multiplying both sides by 10 and

doing a little arithmetic, we get 59≥ 10
√

35. Squaring both sides we obtain 3481≥ 3500,

which is clearly nonsense. Thus it must be the case that 6−
√

35<
1
10

. �

22 Definition A permutationis a function from a finite set to itself that reorders the elements of the set.1

23 Example Let Sbe the set{a,b,c}. Then(a,b,c), (b,c,a) and(a,c,b) are permutations ofS. (a,a,c)
is not a permutation ofS because it repeatsa and does not containb. (b,d,a) is not permutations ofS
becaused is not inS, andc is missing.

☞ In many contexts, when a list of objects occurs incurly braces, the order they are listed does not mat-
ter (e.g.{a,b,c} and{b,c,a}mean the same thing). On the other hand, when a list occurs in parentheses,
the orderdoesmatter (e.g.(a,b,c) and(b,c,a) do notmean the same thing).

24 Example Let (a1,a2, . . . ,an) be an arbitrary permutation of the numbers 1,2, . . . ,n, wheren is an odd
number. Prove that the product(a1−1)(a2−2) · · ·(an−n) is even.

Proof: Assume that the product is odd. Then all of the differencesak−k must be odd. Now
consider the sumS= (a1−1)+(a2−2)+ · · ·+(an−n). Since theak’s are a just a reordering
of 1,2, . . . ,n, S= 0 (think about it for a minute if you need to, but convince yourself of this
fact). ButSis the sum of an odd number of odd integers, so it must be odd. Since 0 is not odd,
we have a contradiction. Thus our initial assumption that all of theak−k are odd is wrong, so
one of them is even and hence the product is even. �

We will use facts about rational/irrational numbers to demonstrate some of the proof techniques. In
case, you have forgotten, here are the definitions.

25 Definition Recall that

• A rational numberis one that can be written asp/q, wherep andq are integers, withq 6= 0.

1We will discuss sets more formally later. For now, just thinkof a set as a collection of objects of some sort.

6



Proof by Contradiction 7

• An irrational numberis a real number that is not rational.

26 Example Prove that
√

2 is irrational.

We present two slightly different proofs. In both, we will use the fact that any positive integer greater than
1 can be factored uniquely as the product of primes (up to the order of the factors).

Proof: (#1) Assume that
√

2=
a
b
, wherea andb are positive integers withb 6= 0. We can

assumea andb have no factors in common (since if they did, we could cancel them and use
the resulting numerator and denominator asa andb). Multiplying by b and squaring both
sides yields 2b2 = a2. Clearly 2 must be a factor ofa2. Since 2 is prime,a must have 2 as a
factor, and thereforea2 has 22 as a factor. Then 2b2 must also have 22 as a factor. But this
implies that 2 is a factor ofb2, and therefore a factor ofb. This contradicts the fact thata and
b have no factors in common. Therefore

√
2 must be irrational. �

Proof: (#2) Assume that
√

2=
a
b
, wherea andb are positive integers withb 6= 0. This yields

2b2 = a2. Now botha2 andb2 have an even number of prime factors (think about why this
is). So 2b2 has an odd numbers of primes in its factorization anda2 has an even number of
primes in its factorization. This is a contradiction since they are the same number. Therefore√

2 must be irrational. �

Now that you have seen a few more examples, let’s discuss how/why contradiction proofs work. It
may not have occurred to you, but it turns out that if you startwith a false assumption, then you can prove
thatanythingis true. It may not be obvious how (e.g. how would you prove that all elephants are less than
1 foot tall given that 1+1 = 1?), but in theory it is possible. This is because statementsof the form “p
impliesq” are true if p is false, regardless of whether or notq is true or false. More on this in the chapter
on logic.

On the other hand, ifp is true, and “p impliesq” is true, thenq also has to be true (a rule calledmodus
ponens). We won’t prove this, but if you think about it for a few minutes, hopefully you’ll see why it is
correct. Contradiction proofs exploit this rule.

In a contradiction proof, we want to prove thatp is true. We begin by assuming it is false—that is, we
assume¬a is true. We use this fact to prove thatq—some false statement—is true. In other words, we
prove that the statement “¬p impliesq” is true, whereq is some false statement. But if¬a is true, and
“¬p impliesq” is true, modus ponens tells us thatq has to be true. So what’s wrong? We only have two
choices: either¬p is false or “¬p impliesq” is false. If we used proper proof techniques to establish that
“¬p impliesq” is true, then that isn’t the problem. Therefore, the only other possibility is that¬p is false,
implying thatp must be true. And that is how/why contradiction proofs work.

Let’s analyze the last proof we saw in light of this discussion. Theonlyassumption we made was that√
2 is rational (¬p=“

√
2 is rational”). From this (and only this), we were able to show thata2 has both an

even and an odd number of factors (q=“a2 has an even and an odd number of factors”, and we showed that
“¬p impliesq” is true). Thus, we know for certain that if

√
2 is rational, thena2 has an even and an odd

number of factors.2 This fact is indisputable since we proved it. If it is also true that
√

2 is rational, modus
ponens implies thata2 has an even and an odd number of factors. This is also indisputable. But we know
that a2 cannot have both an even and odd number of factors. In other words, we have a contradiction.
Therefore, something that has been said somewhere is wrong.Everything we said is indisputable except

2We did not prove thata2 has an even and an odd number of factors. We proved thatif
√

2 is rational, thena2 has an even
and an odd number of factors. It is very important that you understand the difference between these two statements.

7
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for one thing–that
√

2 is rational. That was never something we proved—we just assumed it. So it has to
be the case that this is false, which means that

√
2 must be irrational.

To summarize, if you want to prove something is true using a contradiction proof, assume it is false,
get a contradiction (i.e. prove a false statement), and declare that it must therefore be true.

Notice that whatq is doesn’t matter. In other words, given the assumption¬p, the goal in a contradic-
tion proof is to establish thatanyfalse statement is true. This is both a blessing and a curse. The blessing
is that any contradiction will do. The curse is that we don’t have a clear goal in mind, so it can sometimes
be difficult to know what to do. As mentioned previously, thisbecomes easier as you read and write more
proofs.

If this discussion has been a bit confusing, try re-reading it. The better you understand the theory
behind contradiction proofs, the better you will be at writing them. We will revisit some of these concepts
in the chapter on logic, so the more you understand from here,the better off you will be when you get
there.

O.K., enough theory. Let’s eat some ice cream and see some more examples!3

27 Example Let a,b be real numbers and assume that for all numbersε > 0 the following inequality
holds:

a< b+ ε.

Prove thata≤ b.

Solution: Assume thata > b. Subtractingb from both sides and dividing by 2, we obtain
a−b

2
> 0. Since the inequalitya < b+ ε holds for everyε > 0 in particular it holds for

ε =
a−b

2
. This implies that

a< b+
a−b

2
or a< b,

the last step requiring a little algebra. Thus starting withthe assumption thata> b we reach
the incompatible conclusion thata< b. The original assumption must be wrong. We therefore
conclude thata≤ b.

28 Example (Euclid) Show that there are infinitely many prime numbers.

Proof: We need to assume for this proof that any integer greater than1 is either a prime or a
product of primes. The following beautiful proof goes back to Euclid.

Assume that{p1, p2, . . . , pn} is a list that exhausts all the primes. Consider the number

N = p1p2 · · · pn+1.

This is a positive integer, clearly greater than 1. Observe that none of the primes on the list
{p1, p2, . . . , pn} divides N, since division by any of these primes leaves a remainder of 1.
SinceN is larger than any of the primes on this list, it is either a prime or divisible by a prime
outside this list. Thus we have shown that the assumption that any finite list of primes leads to
the existence of a prime outside this list. This implies thatthe number of primes is infinite.�

29 Example If a,b,c are odd integers, prove thatax2+bx+c= 0 does not have a rational number solu-
tion.

3Ice cream not provided.
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Proof by contraposition 9

Proof: Suppose
p
q

is a rational solution to the equation. We may assume thatp andq have

no prime factors in common, so eitherp andq are both odd, or one is odd and the other even.
Then

a
�

p
q

�2

+b
�

p
q

�
+c= 0 =⇒ ap2+bpq+cq2 = 0.

If both p andp were odd, thenap2+bpq+cq2 is also odd and hence6= 0. Similarly if one of
them is even and the other odd then eitherap2+bpqor bpq+cq2 is even andap2+bpq+cq2

is odd. This contradiction proves that the equation cannot have a rational root. �

1.3 Proof by contraposition

Consider the statement “If it rains, then the ground will getwet.” It should be pretty easy to convince
yourself that this is essentially equivalent to the statement “If the ground is not wet, then it didn’t rain.” By
this I simply mean that either both statements are true or both statements are false. This is the idea behind
the proof technique in this section.

30 Definition The contrapositiveof a statement of the form “ifp, thenq” is the statement “ifp is not
true, thenq is not true” or “if not p, then notq”

31 Theorem A statement is true if and only if its contrapositive is true.

☞ We will take a closer look at the relationship between statements of the form “if p then q”, including
the contrapositive, in the chapter on logic. For now it suffices to convince yourself that the previous
theorem is true–or at least seems to be true.

32 Definition A proof by contrapositionis a proof of a statement of the form “ifp, thenq” that proves
the equivalent statement “ifp is not true, thenq is not true.”

33 Example Prove that if 5n+2 is odd, thenn is odd.

Proof: We will instead prove that ifn is even (not odd), then 5n+ 2 is even (not odd).
Since this is the contrapositive of the original statement,a proof of this will prove that that the
original statement is true.
Assumen is even. Then= 2a for some integera. Then 5n+2= 5(2a)+2= 2(5a+1). Since
5a+1 is an integer, 2(5a+1) is even. �

1.4 Other Proof Techniques

There are many other proof techniques. We conclude this chapter with a small sampling of the more
common and/or interesting ones. We will see a few other important techniques later in the book.

34 Definition A trivial proof is a proof of a statement of the form “ifp, thenq” that doesn’t usep in the
proof.

35 Example Prove that ifx> 0, then(x+1)2−2x> x2.

9
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Proof: It is easy to see that

(x+1)2−2x = (x2+2x+1)−2x

= x2+1

> x2.

�

Notice that we never used the fact thatx> 0 in the proof.

36 Definition A proof by counterexampleis used to disprove a statement by giving an example of it being
false.

37 Example Prove or disprove that the product of two irrational number is irrational.

Proof: We showed in Example26that
√

2 is irrational. But
√

2∗
√

2= 2, which is an integer
so it is clearly rational. Thus the product of 2 irrational number is not always irrational. �

38 Example Prove or disprove that “Everybody Loves Raymond” (or that “Everybody Hates Chris”).

Proof: Since I don’t really love Raymond (and I don’t hate Chris), the statement is clearly
false. �

39 Definition A proof by casesbreaks up a statement into multiple cases and proves each oneseparately.

40 Example Prove that ifx 6= 0 is a real number, thenx2 > 0.

Proof: If x 6= 0, then eitherx> 0 orx< 0. If x> 0 (case 1), then we can multiply both sides
of x> 0 byx, giving x2 > 0.
If x< 0 (case 2), then we can write y=-x, wherey> 0. Thenx2 = (−y)2 = (−1)2y2 = y2 > 0
by case 1 (sincey> 0). Thusx2 > 0. In either case, we have shown thatx2 > 0. �

41 Definition Recall that for a non-negative integern the quantityn! (read “n factorial”) is defined as
follows. 0!= 1 and ifn> 0 thenn! is the product of all the integers from 1 ton inclusive:

n! = 1 ·2· · ·n.
42 Example 3! = 1 ·2 ·3= 6, and 5!= 1 ·2 ·3 ·4 ·5= 120.

Exercises

43 Problem Prove that ifn> 4 is composite, thenn divides(n−1)!.

44 Problem Prove thatp, p+2, andp+4 are not all prime unlessp= 3.

45 Problem If x is an integer and 7 divides 3x+2 prove that 7 also divides 15x2−11x−14.

46 Problem Let s be a positive integer. Prove that the closed interval[s,2s] contains a power of 2.

47 Problem Let p< q be twoconsecutiveodd primes. Prove thatp+q is a composite number, having at
least three, not necessarily distinct, prime factors.

48 Problem Prove, by arguing by contradiction, that there are no integersa,b,c,d such that

x4+2x2+2x+2= (x2+ax+b)(x2+cx+d).

49 Problem Use the fact that any odd number is of the form 8k±1 or 8k±3 in order to give a direct proof
that the square of any odd number leaves remainder 1 upon division by 8. Use this to prove that 2001 is
not the sum of three odd squares.

10
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Answers

43 Eithern is a perfect square,n= a2 in which case 2< a< 2a≤ n−1 and hencea and 2a are among the numbers
{3,4, . . . ,n−1} or n is not a perfect square, but still composite, withn= ab, 1< a< b< n−1.

44 The statement is clearly false forp= 2. If p> 3 and prime,p is odd. But then one of the three consecutive odd
numbersp, p+2, p+4, must be divisible by 3 and is different from 3 and hence not aprime.

45 We have 3x+2= 7a, with a an integer. Furthermore, 15x2−11x−14= (3x+2)(5x−7) = 7a(5x−7), whence
7 divides 15x2−11x−14.

46 If s is itself a power of 2 then we are done. Assume thats is strictly between two powers of 2: 2r−1 < s< 2r .
Then 2r = 2·2r−1 < 2s< 2·2r = 2r+1, sos< 2r < 2s< 2r+1, and so the interval[s,2s] contains 2r , a power of 2.

47 Sincep andq are odd, we know thatp+q is even, and so
p+q

2
is an integer. Butp< q gives 2p< p+q< 2q

and sop<
p+q

2
< q, that is, the average ofp andq lies between them. Sincep andq are consecutive primes, any

number between them is composite, and so divisible by at least two primes. Sop+q = 2
� p+q

2

�
is divisible by

the prime 2 and by at least two other primes dividing
p+q

2
.

48 We have
x4+2x2+2x+2 = (x2+ax+b)(x2+cx+d)

= x4+(a+c)x3+(d+b+ac)x2+(ad+bc)x+bd.

Thus
bd= 2, ad+bc= 2, d+b+bc= 2, a+c= 2.

Assumea,b,c,d are integers. Sincebd = 2, bd must be of opposite parity (one odd, the other even). But then
d+b must be odd, and sinced+b+bc= 2, bc must be odd, meaning that bothb andc are odd, whenced is even.
Thereforead is even, and soad+bc= 2 is even plus odd, that is, odd: a contradiction since 2 is notodd.

49 We have
(8k±1)2 = 64k2±16k+1= 8(8k2±2)+1,

(8k±3)2 = 64k2±48k+9= 8(8k2±6+1)+1,

proving that in all cases the remainder is 1 upon division by 8.
Now, a sum of three odd squares must leave remainder 3 upon division by 8. Thus if 2001 were a sum of three

squares, it would leave remainder 3= 1+1+1 upon division by 8. But 2001 leaves remainder 1 upon division by
8, a contradiction to the assumption that it is a sum of three squares.

Homework

50 Problem Prove that the product of two odd integers is odd.

51 Problem Prove or disprove that ifx is irrational, then 1/x is irrational.

52 Problem Prove that ifa andb are integers andab is even, then at least one ofa or b is even.

53 Problem Prove or disprove that there are 100 consecutive positive integers that are not perfect squares.
(Recall: a number is a perfect square if it can be written asa2 for some integera.)

11
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54 Problem Prove or disprove that ifx andy are rational, thenxy is rational. (Don’t over think it. This
one should be easy.)

55 Problem Mersenne primes are primes that are of the form 2p−1, wherep is prime. Are all numbers
of this form prime? Give a proof/counterexample.

56 Problem Consider the equationx4+y4 = 625. Are there any integersx andy that satisfy this equation?
Prove it.

57 Problem Let n be a positive integer. We can more formally define congruencemodulon by saying
thata≡ b (mod n) if n dividesa−b. Use this formal definition to prove each of the following:

1. a≡ a (mod n). (Reflexive property)

2. If a≡ b (mod n), thenb≡ a (mod n). (Symmetric property)

3. Prove that ifa≡ b (mod n) andb≡ c (mod n), thena≡ c (mod n). (Transitive property)

58 Problem Prove or disprove thatP= NP.4

4A successful solution to this will earn you anA in the course.
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Chapter 2
Programming Fundamentals and Algorithms

This chapter serves as a review of some of the programming concepts you should have picked up in
previous classes. It also includes several mathematical definitions that you may or may not be familiar
with. The emphasis is on presenting some basic algorithms asa way to refresh your memory on basic
programming concepts. We will also practice our skills at proving things in this chapter by sometimes
proving that an algorithm does as specified. Finally, we include a section onrecursion, which you may
not be as familiar with as the other topics.

Algorithms are presented in one of two forms:pseudocode(the syntax of which is described as deemed
necessary) orcoderesembling Java and C++.

2.1 Algorithms

An algorithmis a set of instructions that accomplishes a task in a finite amount of time.

59 Example (Area of a Trapezoid) Write an algorithm that gives the area of a trapezoid with height h
and basesa andb.

Solution: One possible solution is
�

�

�

�

Algorithm 2.1.1: AREATRAPEZOID(a,b,h)

return (h∗ (a+b)/2)

Notice that we use thereturn keyword to indicate what value should be passed to whoever calls an al-
gorithm. For instance, if someone callsx=AREATRAPAZOID(a,b,h), thenx will be assigned the value
h∗ (a+b)/2 since this is what was returned by the algorithm. Those who know Java, C, C++ , or just
about any other programming language should already be familiar with this concept.

60 Definition The symbol← is read “gets” and it is used to denoteassignmentof value.

61 Example The statementx← a+b means “assign tox the value ofa plus the value ofb.”

☞ Most modern programming languages use= for assignment. Other symbols used include:=, =:,
<<, and dozens more.
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22 Chapter 2

As it turns out, the most common symbol for assignment (=) is perhaps the most confusing for someone
who is first learning to program. One of the most common assignment statements is x= x+1;. What this
meansis “assign to the x its current value plus one.” However, whatit looks like is the mathematical
statement “x is equal to x+1”, which is false for every value of x. If this has tripped you up in the recent
past or still does, fear not. Eventually you will instinctively interpret it correctly, probably forgetting you
were ever confused by it.

62 Example (Swapping variables) Write an algorithm that will interchange the values of two variables,
x andy. That is, the contents ofx becomes that ofy and vice-versa.

Solution: We introduce a temporary variablet in order to store the contents ofx in y without
erasing the contents ofy:

�

�

�

�

Algorithm 2.1.2: SWAP(x,y)8>><>>:t← x comment:First storex in a temporary place

x← y comment:x now hasy’s original value

y← t comment:y now hasx’s original value

63 Example Prove that the algorithm in Example62 works correctly.

Proof: Assume the valuesa andb are passed into Swap. Then at the beginning of the
algorithm,x= a andy= b. We need to prove that after the algorithm is finished,x= b and
y = a. After the first line,x andy are unchanged andt = a since it was assigned the value
stored inx, which isa. After the second line,x= b since is is assigned the value stored iny,
which is b. Currentlyx = b, y = b, andt = a. Finally, after the third line,y = a since it is
assigned the value stored int, which isa. Sincex is still b, andy = a, the algorithm works
correctly. �

☞ The correctness of this algorithm, as well as some of the other algorithms in this chapter, is based
on the assumption that the variables arepassed by referencerather thanpassed by value.

In C and C++, it is possible to pass by value or by reference. The * or & you sometimes see in
argument lists is related to this. In Java, everything is passed by value and it is impossible to pass by
reference. However, because non-primitive variables in Java are essentially reference variables (that is,
they store a reference to an object, not the object itself), in some ways they act as if they were passed
by reference. This is where things start to get complicated.I don’t want to get into the subtleties here,
especially since there are arguments about whether or not these are the best term to use, etc. Let me give
an analogy instead.1

If I share a Google Doc with you, I am passing by reference. We both have a reference to the same
document. If you change the document, I will see the changes.If I change the document, you will see the
changes. On the other hand, if I e-mail you a Word document, I am passing by value. You have a copy of
the document I have. Essentially, I copied the currentvalue(or contents) of the document and gave that

1Inspired by a response on http://stackoverflow.com/questions/373419/whats-the-difference-between-passing-by-reference-
vs-passing-by-value
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to you. If you change the document, my document will remain unchanged. If I change my document, your
document will remain unchanged. This sounds pretty simple.However, it gets more complicated. In Java,
you can create a “primitive” Word document, but in a sense youcan’t create an “object” Word document.
Instead, a Google Doc is created and you are given access (i.e. a reference) to it. This is why in some
ways primitive and object variables seem to act differentlyin Java.

O.K., I’ve already said too much. The bottom line is this: Theassumption being made in the various
swap algorithms is that when a variable is passed in, the algorithm has direct access tothat variableand
not just a copy of it. Thus if changes are made to that variablein the algorithm, it is changing the variable
that was passed in. As it turns out, this subtlety does not matter for most of the algorithms here.

64 Example (Incorrect swap) Why is following approach to implement swap incorrect?
�

�

�

�

Algorithm 2.1.3: SWAPWRONG(x,y)¨
x← y
y← x

Solution: To see why this doesn’t work, notice that if we pass ina andb, thenx= a and
y= b at the beginning. After the first line,x= b andy= b. After the second linex= b and
y= b. The problem is that the first line overwrites the value stored in x, and we can’t recover
it.

65 Example (Swapping variables 2) Write an algorithm that will interchange the values of two variables
x andy without introducing a third variable.

Solution: The idea is to use sums and differences to store the values. Assume that initially
x= a andy= b.

�

�

�

�

Algorithm 2.1.4: SWAP2(x,y)8>><>>:x← x+y comment:x= a+b andy= b.

y← x−y comment:y= a+b−b= a andx= a+b.

x← x−y comment:y= a andx= a+b−a= b.

Notice thatthis will only work for numeric variables, and that it won’t always work for real
numbers. We leave the details to the reader, but consider what happens ifx= 10,000,000,000
andy = .00000000001, for instance. Also notice that the comments inthe code essentially
provide a proof that the algorithm is correct.

66 Example It was mentioned that the comments in the algorithm from Example 65 provide a proof of
its correctness. What assumption is being made that might beincorrect?

Solution: It is assumed that the equations are exactly correct. For instance, after the first
line we are told thatx= a+b. However, depending on the data type and exact value, it may
be the case thatx is notexactly a+b, in which case the algorithm will fail.
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2.2 If-then-else Statements

67 Definition TheIf-then-elsecontrol statement has the following syntax:

if expression

then

8><>:statementA1
...
statementAn

else

8><>:statementB1
...
statementBm

and evaluates as follows. Ifexpression is true then allstatementA’s are executed. Otherwise allstate-
mentB’s are executed.

68 Example (Maximum of 2 Numbers) Write an algorithm that will determine the maximum of two
numbers. Prove your algorithm is correct.

Solution: Here is a possible approach.
�

�

�

�

Algorithm 2.2.2: MAX (x,y)

if x≥ y
then return (x)
else return (y)

If x is the maximum orx= y, thenx≥ y, so the algorithms returnsx, the correct answer. Ify is
the maximum andy 6= x, theny> x and the algorithm returnsy, which is clearly also correct.

69 Example (Maximum of 3 Numbers) Write an algorithm that will determine the maximum of three
numbers. Prove that your algorithm is correct.

Solution: Here is a possible approach using the preceding function.
�

�

�

�

Algorithm 2.2.3: MAX 3(x,y,z)

w= Max(x,y)
return (Max(w,z))

We will use a proof by cases. Ifx is the maximum, thenw =MAX(x,y) = x. so it returns
MAX(w,z) = x, which is correct. Ify is the maximum, the argument is the same. Ifz is the
maximum, thenw is eitherx or y, but in either casew≤ z, so it returns MAX(w,z) = z.

70 Example (Compound Test) Write an algorithm that prints “Hello” if one enters a numberbetween 4
and 6 (inclusive) and “Goodbye” otherwise. You are not allowed to use any boolean operators likeand,
or, etc.

Solution: Here is a possible answer.
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�

�

�

�

Algorithm 2.2.4: HELLOGOODBYE(x)

if x>= 4

then

8><>:if x<= 6
then output (Hello.)
else output(Goodbye.)

else output(Goodbye.)

2.3 Thefor loop

71 Definition Thefor loop has either of the following syntaxes:2

for indexVariable← lowerValueto upperValue
do statements

or

for indexVariable← upperValuedownto lowerValue
do statements

HerelowerValueandupperValuemust be non-negative integers withlowerValue≤ upperValue. In both
cases, the code in the loop is executed for every value fromlowerValueto upperValue, in the first case in
that order, and in the second case in the reverse order.

72 Example (Factorial Integers) Write an algorithm that given an arbitrary non-negative integern out-
putsn!.

Solution: Here is a possible answer.
�

�

�

�

Algorithm 2.3.3: FACTORIAL (n)

comment:Must input an integern≥ 0.

f ← 1
if n= 0

then return ( f )

else
¨

for i← 1 to n
do f ← f ∗ i

return ( f )

73 Example (Positive Integral Powers 1) Write an algorithm that will computexn, wherex is a given
real number andn is a given positive integer.

Solution: We can approach this problem as we did the factorial functionin example72. Thus
one possible answer would be

2The syntax in C, C++, and Java is slightly different and makesthe for loop much more powerful than the one presented
here.
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�

�

�

�

Algorithm 2.3.4: POWER1(x,n)

power← 1
for i← 1 to n

do power← x∗power
return (power)

2.4 Arrays

74 Definition An array is an aggregate of homogeneous types. Thelength of the arrayis the number of
entries it has.

A 1-dimensional array is akin to a mathematical vector. Thusif X is 1-dimensional array of lengthn then

X = (X[0],X[1], . . .,X[n−1]).

We will follow the convention of common languages like Java,C, and C++ by indexing the arrays from 0.
We will always declare the length of the array at the beginning of a code fragment by means of a comment.

A 2-dimensional array is akin to a mathematical matrix. Thusif Y is a 2-dimensional array with 2 rows
and 3 columns then

Y =

�
Y[0][0] Y[0][1] Y[0][2]
Y[1][0] Y[1][1] Y[1][2]

�
.

75 Example (Maximum of n Numbers) Write an algorithm that determines the maximum element of a
1-dimensional array ofn elements.

Solution: We declare the first value of the array (the 0-th entry) to be the maximum (asentinel
value). Then we successively compare it to othern−1 entries. If an entry is found to be larger
than it, that entry is declared the maximum.

�

�

�

�

Algorithm 2.4.1: MAX ENTRYINARRAY(n,X)

comment:X is an array of lengthn.

max← X[0]
for i← 1 to n−1

do
¨

if X[i]> max
then max= X[i]

return (max)

76 Definition (Floor and Ceiling Functions) The floor of a real numberx, written ⌊x⌋, is the largest
integer that is less than or equal tox. Theceiling of a real numberx, written ⌈x⌉, is the smallest integer
that is greater than or equal tox.

77 Example ⌊4.5⌋= 4, ⌈4.5⌉= 5, ⌊7⌋= ⌈7⌉= 7. In general, ifn is an integer, then⌊n⌋= ⌈n⌉= n.

78 Theorem Let a be an integer andx be a real number. Thena≤ x if and only if a≤ ⌊x⌋.
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Proof: If a≤ ⌊x⌋, thena≤ ⌊x⌋ ≤ x is clear. On the other hand, assumea≤ x. Thena is an
integer that is less than or equal tox. Since⌊x⌋ is the largest integer that is less than or equal
to x, a≤ ⌊x⌋. �

The floor function is important because in many programming languages, including Java, C, and C++,
integer divisiontruncates. That is, when you computen/k for integern andk, the result is rounded down
to ⌊n/k⌋. In light of this, the following Corollary is sometimes important to remember.

79 Corollary Let a, b, andc be integers. Thena≤ b/c if and only if a≤ ⌊b/c⌋.

Proof: Sinceb/c is a real number, this is just a special case of Theorem78. �

80 Example (Reversing an Array) An array (X[0], . . .X[n− 1]) is given. Without introducing another
array, put its entries in reverse order. Prove that your algorithm is correct.

Solution: Observe that we want to exchange the first and last element, the second and
second-to-last element, etc. That is, we want to exchangeX[0]↔ X[n−1], X[1]↔ X[n−2],
. . . ,X[k]↔X[n−k−1]. But what value ofk is correct? If we go all the way ton−1, the result
will be that every element is swapped and then swapped back, so we will accomplish nothing.
Hopefully you can see that if we swap elements whenk< n−k−1, we will swap each element
at most once. The “at most once” is because if the array has an odd number of elements, the
middle element occurs whenk = n− k− 1, but we can skip it since it doesn’t need to be
swapped with anything. Notice thatk< n−k−1 if and only if 2k< n−1. Sincek andn are
integers, this is equivalent to 2k≤ n−2. This is equivalent tok≤ ⌊(n−2)/2⌋ by Corollary79.
Thus, we need to swap the elements 0,1, . . . ,⌊(n−2)/2⌋ with elementsn−1,n−2, . . . ,n−
1−⌊(n− 2)/2⌋ = n− ⌊n/2⌋, respectively. The following algorithm implements this idea,
using the swapping algorithm from example62.

�

�

�

�

Algorithm 2.4.2: REVERSEARRAY(n,X)

comment:X is an array of lengthn.

for i← 0 to ⌊(n−2)/2⌋
do Swap(X[i],X[n− i−1])

Hopefully the previous example helps you realize that you need to be careful when working with
arrays. Formulas related to array indices change dependingon whether arrays are indexed starting at 0
or 1. In addition, formulas involving the number of elementsin an array can be tricky, especially when
the formulas relate to partitioning the array into pieces (e.g. into two halves). These can both lead to
the so-called “off by one” error that is common in computer science. The next example illustrates these
problems, and one way to deal with it.

81 Example Give a formula for the index of the middle element of an array of sizen.

Solution: Clearly the answer should be somewhere close ton/2. Unfortunately, ifn is odd,
n/2 isn’t an integer. And clearly the answer won’t be the same when indexing starting at both
0 and 1. Maybe we should try a few concrete examples.

Let’s first assume indexing starts at 1. Ifn= 9, the middle element is the 5th element, which
has index 5= ⌈9/2⌉. If n = 10, the middle element is the 5th or 6th element. Let’s go with

27



28 Chapter 2

the 5th element. Then the index is 5= 10/2= ⌈10/2⌉. Thus the formula⌈n/2⌉ should work.
You should plug in a few more values to convince yourself thatthis is correct.

Now let’s assume indexing starts at 0. There are a a few equivalent formulas we can come up
with. For starters,⌈n/2⌉−1 should work since this is just 1 less than the answer above, and
the indices are all shifted by one. But let’s come up with a formula from scratch. Ifn= 9, the
index of the middle element is 4= ⌊9/2⌋. If n= 10, the index is 46= ⌊10/2⌋. So⌊n/2⌋ works
whenn is odd, but not whenn is even. This one is not as obvious as it was when we started
indexing at 1. With a little thought, you may realize that⌊(n−1)/2⌋ works.

Now you should ask yourself: Is⌈n/2⌉−1 = ⌊(n−1)/2⌋ for all values ofn? If not, one of
our formulas is incorrect. You should convince yourself that these are indeed equal.

82 Definition (Boolean Variable) A boolean variableis a variable that only accepts one of two possible
values:true or false.

83 Definition (Not Operator) Thenot unary operator changes the status of a boolean variable fromtrue
to falseand vice-versa.

Thenot operator is essentially the same thing as thenegationwe discussed earlier. The difference is
context—we are applyingnot to a boolean variable, whereas we appliednegationto a statement.

84 Example (The Locker-room Problem) A locker room containsn lockers, numbered 1 throughn. Ini-
tially all doors are open. Person number 1 enters and closes all the doors. Person number 2 enters and
opens all the doors whose numbers are multiples of 2. Person number 3 enters and toggles all doors that
are multiples of 3. That is, he closes them if they are open andopens them if they are closed. This process
continues, with personi toggling each door that is a multiple ofi. Write an algorithm to determine which
lockers are closed when alln people are done.

Solution: Here is one possible approach. We use a boolean arrayLocker of sizen+1 to
denote the lockers (we will ignoreLocker[0]). The valuetrue will denote an open locker
and the valuefalsewill denote a closed locker.3

�

�

�

�

Algorithm 2.4.3: LOCKERROOMPROBLEM(n,Locker)

comment:Lockeris an array of sizen+1.

comment:Closing all lockers in the first for loop.

for i← 1 to n
do Locker[i]← false

comment:From open to closed and vice-versa in the second loop.

for j← 2 to n

do

8><>:for k← j to n
do if k mod j = 0
then Locker[k] = not Locker[k]

for l ← 1 to n

do
¨

if Locker[l ] = false
then output (Locker l is closed.)

3We will later see that those locker doors whose numbers are squares are the ones which are closed.
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2.5 Thewhile loop

85 Definition Thewhile loop has syntax:

while test
do

�
body of loop

The commands in the body of the loop will be executed as long astest evaluates to true.

86 Example (Different Elements in an Array) An arrayX satisfiesX[0]≤ X[1]≤ ·· · ≤ X[n−1]. Write
an algorithm that finds the number of entries which are different.

Solution: Here is one possible approach.
�

�

�

�

Algorithm 2.5.2: DIFFERENT(n,X)

comment:X is an array of lengthn.

i← 0
different← 1
while i 6= n−1

do

8><>:i← i +1
if x[i] 6= x[i−1]

then different← different+1
return (different)

87 Definition Recall that a positive integerp > 1 is aprime if its only positive factors are 1 andp. A
positive integerc> 1 which is not prime is said to becomposite.4

88 Theorem Let n> 1 be a positive integer. Eithern is prime orn has a prime factor≤√n.

Proof: If n is prime there is nothing to prove. Assume thatn is composite. Thenn can
be written as the productn = ab with 1< a≤ b, wherea andb are integers. If every prime
factor ofn were>

√
n, thena>

√
n andb>

√
n. But thenn= ab>

√
n
√

n= n, which is a
contradiction. Thusn must have a prime factor≤√n. �

89 Example To determine whether 103 is prime we proceed as follows. Observe that⌊
√

103⌋ = 10.
We now divide 103 by every prime≤ 10. If one of these primes divides 103, then 103 is not a prime.
Otherwise, 103 is a prime. Notice that 103 mod 2= 1, 103 mod 3= 1, 103 mod 5= 3, and 103 mod 7=
5. Since none of these remainders is 0, 103 is prime.

90 Example (Eratosthenes’ Primality Testing) Give an algorithm to determine whether a given positive
integern is prime.

Solution: We first deal with a few base cases. Ifn= 1, it is not prime, and ifn= 2 orn= 3
it is prime. Then we determine ifn is even, in which case it is not prime. Finally, we loop
through all of the odd values, starting with 3 and going to

√
n, determining whether or notn

is a multiple of any of them. If so, it is not prime. If we get through all of this, thenn has no
factors less than or equal to

√
n which means it must be prime. Here is the algorithm based

on this description.

4Thus 1 is neither prime nor composite.
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�

�

�

�

Algorithm 2.5.3: ISPRIME(n)

if n= 1 output (n is a unit.)
if n= 2 output (n is prime.)
if n= 3 output (n is prime.)
if n> 3

then

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
if n mod 2= 0

then output (n is even. Its smallest factor is 2.)

else

8>>>>>>>>>>><>>>>>>>>>>>:
flag← true
i← 1
while i ≤ ⌊√n⌋ and flag= true

do

8><>:i← i +2
if n mod i = 0

then
�
flag← false

if flag= true
then output (n is prime.)
else output(Not prime. Smallest factor isi.)

It should be noted that although this algorithm works, it is not very practical for large values
of n. In fact, there is no known algorithm that can factor numbersefficiently on a “classical”
computer. The most commonly used public-key cryptosystemsrely on the assumption that
there is no efficient algorithm to factor a number. However, if you have a quantum computer,
you are in luck. Shor’s algorithm actuallycan factor numbers efficiently.

Exercises

91 Problem What will the following algorithm return forn= 5? You must trace the algorithm carefully,
outlining all your steps.

�

�

�

�

Algorithm 2.5.4: MYSTERY(n)

x← 0
i← 1
while n> 1

do

8>>>><>>>>:if n∗ i > 4
then x← x+2n
elsex← x+n

n← n−2
i← i +1

return (x)

92 Problem Assume that the division operator/ acts as follows on the integers: if the division is not
even,a/b truncates the decimal part of the quotient (This is how it works in Java, C, C++, and many other
languages). For example 5/2= 2, 5/3= 1. Write an algorithm that reverses the digits of a given integer
that exploits this fact. For example, if 123476 is the input,the output should be 674321. Use only one
while loop, one mod operation, one multiplication by 10 and one division by 10.
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93 Problem Write an algorithm that reads an array ofn integers and finds the second smallest entry.

Answers

91 In the first turn around the loop,n= 5, i = 1, n∗ i > 4 and thusx= 10. Now n= 3, i = 2, and we go a second
turn around the loop. Sincen∗ i > 4, x= 10+2∗3= 16. Finally,n= 1, i = 3, and the loop stops. Hencex= 16 is
returned.

92 Here is a possible approach.

�

�

�

�

Algorithm 2.5.5: REVERSE(n)

comment:n is a positive integer.

x← 0
while n 6= 0

do

8>>><>>>:comment:x accumulates truncated digit.

x← x∗10+n mod 10
comment:We now truncate a digit of the input.

n← n/10
return (x)

93 Here is one possible approach.

�

�

�

�

Algorithm 2.5.6: SECONDSMALLEST (n,X)

comment:X is an array of lengthn.

second← x[0]
minimum← second
for i← 0 to n−1

do

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
if minimum= second

then

8<:if X[i]< minimum
then minimum← X[i]
elsesecond← X[i]

else

8>>>>>>><>>>>>>>:
if X[i]< minimum

then

¨
second←minimum
minimum← X[i]

else

¨
if X[i]> minimumand X[i]< second

then second← X[i]

Homework

☞ When a problem asks for an algorithm, always assume it is asking for the most efficient algorithm
you can find.
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94 Problem Implement the swap operation for integers without using an additional variable and without
using addition or subtraction. (Hint: bit operations)

95 Problem Prove or disprove that the following method correctly computes the maximum of two inte-
gersx andy, assuming that theminimum method correctly computes the minimum ofx andy.

int maximum(int x, int y) {
int min = minimum(x,y);
int max = x + y - min;
return max;

}

96 Problem Give a recursive algorithm that computesn!. You can assumen≥ 0.

97 Problem Although different programming languages and compilers might return different answers to
the computationa modb whena< 0, they always return a value between−(b−1) andb−1. Given that
fact, give an algorithm that will always return an answer between 0 andb−1, regardless of whether or not
a is negative. (Note: Generally speaking,a modb 6= −a modb. In other words, multiplying by−1 will
notwork.)

98 Problem Repeat the previous problem, but do not use any conditional statements.

99 Problem What will the following algorithm return forn= 3?
�

�

�

�

Algorithm 2.5.7: MYSTERY(n)

x← 0
while n> 0

do

8>>>><>>>>:for i← 1 to n

do
¨

for j← i to n
do

�
x← i j +x

n← n−1
return (x)

100 Problem Give an algorithm that will round a real numberx to the closest integer (round up at .5).
Here’s the trick, though: You canonlyusefloor(y), ceiling(y), basic arithmetic (+, -, *, /) and/or
numbers. Youcannotuse if statements or anything else!

101 Problem Assuming integer division truncates, write an algorithm that will computen/m, but will
roundthe result instead of truncating it. For instance, 5/4 should return 1, but 7/4 should return 2 instead
of 1.

102 Problem Repeat the previous problem, but do not use any conditional statements, double, floats, or
the mod operator. In other words, do it using only integer arithmetic.

103 Problem Assume you have a functionrandom(n) that returns a random integer between 0 andn−1.
Write an algorithm that returns a random number betweena andb, wherea andb are integers. You may
only call random(n) once and you may not use conditional statements.
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104 Problem Assume you have a functionrandom() that returns a positive random number. Write an
algorithm that returns a random number betweena andb, wherea andb are integers. You may only call
random() once and you may not use conditional statements.

105 Problem The following method is a simplified version of a method that might be used to implement
a hash table or in a cryptographic system. Assume that for oneparticular use the number returned by this
function has to have the opposite parity (even/odd) of the parameter. For instance,hash_it(4) returns
49 which has the opposite parity of 4, so it works for 4. Prove or disprove that this function always returns
a value of opposite parity of the parameter.

int hash_it(int x) {
return x*x+6*x+9;

}

106 Problem Give an algorithm that computes all of the primes that are less than or equal ton. For
simplicity, you can just print all of the prime numbers up ton. Your algorithm should be as efficient as
possible. One approach is to incorporate an array into the algorithm from Example90.

107 Problem Prove or disprove that the following method computes the absolute value ofx. For simplic-
ity, assume that all of the calculations are performed with perfect precision. Also,sqrt(x) computes√

x. Finally, you may use the fact that
√

x2 = x whenx≥ 0 if it will help.

double absoluteValue(double x) {
double square = x*x;
double answer = sqrt(square);
return answer;

}

108 Problem Prove or disprove that the following method computes the absolute value ofx. For simplic-
ity, assume that all of the calculations are performed with perfect precision. Also,sqrt(x) computes√

x. Finally, you may use the fact that(
√

x)2 = x whenx≥ 0 if it will help.

double absoluteValue(double x) {
double root = sqrt(x);
double answer = root*root;
return answer;

}

109 Problem Problems107and 108both assumed that “all of the calculations are performed with perfect
precision”. Is that a realistic assumption? Give an exampleof an input for which the each algorithm will
work properly. Then give an example of an input for which eachalgorithm will not work properly. You
can implement and run the algorithms to do some testing if youwish.

110 Problem The following method is supposed to do some computations on apositive number that
result in getting the original number back. Prove or disprove that this method always returns theexact
value that was passed in. (Note: Unlike in the previous problems, here we will assume that although a
double stores a real number as accurately as possible, it uses only afixed amount of space. Thus a
double is unable to store the exact value of any irrational number–it instead stores an approximation.
Also,sqrt(x) computes

√
x. You may assume that

√
2 is irrational if you find this fact helpful.)
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double returnTheParameterUnmodified(double x) {
double a = sqrt(x);
double b = a*a;
return b;

}
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Chapter 3
Propositional Logic, Sets, and Boolean Algebra

In this chapter we take a look at propositional logic and sets. On the surface they seem quite different, so
placing them in the same chapter may seem odd. However, the section on Boolean algebra will make it
clear that sets and logic actually have a lot more in common than you might think. When discussing sets
we will take a brief look at relations and equivalence relations, with particular emphasis on an important
equivalence relation for many computer science applications.

3.1 Propositional Logic

111 Definition A boolean proposition(or simply proposition) is a statement which is eithertrue or
false. We call this thetruth valueof the proposition.

Whether the statement isobviouslytrue or false does not enter in the definition. One only needs to know
that its certainty can be established.

112 Example The following are boolean propositions and their values, ifknown:

➊ 72 = 49. ( true )

➋ 5> 6. ( false)

➌ If p is a prime thenp is odd. (false)

➍ There exists infinitely many primes which are the sum of a square and 1. (unknown)

➎ There is a God. (unknown)

➏ There is a dog. (true )

➐ I am the Pope. (false)

➑ Every prime that leaves remainder 1 when divided by 4 is the sum of two squares. (true )

➒ Every even integer greater than 6 is the sum of two distinct primes. (unknown)

113 Example The following are not boolean propositions, since it is impossible to assign atrue or
false value to them.
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➊ Whenever I shampoo my camel.

➋ Sit on a potato pan, Otis!

➌ y← x.

➍ This sentence is false.

114 Definition A boolean operatoris used to combine one or more boolean propositions to form a new
one. A proposition formed in this way is called acompound proposition. For convenience, we call
the propositions used to form a compound propositionvariablesfor reasons that should become evident
shortly. We will consider the following boolean operators in these notes. The evaluation rules for each are
given in Table3.1. For each, assumep andq are propositions.

➊ The negation(or NOT) of p, denoted by¬p is the proposition “it is not the case thatp”. ¬p is
true whenp is false, and vice-versa. Other notations includep, ∼ p, and !p (many programming
languages use this one).

➋ Theconjunction(or AND) of pandq, denoted byp∧q, is the proposition “p andq”. The conjunction
of p andq is true whenp andq are both true and false otherwise.

➌ Thedisjunction(or OR) of p andq, denoted byp∨q, is the proposition “p or q”. The disjunction
of p andq is false when bothp andq are false and true otherwise. Put another way, ifp is true,q is
true, or both are true, the disjunction is true.

➍ Theexclusive or(or XOR) of p andq, denoted byp⊕q, is the proposition “p is true orq is true, but
not both”. The exclusive or ofp andq is true when exactly one ofp or q is true.

➎ Theconditional statement(or implies) involving p andq, denoted byp→ q, is the proposition “if
p, thenq”. It is false whenp is true andq is false, and true otherwise. In the statementp→ q, we
call p thepremise(or hypothesisor antecedent) andq theconclusion(or consequence).

➏ Thebiconditional statementinvolving p andq, denoted byp↔ q, is the proposition “p if and only
if q”. It is true whenp andq have the same truth value, and false otherwise.

p q (¬p) (p∧q) (p∨q) p⊕q (p→ q) (p↔ q)
T T F T T F T T
T F F F T T F F
F T T F T T T F
F F T F F F T T

Table 3.1: Evaluation Rules

Some of these definitions should be familiar to you. When you learned about Boolean expressions in
your programming courses, you probably saw at leastAND, ORandNOT. The notation is probably differ-
ent, though. In Java, C, and C++,! is used for NOT,&& is used for AND, and|| is used for OR. Although
propositional logic and Boolean expressions have a lot in common (more on that in Section3.3), there are
some subtle differences between them, especially as implemented in many programming languages. We
will see more on this later.
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☞ Notice that∨ is an inclusive or, meaning that it is true if both are true, whereas⊕ is anexclusive
or, meaning it is false if both are true. The difference between∨ and⊕ is complicated by the fact that in
English, the word “or” to can mean either of these depending on context. For instance, if your mother
tells you “you can have cake or ice cream” she is likely using the exclusive or, whereas a prerequisite of
“Math 110 or demonstrated competency with algebra” clearlyhas the inclusive or in mind.

☞ Theconditionaloperator is by far the one that is the most difficult to get a handle on for at least
two reasons. First, the conditional statement p→ q is not saying anything about p or q by themselves.
It is only saying that if p is true, then q has to also be true. Itdoesn’t say anything about the case that
p is not true. This brings us to the second reason. Should F→ T be true or false? Although it seems
counterintuitive to some, it should be true. Again, p→ q is telling us about the value of q when p is true
(i.e., if p is true, the qmust betrue). What does it tell us if p is false? Nothing. As strange as it might
seem, when p is false, the whole statement is true regardlessof the truth value of q.

If in the end you are still confused, you can simply fall back on the formal definition: p→ q is false
when p is true and q is false, and is true otherwise. In other words, if interpreting p→ q as the English
sentence “p implies q” is more harmful than helpful in understanding the concept, don’t worry about why
it doesn’t make sense and just remember the definition.1

115 Example Consider the propositions:

• a : I will eat my socks.

• b : It is snowing.

• c : I will go jogging.

The sentences below are represented by means of logical operators.

➊ (b∨¬b)→ c: Whether or not it is snowing, I will go jogging.

➋ b→¬c: If it is snowing, I will not go jogging.

➌ b→ (a∧¬c): If it is snowing, I will eat my socks, but I will not go jogging.

➍ a↔ c: When I eat my socks I go jogging, and when I go jogging I eat my socks.

The operators were listed in order of precedence, with the exception that∨ and⊕ are swapped.2 Also,
¬ has right-to-left associativity, all other operators listed have left-to-right associativity. It is important to
know the precedence rules for the boolean operators (or at least be able to look it up) so you can properly
interpret complex boolean expressions. However, I generally prefer to always use enough parentheses to
make it immediately clear, especially when I am writing code.

116 Example According to the precedence rules,¬a→ a∨b should be interpreted as(¬a)→ (a∨b).

117 Example According to the precedence rules,a∧¬b→ c should be interpreted as(a∧¬b)→ c.

1In mathematics, one tries to define things so they make sense immediately. Sometimes this is not possible (if the concept is
very complicated and/or it just doesn’t relate to somethingthat is familiar). Sometimes a term or concept is defined poorly but
because of prior use the definition sticks. Sometimes it makes perfect sense to some people and not to others, probably based
on each person’s background. I think this last possibility may be to blame in this case.

2Why aren’t they presented in the other order? Because it makes more sense to defineORbefore definingXOR.
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118 Example According to the precedence rules,a∧b∨c should be interpreted as(a∧b)∨c, which is
not the same thing asa∧ (b∨c). To convince yourself of this, consider the case whena= F, b= F, and
c= T.

119 Example According to the associativity rules,a→ b→ c should be interpreted as(a→ b)→ c.
It is important to note that(a→ b)→ c anda→ (b→ c) arenot equivalent. It is probably worth your
effort to convince yourself of this by finding an assignment of truth values fora, b, andc such that the two
proposition have different truth values.

120 Example Write a code fragment that determines whether or not three numbers can be the lengths of
the sides of a triangle.

Solution: Let a, b, andc be the numbers. First we must havea > 0, b > 0, andc > 0.
Also, the sum of any two of them must be larger than the third inorder to form a triangle.
More specifically, we needa+b > c, b+ c > a, andc+a > b. This leads to the following
algorithm.

�

�

�

�

Algorithm 3.1.1: ISITATRIANGLE(a,b,c)

if a> 0 and b> 0 and c> 0 and a+b> c and b+c> a and c+a> b
then return ( true )
else return ( false)

121 Definition A truth tableis a table that shows the truth value of a compound proposition for all possi-
ble combinations of truth assignments to the variables in the proposition. If there aren variables, the truth
table will have 2n rows.

122 Example Construct the truth table of the propositiona∨¬b∧c.

Solution: Since there are three variables, the truth table will have 23 = 8 rows. Notice that
by the precedence rules, the given proposition is equivalent to a∨ (¬b∧c), since∧ has higher
precedence than∨. The truth table is in Table3.2.

a b c ¬b ¬b∧c a∨ (¬b∧c)
T T T F F T
T T F F F T
T F T T T T
T F F T F T
F T T F F F
F T F F F F
F F T T T T
F F F T F F

Table 3.2: Example122.
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☞ Notice that there are several columns in the truth table besides the columns for the variables and the
column for the proposition we are concerned with. These are “helper” or “intermediate” columns (those
are not official definitions). Their purpose is simply to helpus compute the final column more easily and
without (hopefully) making any mistakes.

☞ As long as all possible values of the variables are included,the order of the rows of a truth table
does not matter. However, by convention one of two orderingsis usually used. Since there is an interesting
connection to the binary representation of numbers, we willdiscuss it further.

123 Example (Ordering the rows of a Truth Table) Notice that the values of the variables can be thought
of as the index of the row. So if a proposition involves two variables, the values in the first two columns
are used as a sort of index. We can order the rows by assigning anumber to each row based on the values
in these columns. The order used here essentially computes an index as follows: For the “index” columns,
think of each T as a 0 and each F as a 1. Now treat the numbers in these columns as binary numbers and
order the rows appropriately. For instance, if there are three variables, we can think of it as shown in the
Table3.3.

a b c index
T T T 0 0 0 0
T T F 0 0 1 1
T F T 0 1 0 2
T F F 0 1 1 3
F T T 1 0 0 4
F T F 1 0 1 5
F F T 1 1 0 6
F F F 1 1 1 7

Table 3.3: Ordering the rows (Example123)

The other common ordering does the same thing, but maps T to 1 and F to 0.
There is also a way of thinking about this recursively. That is, given an ordering for a table withn

variables, we can compute an ordering for a table withn+1 variables. It works as follows: Make two
copies of the columns corresponding to the variables, appending a T to the beginning of the first copy, and
an F to the beginning of the second copy.

124 Definition A compound proposition that is always true is called atautology. One that is always false
is acontradiction. Finally, one that is neither of these is called acontingency.

3.1.1 Propositional Equivalence

125 Definition We want to define what it means for two propositions to beequivalent(or logically equiv-
alent). Here are three equivalent definitions:

➊ Propositionsp andq are equivalent if they have the same truth table.

➋ Propositionsp andq are equivalent if the propositionp↔ q is a tautology.

➌ Propositionsp andq are equivalent if they have the same truth value for all assignments of truth
values to the variables.
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Whenp andq are equivalent, we writep= q. One alternative notation for this isp≡ q.

☞ p = q is not a compound proposition. Rather it is a statement about the relationship between two
propositions.

There are many logical equivalences (oridentities) that come in handy when working with compound
propositions. Many of them (e.g. commutative laws, associative laws, distributive laws) will resemble the
arithmetic laws you learned in grade school. Others are verydifferent. We will give just a few examples
here. We will see many more in Section3.3when we discuss the relationship between propositional logic
and Boolean algebras.

126 Theorem (Double Negation) ¬(¬a) = a.

Proof: Table3.4 shows the truth table fora and¬(¬a). Since the entries for botha and
¬(¬a) are the same for every row,¬(¬a) = a. �

a ¬a ¬(¬a)
T F T
F T F

Table 3.4: Theorem126.

127 Theorem (De Morgan’s Laws) ¬(a∨b) = ¬a∧¬b and¬(a∧b) = ¬a∨¬b.

Proof: We can prove both of these by showing that in each case, both expression have
the same truth table. Table3.5 proves that¬(a∨ b) = ¬a∧¬b, and Table3.6 proves that
¬(a∧b) = ¬a∨¬b. (Notice that the gray columns, which correspond to the expressions of
interest, are the same in each case.) �

a b a∨b ¬(a∨b) ¬a ¬b ¬a∧¬b
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Table 3.5:¬(a∨b) = ¬a∧¬b .

a b a∧b ¬(a∧b) ¬a ¬b ¬a∨¬b
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Table 3.6:¬(a∧b) = ¬a∨¬b.

Although truth tables can be used to prove that two propositions are equivalent, it is not enough to
just give a truth table. You should also include a statement like “sincep andq have the same truth table,
p= q.”

128 Example Simplify ¬(A∨¬B).

Solution: Using DeMorgan’s Law and double negation:¬(A∨¬B) =¬A∧¬(¬B) =¬A∧B.

129 Example Simplify the following code as much as possible.

if ( !(a==null || a.size()<=0 ) ) {
a.clear();

}
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Solution: First, notice that by DeMorgan’s Law,!(a==null || a.size()<=0 )
is equivalent to!(a==null) && !(a.size()<=0). Simplifying a bit more, we get
a!=null && a.size()>0. Thus, the code becomes:

if (a!=null && a.size()>0) {
a.clear();

}

This may not look much simpler, but it is much easier to understand.

Identities involving→ and⊕ are important in the context of programming since these operators are
not always present in a programming language. In these cases, there is a need to express a compound
proposition in terms of the operators that are present.

130 Example Expressp⊕q using only∨, ∧, and/or¬.

Solution: Notice that if p is true thenq must be false, which we represent asp∧¬q.
Similarly if q is true,p must be false and we must have¬p∧q. In either of these cases, and
only these cases, the expression is true. Thus, we have that

p⊕q= (p∧¬q)∨ (¬p∧q).

☞ There is an important difference between the logical operators as discussed here and how they are
implemented in programming languages such as Java, C, and C++. It is something that is sometimes
calledshort circuiting. You are probably familiar with the concept even if you haven’t heard it called that
before. It exploits thedomination laws:

F ∧q= F

T ∨q= T

Let’s see an example.

131 Example Consider the statementif(x>=0 && a[x]!=0). The first domination law implies
that whenx < 0, the expression in the if statement will evaluate to false regardless of the truth value
of a[x]!=0. Therefore, many languages will simply not evaluate the second part of the expression—
they will short circuit. The same thing happens for statements likeif(x<0 || x>a.length) when
x>= 0, for instance.

There are at least two benefits of this. First, it is more efficient since sometimes less code needs to be
executed. Second, it allows the checking of one condition before checking a second condition that might
cause a crash. You have probably used it in statement like theabove to make sure you don’t index outside
the bounds of an array. Another use is to avoid attempting to access methods or fields when a variable
refers to null (e.g.if(a!=null && a.size()>0)).

But this has at least two consequences that can cause subtle problems if you aren’t careful. First, al-
though the AND and OR operators arecommutative(e.g. p∨q andq∨ p are equivalent), that is not always
the case for Boolean expressions in these languages. For instance, the statementif(x>=0 && a[x]!=0)
is not equivalent toif(a[x]!=0 && x>=0) since the second one will cause a crash ifx< 0. Second,
if the second part of the expression is code that you expect will always be executed, you may spend a long
time tracking down the bug that this creates.
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3.1.2 Predicates and Quantifiers

132 Definition A predicateor propositional functionis a statement containing one or more variables,
whose truth or falsity depends on the value(s) assigned to the variable(s).

Recall that the symbol∀ is theuniversal quantifier, and it is read as “for all”, “for each”, or “for every”;
and the symbol∃ is theexistential quantifier, and it is read as “there exists”, “there is”, or “for some”.

133 Example Let P(x)=“x< 0”. ThenP(x) is a propositional function, and∀xP(x) means “all values of
x are negative.” If the domain isZ, ∀xP(x) is false. However, if the domain is negative integers, it is true.

134 Example Let P(x)=“x< 0”. Then¬∀xP(x) means “it is not the case that all values ofx are negative.”
Put more simply, it means “some value ofx is positive”, which we can write as∃x¬P(x).

What we saw in the last example actually holds for any propositional function.

135 Theorem (DeMorgan’s Laws for quantifiers) If P(x) is a propositional function, then

¬∀xP(x) = ∃x¬P(x), and

¬∃xP(x) = ∀x¬P(x).

Proof: We will prove the first statement. The proof of the other is very similar. Notice that
¬∀xP(x) is true if and only if∀xP(x) is false. ∀xP(x) is false if and only if there is at least
onex for which P(x) is false. This is true if and only if¬P(x) is true for somex. But this is
exactly the same thing as∃x¬P(x), proving the result. �

136 Example If you want to determine whether or not something (e.g.P(x)) is true for all values in a
domain (e.g., you want to determine the truth value of∀xP(x)), one method is to simply loop through all
of the values and test whether or notP(x) is true. If it is false for any value, you know the answer is false.
If you test them all and none of them were false, you know it is true. Here is how you might determine if
∀xP(x) is true or false for the domain{0,1,2, . . . ,99}:

boolean isTrueForAll() {
for(int i=0;i<100;i++) {

if( !P(i) ) {
return false;

}
}
return true;

}

Notice the negation in the code—this can trip you up if you aren’t careful. The following two methods
implement this idea for two predicates,P(x) andQ(x), again for the domain{0,1,2, . . . ,99}.
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boolean isTrueForAll2() {
for(int i=0;i<100;i++) {

if( !P(i) && !Q(i) )
return false;

}
return true;

}

boolean isTrueForAll3() {
boolean result = true;
for(int i=0;i<100;i++) {

if(!P(i)))
result = false;

}
if(result==true)

return true;
for(int i=0;i<100;i++) {

if(!Q(i)))
return false;

}
return true;

}

➊ What isisTrueForAll2 determining? Notice that if bothP(i) andQ(i) are false for the same
value ofi, it returns false, and otherwise it returns true. Put another way, it returns true if for every
value of i, eitherP(i) or Q(i) is true. Thus,isTrueForAll2 is determining the truth value of
∀i(P(i)∨Q(i)).

➋ What is isTrueForAll3 determining? First notice that ifP(i) is true for every value ofi,
result will be true at the end of the first loop, soisTrueForAll3 will return true without
even consideringQ. However, ifP(i) is false for any value ofi, then it will go onto the second loop.
The second loop will return false ifQ(i) is false for any value ofi. But if Q(i) is true for all values
of i, the method returns true. So, how do we put this all together into a simple answer? Notice that
the only time it returns true is if eitherP(i) is always true or ifQ(i) is always true. In other words,
isTrueForAll3 is determining the truth value of∀iP(i)∨∀iQ(i).

➌ Now the million dollar question:3 Are isTrueForAll2 andisTrueForAll3 determining the
same thing? At first glance, it looks like they might be. But weneed to dig deeper, and we need to
prove one way or the other. To prove it, we would need to show that these expressions evaluate to
the same truth value, regardless of whatP andQ are. To disprove it, we just need to find aP and a
Q for which these expressions have different truth values. But let’s first talk it through to see if we
can figure out which way we should go with it.

∀i(P(i)∨Q(i)) is saying that for every value ofi, eitherP(i) or Q(i) has to be true.∀iP(i)∨∀iQ(i)
is saying that eitherP(i) has to be true for everyi, or thatQ(i) has to be true for everyi. These
sound similar, but not exactly the same, so we cannot be sure yet. In particular, we cannot jump to
the conclusion that they are not equivalent because we described each with different words. There
are many ways of wording the same concept.

At this point we either need to try to tweak the wording so thatwe can see that they are really saying
the same thing, or we need to try to convince ourselves they aren’t. Let’s try the latter. What ifP(i)
is always true andQ(i) is always false? Then both statements are true. But that doesn’t necessarily
mean it is always true, so that doesn’t help. Let’s consider this: What if we can find aP and aQ
such that for any given value ofi, we can ensure that eitherP(i) or Q(i) is true, but also that there is
some valuej such thatP( j) is false and some valuek such thatQ(k) is false? Then∀i(P(i)∨Q(i))
would be true, but∀iP(i)∨∀iQ(i) false, so this would work. But in order to be certain, we have to

3There is no million dollars for answering this question. It’s just an expression.
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know that such aP andQ exist.4 What if we letP(i) =“ i is even”,Q(i) =“ i is odd”, and the universe
beN. Then∀iP(i) = ∀iQ(i) = false, so∀iP(i)∨∀iQ(i) = false, but∀i(P(i)∨Q(i)) = true .

Exercises

137 Problem Construct the truth table for(p→ q)∧q.

138 Problem By means of a truth table, decide whether(p∧q)∨ (¬p) = p∨ (¬p). That is, you want to
compare the outputs of(p∧q)∨ (¬p) andp∨ (¬p).

139 Problem Explain whether the following assertion is true and negate it without using the negation
symbol¬:

∀n∈ N ∃m∈ N
�
n> 3→ (n+7)2 > 49+m

�
Answers

137
p q p→ q (p→ q)∧q
F F T F
F T T T
T F F F
T T T T

138 The desired truth table is

p q p∧q ¬p p∨¬p (p∧q)∨ (¬p)
F F F T T T
F T F T T T
T F F F T F
T T T F T T

139 The assertion is true. We have

(n+7)2 > 49+m↔ n2+14n> m.

Hence, takingm= n2+14n−1 for instance (or any smaller number), will make the assertion true.

3.2 Sets

140 Definition By a set we will understand any well-defined collection of objects. These objects are
called theelementsof the set. Ifa belongs to the setA, then we writea∈ A, read “a is an element ofA.”
If a does not belong to the setA, we writea 6∈ A, read “a is not an element ofA.” Generally speaking,
repeated elements in a set or ignored.

141 Definition The number of elements in a setA, also known as the thecardinalityof A, will be denoted
by card(A) or |A|. If the setA has infinitely many elements, we write|A|= ∞.

4Consider this: If I can find an even number that is prime but is not 2, then there would be at least 2 even primes. That’s
great. Unfortunately, I can’t find such a number.
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142 Example Let D= {0,1,2,3,4,5,6,7,8,9}be the set of the ten decimal digits. Then 4∈D but 116∈D.
Also, |D|= 10.

Notice that the elements in a set are listed between curly braces. You should do the same when you
specify the elements of a set.

143 Example The prime numbers less than 10 are 2, 3, 5, and 7. If you are asked to list the prime
numbers less than 10, an appropriate answer would be 2,3,5,7. However, if you are asked for the set of
prime numbers less than 10, the answer is{2,3,5,7}.

144 Example The sets{1,2,3} and{1,1,1,2,2,3} actually represent the same set since repeated values
are essentially ignored. The cardinality of both sets is 3.

☞ We will normally denote sets by capital letters, say A,B,S,N, etc. Elements will be denoted by
lowercase letters, say a,b,ω, r, etc.

145 Definition The following notation is pretty standard, and we will follow it in this book.

N= {0,1,2,3, . . .} the set ofnatural numbers.
Z= {. . .−2,−1,0,1,2, . . .} the set ofintegers.
Z+ = {1,2,3, . . .} the set ofpositive integers.
Z− = {−1,−2,−3, . . .} the set ofnegative integers.
R thereal numbers.
C thecomplex numbers.
∅= {} theempty setor null set.

☞ There is no universal agreement of the definition ofN. Although here it is defined as{0,1,2,3, . . .},
it is sometimes defined asN= Z+. I prefer the definition given here because then we have a notation for
the positive integers (Z+) as well as the non-negative integers (N).

146 Example Notice that|N|= |Z|= |R|= ∞. But this may be a bit misleading. Do all of these sets have
the same number of elements? Believe it or not, it turns out thatN andZ do, but thatR has many more
elements than both of these. If it seems strange to talk aboutwhether or not two infinite sets have the same
number of elements, don’t worry too much about it. We probably won’t bring it up again.

147 Example Let S be the set of the squares of integers. We can express this set in what we callset
builder notation. In this case we can write it asS= {n2|n∈ Z} (or S= {n2 : n∈ Z}). We read the : or| as
“such that”. Thus,S is the set containing “numbers of the formn2 such thatn is an integer”.

148 Definition If every element inA is also inB, we say thatA is asubsetof B and we write this asA⊆B.
If A⊆ B and there is somex∈ B such thatx 6∈ A, then we say A is aproper subsetof B, denoting it by

A⊂ B.
If there is somex∈ A such thatx 6∈ B, thenA is not a subset ofB, which we write asA 6⊆ B.

☞ Some authors use⊂ to mean subset without necessarily implying it is a proper subset.

149 Example Let S= {1,2, . . . ,20}, that is, the set of integers between 1 and 20, inclusive. LetE =
{2,4,6, . . . ,20}, the set of all even integers between 2 and 20, inclusive. Notice thatE ⊆ S. Let P =
{2,3,5,7,11,13,17,19}, the set of primes less than 20. ThenP⊆ S.
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The following theorem can be used to prove that two sets are the same.

150 Theorem Two setsA andB are equal if and only ifA⊆ B andB⊆ A.

151 Example Let S= {n2|n∈ Z}. ThenA= {1,4,9,16} ⊆ S. We can also write thatA⊂ S in this case
since 25, for instance, is inSbut not inA. Also notice that althoughS⊆ S, S 6⊂ S.

152 Example The set

S= {Roxan,Jacquelin,Sean,Fatimah,Wakeelah,Ashley,Ruben,Leslie,Madeline,Karina}

is the set of students in a particular section of Maths 016. This set can be split into two subsets: the set

F = {Roxan,Jacquelin,Fatimah,Wakeelah,Ashley,Madeline,Karina}

of females in the class, and the set

M = {Sean,Ruben,Leslie}

of males in the class. Thus we haveF ⊆ SandM ⊆ S. Notice that it isnot truethatF ⊆M or thatM ⊆ F.

153 Example Find all the subsets of{a,b,c}.

Solution: They are
S1 = ∅
S2 = {a}
S3 = {b}
S4 = {c}
S5 = {a,b}
S6 = {b,c}
S7 = {a,c}
S8 = {a,b,c}

Notice that there are 8 subsets. Also notice that 8= 23. As we will see shortly, that is not a coincidence.
Also notice that we wroteS1 =∅, and notS1= {∅}. It turns out that∅ 6= {∅}. ∅ is the empty set–that

is, the set that has no elements.{∅} is the set containing the empty set. Thus,{∅} is a set containing one
element,∅.

154 Example Find all the subsets of{a,b,c,d}.

Solution: We will use the result of example153. A subset of{a,b,c,d} either containsd
or it does not. Since the subsets of{a,b,c} do not containd, we simply list all the subsets of
{a,b,c} and then to each one of them we addd. This gives
S1 = ∅ S9 = {d}
S2 = {a} S10 = {a,d}
S3 = {b} S11 = {b,d}
S4 = {c} S12 = {c,d}
S5 = {a,b} S13 = {a,b,d}
S6 = {b,c} S14 = {b,c,d}
S7 = {a,c} S15 = {a,c,d}
S8 = {a,b,c} S16 = {a,b,c,d}
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155 Definition Thepower setof a set is the set of all subsets of a set. The power set of a setA is denoted
by P(A).

156 Example If A= {a,b,c}, example153implies thatP(A)= {∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}.
Notice that the solution is a set, the elements of which are also sets.

An incorrect answerwould be{∅,a,b,c,{a,b},{b,c},{a,c},{a,b,c}}. This is incorrect becausea is
not the same thing as{a} (the set containinga).

157 Theorem Let A be a set withn elements. Then|P(A)|= 2n.

Proof: We use induction5 and the idea of example154. Clearly if |A| = 1, A has 21 = 2
subsets:∅ andA itself.
Assume every set withn−1 elements has 2n−1 subsets. LetA be a set withn elements. Choose
somex∈ A. Every subset ofA either containsx or it doesn’t. Those that do not containx are
subsets ofA\ {x}. SinceA\ {x} hasn−1 elements, the induction hypothesis implies that
it has 2n−1 subsets. Every subset that does containx corresponds to one of the subsets of
A\ {x} with the elementx added. That is, for each subsetS⊆ A\ {x}, S∪{x} is a subset of
A containingx. Clearly there are 2n−1 such new subsets. Since this accounts for all subsets of
A, A has a total of 2n−1+2n−1 = 2n subsets. �

3.2.1 Set Operations

We can obtains new sets by performing various operations on other sets. In this section we discuss the
most common set operations. When discussing sets,Venn diagramsare often used as a pictorial repre-
sentation of the relationships between sets. We provide Venn diagrams to help visualize the various set
operations.

158 Definition Theunionof two setsA andB is the set contain-
ing elements from eitherA or B . More formally,

A∪B= {x : x∈ A or x∈ B}.

Notice that in this case theor is aninclusive or. That is,x can be
in A, or it can be inB, or it can be in both.

A B

A∪B

159 Definition The intersectionof two setsA and B is the set
containing elements that are in bothA andB. More formally,

A∩B= {x : x∈ A andx∈ B}. A B

A∩B

160 Definition The difference of sets,A set-minus B, is the set
containing elements fromA that are not inB. More formally,

A\B= {x : x∈ A andx 6∈ B}.

The set difference ofA andB is sometimes denoted byA−B.
A B

A\B

5We will cover induction more fully and formally later. But since this use of induction is pretty intuitive, especially inlight
of Example154, it serves as a useful foreshadowing of things to come.
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161 Example Let A= {1,2,3,4,5,6}, andB= {1,3,5,7,9}. Then

A∪B= {1,2,3,4,5,6,7,9}, A∩B= {1,3,5}, A\B= {2,4,6}, B\A= {7,9}.

162 Definition Two setsA andB aredisjoint or mutually exclusiveif A∩B = ∅. That is, they have no
elements in common.

163 Definition Let A⊆U . Thecomplementof A with respect to
U is just the set differenceU \A. More formally,

A= {x∈U : x 6∈ A}=U \A.

Other common notations for set complement includeAc andA′.

A
A

U

☞ Often the set U, which is called theuniverseor universal set, is implied and we just useA to denote
the complement. Generally speaking, we will follow this convention here. Futher, when talking about
several sets, we will assume they have the same universal setunless otherwise specified.

164 Example Let U = {0,1,2,3,4,5,6,7,8,9} be the universal set of the decimal digits and letA =
{0,2,4,6,8} ⊂U be the set of even digits. ThenA= {1,3,5,7,9} is the set of odd digits.

Observe that

A∩A = ∅, and

A∪A = U.

The various intersecting regions for two and three sets can be seen in figures3.1and3.2.

A∩B
A∩B A∩B

(A∪B)

A B

Figure 3.1: Venn diagram for two sets.

A∩B∩C

A∩B∩C

A∩B∩CA∩B∩C

A∩B∩C
A∩B∩C

A∩B∩C

(A∪B∪C)

A B

C

Figure 3.2: Venn diagram for three sets.

165 Example It should not be too difficult to convince yourself thatA\B= A∩B. This is an example of
what we call aset identity.

There are many common set identities. Instead of boring you with a long list of them, for now we just
presentDe Morgan’s Laws.6 We will see more of them in Section3.3.

6That name sounds familiar. Haven’t we seen this before?
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166 Theorem De Morgan’s Laws state that for setsA andB,

(A∪B) = A∩B, and (3.1)

(A∩B) = A∪B. (3.2)

Proof: We will prove the first one. As you might imagine, the proof of the other is very
similar. We will use Theorem150.
Let x ∈ (A∪B). Thenx 6∈ A∪B (by definition of complement). Thusx 6∈ A∧ x 6∈ B (by
definition of union), that is,x∈ A∧x∈ B (by definition of complement). This is the same as
x∈ A∩B (by definition of union). Notice thatx was an arbitrary element from(A∪B), and
we showed thatx∈A∩B. Therefore, every element in(A∪B) is also inA∩B. In other words,
(A∪B)⊆ A∩B.
Now, let x ∈ A∩B. Thenx ∈ A∧ x ∈ B. This means thatx 6∈ A∧ x 6∈ B or what is the same
x 6∈ A∪B. But this last statement asserts thatx∈ (A∪B). HenceA∩B⊆ (A∪B).
Since we have shown that the two sets contain each other, theyare equal by Theorem150. �

This proof is what is called aset containment proofsince we showed set containment both ways. The
technique is pretty straightforward: Theorem150tells us that ifX ⊆Y andY ⊆ X, thenX =Y. Thus, to
proveX = Y, we just need to show thatX ⊆Y andY ⊆ X. But how do we show that one set is a subset
of another? This is easy: To show thatX ⊆Y, we show that every element fromX is also inY. In other
words, we assume thatx∈ X and use definitions and logic to show thatx∈Y. Assuming we do not use
any special properties ofx other than the fact thatx ∈ X, thenx is an arbitrary element fromX, so this
shows thatX ⊆Y.
☞ Be careful. To prove that X=Y, you generally need to prove two things: X⊆Y and Y⊆ X. Do not
forget to do both. On the other hand, if you are asked to prove that X⊆Y, you do not need to (and should
not) show that Y⊆ X.

Sometimes we can do a set containment proof in one step instead of two. This only works if every step
of the proof is reversible. We illustrate this idea next. (Here, the↔ means “if and only if”. Although it
looks a lot like it, it is not the logical biconditional operator.

167 Example Prove thatA\ (B∪C) = (A\B)∩ (A\C).

Proof: We have

x∈ A\ (B∪C) ↔ x∈ A∧x 6∈ (B∨C)
↔ (x∈ A) ∧ ((x 6∈ B) ∧ (x 6∈C))
↔ (x∈ A ∧ x 6∈ B) ∧ (x∈ A ∧ x 6∈C)
↔ (x∈ A\B) ∧ (x∈ A\C)
↔ x∈ (A\B)∩ (A\C)

�

168 Example In Java, theTreeSet class is one implementation of asetthat has several methods with
perhaps unfamiliar names, but they do what should be familiar things. Let’s discuss a few of them.7 Let A
andB beTreeSets.

7The method signatures and documentation have been modified from the official definition so we can focus on the point at
hand.
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1. The methodretainAll(TreeSet other) “ retains only the elements in this TreeSet that are
contained in theother TreeSet. In other words, removes from this TreeSet all of itselements that
are not contained inother.” It is not too difficult to see thatA.retainAll(B) is computing
A∩B.8

2. The methodboolean containsAll(TreeSet other) “ returns true if this set contains all
of the elements ofother (and false otherwise).” It should be evident thatA.containsAll(B)
returns true iffB⊆ A.

3. Even without documentation, it seems likely thatA.size() is determining|A|.

4. It is also seems likely thatA.isEmpty() is determining ifA= /0.

Sometimes you need to find the cardinality of the union of several sets. This is easy of the sets do not
intersect. If they do intersect, more care is needed to make sure no elements are missed or counted more
than once. In the following examples we will use Venn diagrams to help us do this correctly.9 Later, we
will learn about a more powerful tool to do this—inclusion-exclusion.

169 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also known that 10 both smoke and
chew. How many among the 40 neither smoke nor chew?

Solution: We fill up the Venn diagram in figure3.3as follows. Since card(Smoke∩Chew) =
10, we put a 10 in the intersection. Then we put a 28−10= 18 in the part thatSmokedoes
not overlapChewand a 16−10= 6 in the part ofChewthat does not overlapSmoke. We
have accounted for 10+18+6= 34 people that are in at least one of the sets. The remaining
40−34= 6 are outside these sets.

1018 6

6

Smoke Chew

Figure 3.3: Example482.

31
3

1

2

2 4

A B

C

Figure 3.4: Example170.

170 Example In a group of 30 people, 8 speak English, 12 speak Spanish and 10 speak French. It is
known that 5 speak English and Spanish, 5 Spanish and French,and 7 English and French. The number
of people speaking all three languages is 3. How many do not speak any of these languages?

8Technically it is doing more than that. It is storing the result in A. So it is like it is doingA= A∩B, where= here means
assignment, not equals.

9Actually, both of the examples count the number of elements not in the union. But since this is just the number of elements
in the universe minus the number in the union, the technique is the same.
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Solution: Let A be the set of all English speakers,B the set of Spanish speakers andC the
set of French speakers in our group. We fill-up the Venn diagram in figure3.4 successively.
In the intersection of all three we put 3. In the region commonto A and B which is not
filled up we put 5−2 = 3. In the region common toA andC which is not already filled up
we put 5−3 = 2. In the region common toB andC which is not already filled up, we put
7−3= 4. In the remaining part ofA we put 8−2−3−2 = 1, in the remaining part ofB we
put 12−4−3−2= 3, and in the remaining part ofC we put 10−2−3−4= 1. Each of the
mutually disjoint regions comprise a total of 1+2+3+4+1+2+3 = 16 persons. Those
outside these three sets are then 30−16= 14.

171 Definition TheCartesian productof setsA andB is the setA×B= {(a,b)|a∈ A∧b∈ B}. In other
words, it is the set of all ordered pairs of elements fromA andB.

172 Definition If A is a set, thenA2 = A×A, andAn = A×An−1.

173 Example If A= {1,2,3} andB= {a,b}, thenA×B= {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}. Also,
B2 = {(a,a),(a,b),(b,a),(b,b)}.

3.2.2 Partitions and Equivalence Relations

174 Definition Let S 6=∅ be a set. Apartition of S is a collection of non-empty, pairwise disjoint subsets
of Swhose union isS.

175 Example DefineE= {2k : k∈Z} andO= {2k+1 :k∈Z}. ClearlyE is the set of even integers and
O is the set of odd integers. SinceE∩O=∅ andE∪O= Z, {E,O} is a partition ofZ.

176 Example Let 3Z= {3k : k∈ Z}, 3Z+1= {3k+1 : k∈ Z}, and 3Z+2= {3k+2 : k∈ Z}.10 Since

(3Z)∪ (3Z+1)∪ (3Z+2) = Z and

(3Z)∩ (3Z+1) =∅, (3Z)∩ (3Z+2) =∅,(3Z+1)∩ (3Z+2) =∅,

{3Z,3Z+1,3Z+2} is a partition ofZ.

177 Example Let I=R\Q (the set of irrational numbers). Observe thatR=Q∪ I andQ∩ I=∅. Thus,
the real numbers can be partitioned into the rational and irrational numbers, which shouldn’t really be a
surprise.

Recall that when a list of number is given between parentheses (e.g.(1,2,3)), it typically denotes an
ordered list. That is, the order that the element are listed matters. So, for instance,(1,2) and(2,1) are not
the same thing.

178 Definition Let A,B be sets. Arelation Ris a subset of the Cartesian productA×B. If (x,y) ∈ R, we
say thatx is related to y, and write is asxRy. An alternative notation isa∼ b.

10The notation in this example may seem a bid odd at first. How areyou supposed to interpret “3Z+1”? Is this 3 times the
setZ plus 1? What does it mean to do algebra with sets and numbers? Iwon’t get into all of the technical details, but here is
a short answer. You can think of “3Z+1” as just a name. Sure, it may seem like an odd name, but why can’t we name a set
whatever we want? Some people name their kidsJon Blake Cusack 2.0and get away with it. You can also think of “3Z+1” as
describing how to create the set—by taking every element fromZ, multiplying it by 3, and then adding 1. Thus, you can think
of “3Z+1” as being both an algebraic expression and a name.
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179 Definition Let A be a set andRbe a relation onA×A. ThenR is said to be

• reflexive if ∀x∈ A,xRx
(or (x,x) ∈ R).

• symmetric if ∀x,y∈ A,xRy→ yRx
(or (x,y) ∈ R→ (y,x) ∈ R).

• anti-symmetric if ∀x,y∈ A,(xRy) and (yRx)→ x= y
(or (x,y) ∈ R and (y,x) ∈ R→ x= y).

• transitive if ∀x,y,z∈ A,(xRy) and (yRz)→ (xRz)
(or (x,y) ∈ R and (y,z) ∈ R→ (x,z) ∈ R).

A relationRwhich is reflexive, symmetric and transitive is called anequivalence relationonA. A relation
R which is reflexive, anti-symmetric and transitive is calledapartial orderon A.

180 Example Let S={All Human Beings}, and define the the relationM by (a,b) ∈M if a has the same
(biological) mother11 asb. Show thatM is an equivalence relation.

Proof: Sincea has the same mother asa, (a,a) ∈M, soM is reflexive. Ifa has the same
mother asb, thenb clearly has the same mother asa. Thus,(a,b) ∈ M implies (b,a) ∈ M,
soM is symmetric. Finally, ifa has the same mother asb, andb has the same mother asc,
then clearlya has the same mother asc. In other words,(a,b)∈M and(b,c)∈M implies that
(a,c) ∈M, soM is transitive. Therefore,M is reflexive, symmetric, and transitive, so it is an
equivalence relation. �

181 Example Let X be a collection of sets. LetR to be the relation such thatA is related toB if A⊆ B.
ThenR is a partial order onX. We leave it to the reader to prove this. You need to show thatR is reflexive,
anti-symmetric, and transitive.

182 Definition For integersa, b, andn, wheren> 0, we say thata is congruent to b modulo nif and only
if a−b= kn for some integerk (that is,n dividesa−b). We write it asa≡ b (mod n). If a−b 6= kn for
any integerk, thena is not congruent tob modulon, written asa 6≡ b (mod n).

The proof of the following is left as an exercise.

183 Theorem a≡ b (mod n) iff 12 a modn= b modn.

184 Example Notice that 21−6= 15= 3 ·5, so 21≡ 6 (mod 5).

185 Example Since, 1961(mod 37) = 0 6= 4= 1966 (mod 37), we know that 19616≡ 1966 (mod 37).

186 Example Let n be a positive integer. ThenR= {(a,b) : a≡ b (mod n)} is a relation on the set of
integers. Show thatR is an equivalence relation.

11The important assumption we are making is that each person has exactly one mother.
12iff is shorthand forif and only if .
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Proof: We need to show thatR is reflexive, symmetric, and transitive.
Reflexive:Sincea−a= 0n, a≡ a (mod n), soR is reflexive.
Symmetric:If a≡ b (mod n), thena−b = kn for some integerk. So b− a = (−k)n, and
since−k is an integer,b≡ a (mod n). Thus,R is symmetric.
Transitive: If a≡ b (mod n) andb≡ c (mod n), thena− b = kn for some integerk and
b−c= ln for some integerl . Thus

a−c= (a−b)+(b−c) = kn+ ln = (k+ l)n,

and sincek+ l is an integer,a≡ c (mod n), andR is therefore transitive. �

187 Example LetRbe the relation on the set of ordered pairs of positive integers such that((a,b),(c,d))∈
R if and only if ad= bc. Show thatR is an equivalence relation.

Proof: We need to show thatR is reflexive, symmetric, and transitive.
Reflexive:Sinceab= ba for all positive integers,((a,b),(a,b)) ∈ R for all (a,b). ThusR is
reflexive.
Symmetric:Notice that ifad= bc, thencb= da for all positive integersa, b, c, andd. Thus
((a,b),(c,d))∈ R implies that((c,d),(a,b))∈ R, soR is symmetric.
Transitive: Assume that((a,b),(c,d) : 1) ∈ R and ((c,d),(e, f )) ∈ R. Thenad = bc and
c f = de. Solving the second forc, we getc = de/ f , and plugging it into the first we get
ad= b(de/ f ). Multiplying both sides byf , and canceling thed on both sides yieldsa f = be.
Thus((a,b),(e, f ))∈ R. ThusR is transitive. �

188 Definition Let R be an equivalence relation on a setS. Then theequivalence class of ais the subset
of Scontaining all of the elements that are related toa. More formally,

[a] = {x∈ S: xRa}.

189 Example The equivalence class of 3 modulo 8 is[3] = {8k+3 : k∈ Z}. Notice that[11] = {8k+11 :
k∈ Z}= {8k+3 : k∈ Z}= [3]. In fact,[3] = [8l +3] for all integersl .

190 Example Notice that if our relation is congruence modulo 4, then

[0] = {4k : k∈ Z},
[1] = {4k+1 : k∈ Z},
[2] = {4k+2 : k∈ Z}, and

[3] = {4k+3 : k∈ Z}.

Thus, it isn’t too difficult to notice thatZ = [1]∪ [2]∪ [3]∪ [4]. In other words, the equivalence classes
{[1], [2], [3], [4]} form a partition ofZ. As we will see next, this is not a coincidence.

191 Lemma Let Rbe an equivalence relation on a setS. Then two equivalence classes are either identical
or disjoint.
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Proof: Let a,b ∈ S, and assume[a]∩ [b] 6= ∅. We need to show that[a] = [b]. First, let
x∈ [a]∩ [b] (which exists since[a]∩ [b] 6=∅). ThenxRaandxRb, so by symmetryaRxand by
transitivityaRb.

Now let y ∈ [a]. ThenyRa. Since we just showed thataRb, thenyRbby transitivity. Thus
y∈ [b]. Therefore[a]⊆ [b].

A symmetric argument proves that[b]⊆ [a]. Therefore,[a] = [b]. �

192 Theorem Let S 6=∅ be a set. Every equivalence relation onS induces a partition ofSand vice-verse.

Proof: By Lemma191, if R is an equivalence relation onS then

S=
[
a∈S

[a],

and[a]∩ [b] =∅ if a is not related tob. This proves the first half of the theorem.

Conversely, let
S=

[
α

Sα , Sα ∩Sβ =∅ if α 6= β ,

be a partition ofS. We define the relationR on Sby lettingaRbif and only if they belong to
the sameSα . Since theSα are mutually disjoint, it is clear thatR is an equivalence relation on
Sand that fora∈ Sα , we have[a] = Sα . �

Exercises

193 Problem Prove by means of set inclusion (or set containment) that(A∪B)∩C= (A∩C)∪ (B∩C).

194 Problem A survey of a group’s viewing habits over the last year revealed the following information:

➊ 28% watched gymnastics

➋ 29% watched baseball

➌ 19% watched soccer

➍ 14% watched gymnastics and baseball

➎ 12% watched baseball and soccer

➏ 10% watched gymnastics and soccer

➐ 8% watched all three sports.

Calculate the percentage of the group that watched none of the three sports during the last year.

195 Problem In a group of 100 camels, 46 eat wheat, 57 eat barley, and 10 eatneither. How many camels
eat both wheat and barley?

196 Problem At Medieval Highthere are forty students. Amongst them, fourteen like Mathematics,
sixteen like theology, and eleven like alchemy. It is also known that seven like Mathematics and theology,
eight like theology and alchemy and five like Mathematics andalchemy. All three subjects are favoured
by four students. How many students like neither Mathematics, nor theology, nor alchemy?

197 Problem How many integers in the set{1,2, . . . ,200} are neither divisible by 3 nor 7 but are divisible
by 11.

60



Sets 61

Answers

193 We have,
x∈ (A∪B)∩C ↔ x∈ (A∪B)∧x∈C

↔ (x∈ A∨x∈ B)∧x∈C
↔ (x∈ A∧x∈C)∨ (x∈ B∧x∈C)
↔ (x∈ A∩C)∨ (x∈ B∩C)
↔ x∈ (A∩C)∪ (B∩C),

which establishes the equality.

194 52%

195 Let A be the set of camels eating wheat, and|A| its number, andB be the set of camels eating barley, and|B| its
number. Then

90= 100−10= |A∪B|= |A|+ |B|− |A∩B|= 46+57−|A∩B|= 103−|A∩B|,

whence|A∩B|= 13.

196 15

197 10
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3.3 Boolean Algebras

Now we address a topic that seems quite different from the twotopics we have just covered. As we shall
see shortly, however, they are actually very much related.

198 Definition A Boolean algebraconsists of a setX with at least two different elements 0 (the additive
identity) and 1 (the multiplicative identity), two binary operations+ (addition) and· (multiplication), and
a unary operation¯ (calledcomplementation) satisfying the following axioms for allA,B,C∈ X.

1. A+B= B+A (commutativity of addition)

2. A ·B= B ·A (commutativity of multiplication)

3. A+(B+C) = (A+B)+C (associativity of addition)

4. A · (B ·C) = (A ·B) ·C (associativity of multiplication)

5. A · (B+C) = A ·B+A ·C (distributive law)

6. A+(B ·C) = (A+B) · (A+C) (distributive law)

7. A+0= A (additive identity)

8. A ·1= A (multiplicative identity)

9. A+A= 1 (unit property)

10. A ·A= 0 (zero property)

☞ Sometimes the product A·B is written as AB, with the operator· omitted. In this case, it is understood
that the operator between A and B is multiplication. This is nothing new–you omit× when multiplying
number all of the time.

Notice that the definition of a Boolean algebra requires thatthe elements 0 and 1 be in the setX, but it
says nothing about other possible elements. This means thatX may or may not have additional elements.
The following properties of the 0 and 1 elements of a Boolean algebra are immediate.

199 Theorem 0= 1 and1= 0.

Proof: Since 0 is the additive identity,0 = 0+ 0. But by axiom9, 0+ 0 = 1 and thus
0 = 0+0 = 1. Similarly, since 1 is the multiplicative identity,1 = 1 · 1. But by axiom10,
1 ·1= 0 and thus1= 1 ·1= 0. �

The operations of complementation, addition and multiplication act on 0 and 1 as shown in table3.7. You
might notice that this table resembles the truth table we sawearlier. We will see why in the next example.

200 Example If we regard 0= F , 1= T, += ∨, · = ∧, and =̄ ¬, then the logic operations over{F,T}
constitute a boolean algebra.

201 Example If we regard 0=∅, 1=U (the universal set),+=∪, ·=∩, and =̄ ,̄ then the set operations
over the subsets ofU constitute a boolean algebra.
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Why do we care about the connection between logic, sets, and boolean algebras? Because any property
that we know about a Boolean algebra can be applied to logic and sets. Table3.8 gives some of the
important laws and identities of Boolean algebras, including a translation of some of them into logic and
sets. Filling in the remainder of the table is left as an exercise.

The first 10 laws are the axioms from the definition of a Booleanalgebra. The remaining laws can be
proven using the axioms. The next several examples give proofs of several of these, as well as a few other
laws.

202 Theorem (Idempotent Laws) A+A= A andAA= A

Proof: We have

A= A+0= A+A ·A= (A+A)(A+A) = (A+A)(1) = A+A.

Similarly
A= A1= A(A+A) = AA+A ·A= AA+0= AA.

�

203 Theorem (Domination Laws) A+1= 1 andA ·0= 0.

Proof: We have

A+1= A+(A+A) = (A+A)+A= A+A= 1.

Also,
A ·0= A(A ·A) = (AA)A= AA= 0.

�

204 Theorem (Uniqueness of the Complement) If AB= 0 andA+B= 1 thenB= A.

Proof: We have
B= B1= B(A+A) = BA+BA= 0+BA= BA.

Also,
A= A1= A(A+B) = A ·A+AB= AB.

Thus
B= BA= AB= A.

�

A B A A+B AB
0 0 1 0 0
0 1 1 1 0
1 0 0 1 0
1 1 0 1 1

Table 3.7: Evaluation Rules
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205 Theorem (Involution Law) A= A

Proof: By axioms9 and10, we have the identities

1= A+A and A ·A= 0.

By uniqueness of the complement we must haveA= A. �

206 Theorem (De Morgan’s Laws) A+B= A·B andA ·B= A+B.

Proof: Observe that

(A+B)+A·B= (A+B+A)(A+B+B) = (B+1)(A+1) = 1,

and
(A+B)A·B= AA ·B+BA ·B= 0+0= 0.

ThusA ·B is the complement ofA+B and so we must haveA·B= A+B.

To obtain the other De Morgan Law putA instead ofA andB instead ofB in the law just
derived and use the involution law:

A+B= A ·B= AB.

Taking complements once again we have

A+B= AB→ A+B= AB.

�

Law Boolean Algebra Logic Sets

commutativity A+B= B+A
AB= BA p∧q= q∧ p

associativity A+(B+C) = (A+B)+C p∨ (q∨ r) = (p∨q)∨ r
A(BC) = (AB)C

distributive A(B+C) = AB+AC A∩ (B∪C) = (A∩B)∪ (A∩C)
A+(BC) = (A+B)(A+C)

identity A+0= A
A1= A

unit property A+A= 1 p∨¬p= T
zero property AA= 0 A∩A=∅

domination A+1= 1 p∨T = T
A0= 0

idempotent A+A= A
AA= A A∩A= A

double negation A= A
DeMorgan′s A+B= AB

AB= A+B

Table 3.8: Some of the most important laws of Boolean algebras. A translation into the language of logic and sets
is given for a few of them. The rest are left as an exercise.
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207 Theorem AB+AB= A.

Proof: Factoring

AB+AB= A(B+B) = A(1) = A.

�

208 Example Simplify the following code as much as possible.

if ((x>0 && x<y) || (x>0 && x>=y)) {
x=y;

}

Solution: Let p=“x> 0” andq=“x< y”. Then the conditional above can be expressed as
(p∧q)∨ (p∧¬q). Applying Theorem207, this is justp. Therefore the code simplifies to:

if (x>0) {
x=y;

}

209 Theorem A(A+B) = AB andA+AB= A+B.

Proof: Multiplying

A(A+B) = AA+AB= 0+AB= AB.

Using the distributive law,

A+AB= (A+A)(A+B) = 1(A+B) = A+B.

�

210 Theorem (Absorption Laws) A+AB= A andA(A+B) = A.

Proof: Factoring and using the domination laws:

A+AB= A(1+B) = A1= A.

Expanding and using the identity just derived:

A(A+B) = AA+AB= A+AB= A.

�
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3.3.1 Sum of Products and Products of Sums

Given a truth table in some boolean variables, we would like to find a function whose output is that of the
table. This can be done by either finding asum of products(SOP) or aproduct of sums(POS) for the table.

To find a sum of products from a truth table:

➊ identify the rows having output 1.

➋ for each such row, write the variable if the variable input is1 or write the complement of the variable
if the variable input is 0, then multiply the variables forming a term.

➌ add all such terms.

To find a product of sums from a truth table:

➊ identify the rows having output 0.

➋ for each such row, write the variable if the variable input is0 or write the complement of the variable
if the variable input is 1, then add the variables forming a sum

➌ multiply all such sums.

211 Example Find a SOP and a POS forZ.

A B C Z
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Solution: The output (Z) is 1 on the rows with (i)A= 0,B= 0,C= 0, so we form the term
(A)(B)(C), (ii) A= 0,B= 1,C= 0, so we form the termABC, (iii) A= 1,B= 1,C= 0, so we
form the termABC, and (iv)A= B=C= 1, giving the termABC. The required SOP is

Z = (A)(B)(C)+ABC+ABC+ABC.

The output (Z) is 0 on the rows with (i)A= 0,B= 0,C = 1, so we form the termA+B+C,
(ii) A= 0,B= 1,C= 1, so we form the termA+B+C, (iii) A= 1,B= 0,C= 0, so we form
the termA+B+C, and (iv)A= 1,B= 0,C= 1, giving the termA+B+C. The required POS
is

Z = (A+B+C)(A+B+C)(A+B+C)(A+B+C).

Using the axioms of a boolean algebra and the aforementionedtheorems we may simplify a given boolean
expression, or transform a SOP into a POS or vice-versa.

212 Example Convert the following POS to a SOP:

(A+BC)(A+BD).

66



Boolean Algebras 67

Solution:
(A+BC)(A+BD) = AA+ABD+ABC+BCBD

= A+ABD+ABC+BCD
= A+BCD.

213 Example Convert the following SOP to a POS:

AB+CD.

Solution:
AB+CD = (AB+C)(AB+D)

= (A+C)(B+C)(A+D)(B+D).

214 Example Write WXY+WXZ+Y+Z as a sum of two products.

Solution: We have

WXY+WXZ+Y+Z = WX(Y+Z)+Y+Z
= WX+Y+Z
= WX+Y ·Z,

where we have used the fact thatAB+B= A+B and the De Morgan laws.

Although we will not do much else with sum of products or products of sums, they are important in
several areas of computer science, ranging from practical problems like circuit minimization to theoretical
problems like the theory of NP-completeness.

3.3.2 Logic Puzzles

The boolean algebra identities from the preceding section may help to solve some logic puzzles.

215 Example Brown, Johns and Landau are charged with bank robbery. The thieves escaped in a car that
was waiting for them. At the inquest Brown stated that the criminals had escaped in a blue Buick; Johns
stated that it had been a black Chevrolet, and Landau said that it had been a Ford Granada and by no means
blue. It turned out that wishing to confuse the Court, each one of them only indicated correctly either the
make of the car or only its colour. What colour was the car and of what make?

Solution: Consider the sentences

A = the car is blue
B = the car is a Buick
C = the car is black
D = the car is a Chevrolet
E = the car is a Ford Granada

Since each of the criminals gave one correct statement, Brown’s statement implies thatA+B
is true. Similarly, Johns’s statement impliesC+D is true, and Landau’s statement implies that
A+E is true. It now follows that

(A+B) · (C+D) · (A+E)
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is true. Upon multiplying this out, we obtain

(A·C·A)+(A·C·E)+(A·D ·A)+(A·D ·E)+(B·C·A)+(B·C·E)+(B·D ·A)+(B·D ·E).

Notice that(A ·C ·A) is clearly false sinceA andA cannot both be true. Similarly,(A ·C ·E)
if false since the car can’t be both blue and black. We can argue similarly that all of the terms
are false except the fifth. ThusB ·C ·A is true, and so the criminals escaped in a black Buick.

216 Example Margie, Mimi, April, and Rachel ran a race. Asked how they made out, they replied:
Margie: “April won; Mimi was second.”
Mimi: “April was second and Rachel was third.”
April: “Rachel was last; Margie was second.”

If each of the girls made one and only one true statement, who won the race?

Solution: Consider the sentences

A = April was first
B = April was second
C = Mimi was second
D = Margie was second
E = Rachel was third
F = Rachel was last

Since each of the girls gave one true statement we have that

(A+C)(B+E)(F +D) = 1.

Multiplying this out

ABF+ABD+AEF+AED+CBF+CBD+CEF+CED= 1.

Now, AB= EF = BC= CD = 0 so the only surviving term isAED and so April was first,
Margie was second, Rachel was third, and Mimi was last.

217 Example Having returned home, Maigret rang his office on quai des Orf`evres.

“Maigret here . Any news?”

“Yes Chief. The inspectors have reported. Torrence thinks that if François was drunk, then either
Etienne is the murderer or François is lying. Justin is of the opinion that either Etienne is the murderer or
François was not drunk and the murder occurred after midnight. Inspector Lucas asked me to tell you that
if the murder had occurred after midnight, then either Etienne is the murderer or François is lying. Then
there was a ring from . . . .”

“That’s all, thanks. That’s enough!” The commissar replaced the receiver. He knew that when François
was sober he never lied. Now everything was clear to him. Find, with proof, the murderer.

Solution: Represent the following sentences as:
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A = François was drunk,
B = Etienne is the murderer,
C = François is telling a lie,
D = the murder took place after midnight.

We then have
A→ (B+C), B+AD, D→ (B+C).

Using the identity
X→Y = X+Y,

we see that the output of the product of the following sentences must be 1:

(A+B+C)(B+AD)(D+B+C).

After multiplying the above product and simplifying, we obtain

B+CAD.

So, either Etienne is the murderer, or the following events occurred simultaneously: François
lied, François was not drunk and the murder took place aftermidnight. But Maigret knows
thatAC= 0, thus it follows thatB= 1, i.e., Etienne is the murderer.

Exercises

218 Problem Obtain a sum of products for the truth table

A B C Z
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Answers

218
A·B·C+A·B·C+A·B ·C+A ·B·C

Homework

219 Problem Make a copy of Table3.8and fill in the missing entries.

220 Problem Give 2 different proofs that[(p∨q)∧¬p]→ q is a tautology.

221 Problem Give 2 different proofs that[p∧ (p→ q)]→ q is a tautology.

69



70 Chapter 3

222 Problem Prove thatp↔ q and(p∧q)∨(¬p∧¬q) are logically equivalent without using truth tables.

223 Problem Use a set containment proof to prove that ifA andB are sets, thenA−B= A∪B.

224 Problem Prove that ifA, B andC are sets, then(A∩B∩C)⊆ (A∩B) using a set containment proof.

225 Problem Draw a Venn diagram showingA∩ (B∪C), whereA, B, andC are sets.

226 Problem Rusty has 20 marbles of different colours: black, blue, green, and yellow. Seventeen of the
marbles are not green, five are black, and 12 are not yellow. How many blue marbles does he have?

227 Problem Let A andB beTreeSets (See Example168).

1. The methodaddAll(TreeSet other) adds all of the elements inother to this set if they’re
not already present.What is the result ofA.addAll(B) (in terms ofA andB and set operators)?

2. The methodremoveAll(TreeSet other) removes from this set all of its elements that are
contained inother. What is the result ofA.removeAll(B) (in terms ofA andB and set opera-
tors)?

3. WriteA.contains(x) using set notation.

228 Problem

Consider the relationR= {(1,2),(1,3),(3,5),(2,2),(5,5),(5,3),(2,1),(3,1)} on the set{1,2,3,4,5}. Is
R reflexive? symmetric? antisymmetric? transitive? an equivalence relation?

229 Problem Let X be the set of all people, and define the following.
R1 = {(a,b) ∈ X2|a is taller thanb}
R2 = {(a,b) ∈ X2|a is at least as tall asb}
R3 = {(a,b) ∈ X2|a andb are the same height}
R4 = {(a,b) ∈ X2|a andb have the same last name}
R5 = {(a,b) ∈ X2|a andb have last names that start with the same letter}
Which of these is are equivalence relations? Prove it.

230 Problem Define three different equivalence relations on the set of all TV shows. For each, give exam-
ples of the equivalence classes, including one representative from each. Prove that each is an equivalence
relation.

231 Problem Let A= {1,2, . . . ,n}. LetRbe the relation onP(A) (the power set ofA) such thata,b∈P(A)
are related iff|a|= |b|. Prove thatR is an equivalence relation. What are the equivalence classes ofR?

232 Problem The classRelation is a partial implementation of a relation on a setA. It has a list of
Element objects.

• An Element stores an ordered pair fromA. Element has methodsgetFrom() andgetTo()
(using the language of the directed graph representation).So if an Element is storing (a,b),
getFrom() returnsa andgetTo() returnsb. The constructorElement(Object a, Object

b) creates an element(a,b).
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• TheRelation class has methods likeareRelated(Object a,Object b), getElements( ),
andgetUniverse( ).

• Methods in theRelation class can usefor(Element e : getElements()) to iterate over
elements of the relation.

• Similarly, the loopfor(Object a : getUniverse()) iterates over the elements ofA.

Given all of this, implement the following methods in theRelation class:

1. isReflexive()

2. isSymmetric()

3. isAntiSymmetric()

233 Problem Draw a table to represent the following Boolean expressions

a. x̄+y

b. xy+(xy)+z

c. (x+z)y

234 Problem Find the sum-of-products expansion for each of the Boolean expressions from Problem233

235 Problem Find the product-of-sums expansion for each of the Boolean expressions from Problem233

236 Problem Expressx+y+z using only the Boolean operators· and ¯ .

237 Problem TheNANDof p andq, denoted byp|q, is the proposition “not bothp andq”. The NAND
of p andq is false whenp andq are both true and true otherwise.

a. Draw a truth table forNAND

b. Expressx|y using∨, ∧, and/or¬ (you may not need all of them).

c. Expressxy using only NAND.

d. Expressx+y using only NAND.

238 Problem TheNORof p andq, denoted byp ↓ q, is the proposition “neitherp nor q”. The NOR of
p andq is true whenp andq are both false and false otherwise. Express each of the following using only
the NOR operator.

a. Draw a truth table forNOR

b. Expressx ↓ y using∨, ∧, and/or¬ (you may not need all of them).

c. Expressxy using only NOR.

d. Expressx+y using only NOR.
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239 Problem Show that the NAND operator (|) is functionally complete given the fact that{·,̄} (that is,
the AND and NEGATION operators) is universally complete. (Hint: All you need to do is show how to
implement each of AND and NEGATION using NAND.)

240 Problem A set of logical operators isfunctionally completeif any possible operator can be imple-
mented using only operators from that set. It turns out that{¬,∧} is functionally complete. So is{¬,∨}.
To show that a set if functionally complete, all one needs to do is show how to implement all of the
operators from another functionally complete set. Given this,

a. Show that{↓} is functionally complete.

b. Show that{|} is functionally complete.

241 Problem You need to settle an argument between your boss (who can fire you) and your professor
(who can fail you). They are trying to decide who to invite to the Young Accountants Volleyball League.
They want to invite freshmen who are studying accounting andare at least 6 feet tall. They have a list of
all students.

a. Your boss says they should make a list of all freshmen, a list of all accounting majors, and a list of
everyone at least 6 feet tall. They should then combine the lists (removing duplicates) and invite
those on the combined list. Is he correct? Explain. If he is not correct, describe in the simplest
possible terms who ends up on his guest list.

b. Your professor says they should make a list of everyone whois not a freshman, a list of everyone
who does not do accounting, and a list of everyone who is under6 feet tall. They should make a
fourth list that contains everyone who is on all three of the prior lists. Finally, they should remove
from the original list everyone on this fourth list, and invite the remaining students. Is he correct?
Explain. If he is not correct, describe in the simplest possible terms who ends up on his guest list.

c. Give a simple description of how the guest list should be created.

242 Problem Explain whether the following assertion is true and negate it without using the negation
symbol¬:

∀n∈ N ∃m∈ N
�
n2 > 4n→ 2n > 2m+10

�
243 Problem Prove Theorem183. (Note: This is an if and only if proof, so you need to prove both ways.)

244 Problem You are helping a friend debug the code below. He tells you “The code in the if statement
never executes. I have tried it forx=2, x=4, and evenx=-1, and it never gets to the code inside the if
statement.”

if((x%2==0 && x<0) || !(x%2==0 || x<0)) {
// Do something.

}

1. Is he correct that the code inside the if statement does notexecute for his chosen values? Justify
your answer.

2. Under what conditions, if any, will the code in the if statement execute? Be specific and complete.
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245 Problem Simplify the following code as much as possible.

if (x>0) {
if(x<y || x>0) {

x=y;
}

}

246 Problem Simplify the following code as much as possible:

if(x<=0 && x>0) {
doSomething();

} else {
doAnotherThing();

}

247 Problem Consider the following code.

boolean notBothZero(int x, int y) {
if(!(x==0 && y==0)) {

return true;
} else {

return false;
}

}
boolean unknown1(int x, int y) {

if(x!=0 && y!=0) {
return true;

} else {
return false;

}
}
boolean unknown2(int x, int y) {

if(x!=0 || y!=0) {
return true;

} else {
return false;

}
}

Is eitherunknown1 or unknown2 (or both) equivalent tonotBothZero? Prove it.

248 Problem

Simplify the following code as much as possible. (It can be simplified into a single if statement that is
about as complex as the original outer if statement).

if ( (!x.size()<=0 && x.get(0)!=11) || x.size()>0 ) {
if ( !(x.get(0)==11 && (x.size()>13 || x.size()<13) )

&& (x.size()>0 || x.size()==13) ) {
// Do a few things.

}
}
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249 Problem The following method returns true if and only if none of the entries of the array are 0:

boolean noZeroElements(int[] a, int n) {
for(int i=0;i<n;i++) {

if(a[i] == 0 )
return false;

}
return true;

}

The two methods below implement this idea for two arrays. Assumelist1 andlist2 have the
same size for both of these methods.

boolean unknown1(int[] list1, int[] list2, int n) {
for(int i=0;i<n);i++) {

if( list1[i]==0 && list2[i]==0 )
return false;

}
return true;

}

boolean unknown2(int[] list1, int[] list2, int n) {
if(noZeroElements(list1, n)) {

return true;
} else if(noZeroElements(list2, n) {

return true;
} else {

return false;
}

}

1. What isunknown1 determining? (Give answer in terms oflist1 andlist2.)

2. What isunknown2 determining? (Give answer in terms oflist1 andlist2.)

3. Prove or disprove thatunknown1 andunknown2 are determining the same thing.
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Chapter 4
Sequences and Summations

4.1 Sequences

250 Definition A sequenceof real numbers is a function whose domain is the set of natural numbers and
whose output is a subset of the real numbers. We usually denote a sequence by one of the notations

a0,a1,a2, . . .

or
{an}+∞

n=0

or
{an}.

The last notation is just a shorthand for the second notation.

☞ Sometimes we may not start at n= 0. In that case we may write

am,am+1,am+2, . . . ,

or
{an}+∞

n=m ,

where m is a non-negative integer. Most sequences we will deal with will start with m= 0 or m= 1.
We will be mostly interested in two types of sequences. The first type are sequences that have an

explicit formula for theirn-th term. They are said to beclosed form.

251 Example Let an = 1− 1
2n ,n = 0,1, . . .. Then{an}+∞

n=0 is a sequence for which we have an explicit
formula for then-th term. The first five terms are

a0 = 1− 1
20 = 0,

a1 = 1− 1
21 = 1

2,

a2 = 1− 1
22 = 3

4,

a3 = 1− 1
23 = 7

8,

a4 = 1− 1
24 = 15

16.

If you can’t work out the last step of each of these, you need tobrush up on your algebra skills.

81



82 Chapter 4

The second type of sequence are defined recursively. That is,each term is based on previous term(s).
We call theserecurrence relations.

252 Example Let

x0 = 1, xn =
�

1+
1
n

�
xn−1, n= 1,2, . . . .

Then{xn}+∞
n=0 is a sequence recursively defined. The termsx1,x2, . . . ,x5 are

x1 =
�
1+ 1

1

�
x0 = 2,

x2 =
�
1+ 1

2

�
x1 = 3,

x3 =
�
1+ 1

3

�
x2 = 4,

x4 =
�
1+ 1

4

�
x3 = 5,

x5 =
�
1+ 1

5

�
x4 = 6.

Notice that in the previous example, we gave an explicit definition of x0. This is called aninitial
condition. Every recurrence relation needs one or more initial conditions. Without them, we have an
abstract definition of a sequence, but cannot compute any values since there is no “starting point.”

When we find an explicit formula (or closed formula) for a recurrence relation, we say we havesolved
the recurrence relation.

253 Example It seems relatively clear thatxn = n+1 is a solution forxn from Example252.

It is important to be careful about jumping to conclusions too quickly when solving recurrence rela-
tions.1 Although it turns out that in the previous example,xn = n+1 is the correct closed form (we will
prove it shortly), just because it works for the first 6 terms does not necessarily imply that the pattern
continues.

254 Example Define{an} by a(0) = 1, a(1) = 2, and

a(n) =

$
1+
√

5
2
×a(n−1)

%
+a(n−2)

for n≥ 2. Let’s try to figure out a closed form fora(n). Then we can see that

a2 =
j

1+
√

5
2 ×a(1)

k
+a(0) =

j
1+
√

5
2 ×2

k
+1 = 4

a3 =
j

1+
√

5
2 ×a(2)

k
+a(1) =

j
1+
√

5
2 ×4

k
+2 = 8

a4 =
j

1+
√

5
2 ×a(3)

k
+a(2) =

j
1+
√

5
2 ×8

k
+2 = 16

You should verify these with a calculator. At this point it seems relatively clear thatan = 2n. However,

a5 =
j

1+
√

5
2 ×a(4)

k
+a(3) =

j
1+
√

5
2 ×16

k
+8= 33

so the solution that seems “obvious” turns out to not be correct. We won’t give the actual solution since
the point of this example is to demonstrate that just becausea pattern holds for the first several terms of a
sequence, it does not guarantee that it holds for the whole sequence.

1These comments apply to other problems that involve seeing apattern and finding an explicit formula.
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Generally speaking, you need toprovethat the closed form is correct. One way to do this is to plug
it back into the recursive definition. It usually works best to plug it into the right hand side and use your
algebra prowess to simplify it to the left hand side (which isjustxn or whatever the sequence is called).

255 Example Prove thatxn = n+1 is a solution to the recurrence relation given by

x0 = 1, xn =
�

1+
1
n

�
xn−1, n= 1,2, . . . .

Proof: If xn = n+1 for n≥ 0, then�
1+

1
n

�
xn−1 =

�
1+

1
n

�
n

=
�n+1

n

�
n

= n+1

= xn

soxn = n+1 is a solution to the recurrence relation. �

A more complete discussion of solving recurrences appears in Chapter6.

256 Example TheFibonacci numbersare a sequence of numbers that is of interest in various mathemat-
ical and computing applications. They are defined using the following recurrence relation:2

fn =

8><>: 0 if n=0
1 if n=1
fn−1+ fn−2 if n> 1

The first few are:

f0 = 0

f1 = 1

f2 = f1+ f0 = 1+0= 1

f3 = f2+ f1 = 1+1= 2

f4 = f3+ f2 = 2+1= 3

f5 = f4+ f3 = 3+2= 5

f6 = f5+ f4 = 5+3= 8

f7 = f6+ f5 = 8+5= 13

257 Definition A sequence{an}+∞
n=0 is said to be3

• increasingif an≤ an+1 ∀n∈ N

• strictly increasingif an < an+1 ∀n∈ N

2In the remainder of the book, when you seefk, you should assume it refers to thek-th Fibonacci number unless otherwise
specified.

3Some people call these sequencesnon-decreasing, increasing, non-increasing, anddecreasing, respectively.
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• decreasingif an≥ an+1 ∀n∈ N

• strictly decreasingif an > an+1 ∀n∈ N

A sequence is calledmonotonicif is any of these.

258 Example Recall that 0!= 1, 1!= 1, 2!= 1 ·2 = 2, 3!= 1 ·2 ·3 = 6, etc. Prove that the sequence
xn = n!,n= 0,1,2, . . . is strictly increasing forn≥ 1.

Proof: Forn> 1 we have

xn = n! = n(n−1)! = nxn−1 > xn−1,

sincen> 1. This proves that the sequence is strictly increasing. �

259 Example Prove that the sequencexn = 2+
1
2n , n= 0,1,2, . . . is strictly decreasing.

Proof: We have

xn+1−xn =
�

2+
1

2n+1

�
−
�

2+
1
2n

�
=

1
2n+1 −

1
2n

= − 1
2n+1

< 0.

Thus,xn+1−xn < 0, soxn+1 < xn, i.e., the sequence is strictly decreasing. �

260 Example Prove that the sequencexn =
n2+1

n
, n= 1,2, . . . is strictly increasing.

Proof: First notice that
n2+1

n
= n+

1
n

. Now,

xn+1−xn =
�

n+1+
1

n+1

�
−
�

n+
1
n

�
= 1+

1
n+1

− 1
n

= 1− 1
n(n+1)

> 0,

the last step since 1/n(n+1)< 1 whenn≥ 1. Therefore,xn+1−xn > 0, soxn+1 > xn, i.e., the
sequence is strictly increasing. �

261 Definition A sequence{xn}+∞
n=0 is said to beboundedif eventually the absolute value of every term

is less than or equal to a certain positive constant. The sequence that is not bounded is calledunbounded.

Proving that a sequence is unbounded involves showing that for any arbitrarily large positive real
number, we can always find a term whose absolute value is greater than this real number.

262 Example Prove that the sequencexn = n!,n= 0,1,2, . . . is unbounded.
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Proof: Let M > 2 be a large real number. Then(⌈M⌉−1)! > 1. Therefore{xn} is unbounded
since

x⌈M⌉ = ⌈M⌉! = ⌈M⌉(⌈M⌉−1)! > ⌈M⌉> M.

�

263 Example Prove that the sequencean =
n+1

n
, n= 1,2, . . . , is bounded.

Proof: Notice that ifn≥ 1, then 1/n≤ 1. Therefore

an =
n+1

n
= 1+

1
n
≤ 2,

soan is bounded. �

264 Definition A geometric progressionis a sequence of the form

a, ar,ar2, ar3, ar4, . . . ,

wherea (the initial term) andr (thecommon ratio) are real numbers. That is, a geometric progression is a
sequences in which every term is produced from the precedingone by multiplying it by a fixed number.

Notice that then-th term isarn−1. If a= 0 then every term is 0. Ifar 6= 0, we can findr by dividing
any term by the previous term.

265 Example Find the 35-th term of the geometric progression

1√
2
, −2,

8√
2
, . . . .

Solution: The common ratio is−2÷ 1√
2
=−2

√
2. Hence the 35-th term is1√

2
(−2
√

2)34 =

251√
2
= 1125899906842624

√
2.

266 Example The fourth term of a geometric progression is 24 and its seventh term is 192. Find its second
term.

Solution: We are given thatar3 = 24 andar6 = 192, for somea andr. Clearly,ar 6= 0, and
so we find

ar6

ar3 = r3 =
192
24

= 8,

whencer = 2. Now,a(2)3 = 24, giving a= 3. The second term is thusar = 6.

267 Definition An arithmetic progressionis a sequence of the form

a, a+d,a+2d, a+3d, a+4d, . . . ,

wherea (the initial term) andr (thecommon difference) are real numbers. That is, an arithmetic progres-
sion is a sequences in which every term is produced from the preceding one by adding a fixed number.
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268 Example If sn = 3n−7, then{sn} is an arithmetic progression witha=−7 andd = 3 (assuming we
begin withs0).

☞ Notice that geometric progressions are essentially a discrete version of an exponential function and
arithmetic progressions are a discrete version of a linear function. One consequence of this is that a
sequence cannot be both of these unless is is the sequence a,a,a, . . . for some a.

269 Example Consider the sequence 4,7,10,13,16,19,22, . . .. Assuming the pattern continues, is this a
geometric progression? Is it an arithmetic progression?

Solution: It is easy to see that each term is 3 more than the previous term. Thus, this is an
arithmetic progression witha= 4 andd = 3. Clearly it is therefore not geometric.

Exercises

270 Problem Find the first five terms of the following sequences.

1. xn = 1+(−2)n,n= 0,1,2, . . .

2. xn = 1+(−1
2)

n,n= 0,1,2, . . .

3. xn = n!+1,n= 0,1,2, . . .

4. xn =
1

n!+(−1)n ,n= 2,3,4, . . .

5. xn =
�

1+
1
n

�n

,n= 1,2, . . . ,

271 Problem Decide whether the following sequences are eventually monotonic or non-monotonic. De-
termine whether they are bounded or unbounded.

1. xn = n, n= 0,1,2, . . .

2. xn = (−1)nn, n= 0,1,2, . . .

3. xn =
1
n!
, n= 0,1,2, . . .

4. xn =
n

n+1
, n= 0,1,2, . . .

5. xn = n2−n, n= 0,1,2, . . .

6. xn = (−1)n, n= 0,1,2, . . .

7. xn = 1− 1
2n , n= 0,1,2, . . .

8. xn = 1+
1
2n , n= 0,1,2, . . .

272 Problem Find the 17-th term of the geometric sequence

− 2
317,

2
316, −

2
315, · · · .

273 Problem The 6-th term of a geometric progression is 20 and the 10-th is320. Find the absolute value
of its third term.
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Answers

270 (1) 2,−1, 5,−7, 17; (2) 2, 1/2, 5/4, 7/8, 17/16; (3) 2, 2, 3, 7, 25; (4) 1/3, 1/5, 1/25, 1/119, 1/721; (5) 2,
9/4, 64/27, 625/256, 7776/3125

271 (1) Strictly increasing, unbounded (2) non-monotonic, unbounded (3) strictly decreasing, bounded (4) strictly
increasing, bounded (5) strictly increasing, unbounded, (6) non-monotonic, bounded, (7) strictly increasing, bounded,
(8) strictly decreasing, bounded

272 −2
3

273 One is given thatar5 = 20 andar9 = 320. Hence|ar2|= 5
2

4.2 Sums and Products

There is often a need to add or multiply terms from a sequence.The following notation is very helpful.

274 Definition Let {an} be a sequence. Then for 1≤m≤ n, we define

nX
k=m

ak = am+am+1+ · · ·+an.

nY
k=m

ak = amam+1 · · ·an.

We will often write these as X
m≤k≤n

ak and
Y

m≤k≤n

ak

As with sequences, we are often interested in obtainingclosed formsfor a sum or product. There are
many techniques to do so. We will present just a few.

Perhaps the simplest cases are when we have a sum/product of the form

(a2−a1)+(a3−a2)+ · · ·+(an−an−1) = an−a1,

and
a2

a1
· a3

a2
· · · an

an−1
=

an

a1
,

in which case we say that the sum or the producttelescopes. The trick can be to recognize when a
sum/product telescopes.

In the following example we develop a formula for a geometricseries by doing a little algebra so we
can use the telescoping idea.

275 Theorem (Finite Geometric Series) Let x 6= 1. Then
X

0≤k≤n

xk = 1+x+x2+ · · ·+xn =
1−xn+1

1−x
.
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Proof: First, letS=
X

0≤k≤n

xk. Then

xS= x
X

0≤k≤n

xk =
X

0≤k≤n

xk+1 =
X

1≤k≤n+1

xk.

So

xS−S =
X

1≤k≤n+1

xk−
X

0≤k≤n

xk

= (x1+x2+ . . .+xn+xn+1)− (x0+x1+ . . .+xn)

= xn+1−x0 = xn+1−1.

So we haveS(x−1) = xn+1−1, soS= xn+1−1
x−1 , sincex 6= 0. �

PuttingN = n+1 in the above formula, we are provided with the following factorization, which is
useful in certain situations.

xN−1= (x−1)(xN−1+xN−2+ · · ·+x+1). (4.1)

For example,

x2−1= (x−1)(x+1), x3−1= (x−1)(x2+x+1), and x4−1= (x−1)(x3+x2+x+1).

☞More important than remembering theformulaabove is remembering themethodof how this formula
was obtained. As you work with sums more, you will start to seesome of the tricks that come in handy
often. There may be “one ring to rule them all”, but there is not one technique that always works when
finding closed forms for sums.

We just saw a technique that multiplies a sum byx, subtracts, and then does some algebra. The next
example is just a special case of this forx= 2.

276 Example Find the sum
20+21+22+23+24+ · · ·+2n.

Solution: We could just use the formula we computed above, but that would be boring.
Instead, let’s let

S= 20+21+22+23+ · · ·+2n.

Then 2S= 21+22+23+ · · ·+2n+1. Notice these have most of the same terms, exceptShas
20 and 2Shas 2n1. Therefore,

S= 2S−S = (21 + 22 + 23 + · · · + 2n + 2n+1)
−(20 + 21 + 22 + 23 + · · · + 2n)

= 2n+1−20

We have already implicitly used the following fact.

277 Theorem If xn is a sequence anda is a real number, then

nX
k=m

a ·xk = a
nX

k=m

xk.
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Proof: This follows immediately from the distributive law. �

This and Theorem275imply that whenr 6= 1,

nX
k=0

ark =
a−ark+1

1− r
.

Nevertheless, we will prove it from scratch.

278 Theorem If r 6= 1, then
nX

k=0

ark =
a−ark+1

1− r
.

Proof: Let S= a+ar+ar2+ · · ·+arn. ThenrS= ar+ar2+ · · ·+arn+1. Hence

S− rS = a+ar+ar2+ · · ·+arn−ar−ar2−·· ·−arn+1

= a−arn+1.

From this we deduce that

S=
a−arn+1

1− r
,

that is,
nX

k=0

ark =
a−arn+1

1− r

�

Notice that if|r| < 1 thenrn gets closer to 0 the largern gets. More formally, if|r| < 1, limn→∞ rn = 0.
This implies that if|r|< 1,

a+ar+ar2+ · · ·= a
1− r

.

In other words, the infinite sum of all of the terms in a geometric sequence isa/(1− r) if |r|< 1.

279 Example A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down, 1/8 unit left,
1/16 unit up, etc.,ad infinitum.In what coordinates does it end up?

Solution: Its x coordinate is

1
2
− 1

8
+

1
32
−·· ·=

1
2

1− −1
4

=
2
5
.

Its y coordinate is

1− 1
4
+

1
16
−·· ·= 1

1− −1
4

=
4
5
.

Therefore, the fly ends up in(2
5,

4
5).

Another trick to simplify sums involves adding the terms in asum twice, typically in a different order,
and then dividing the result by two. This is known as Gauss’ trick.
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280 Corollary
X

1≤k≤n

k=
n(n+1)

2
.

Proof: If
S= 1+2+3+ · · ·+n

then
S= n+(n−1)+ · · ·+1.

Adding these two quantities,

S = 1 + 2 + · · · + n
S = n + (n−1) + · · · + 1
2S = (n+1) + (n+1) + · · · + (n+1)

= n(n+1),

since there aren summands. This givesS=
n(n+1)

2
, as was to be proved. �

Here are a few more useful summations that come up often. There are various ways of proving each
of these. For now, we will provide the results without proof.We will return to some of them in the section
on Induction since that is perhaps the easiest way to prove many of them.X

1≤k≤n

k2 =
n(n+1)(2n+1)

6X
1≤k≤n

k3 =
n2(n+1)2

4X
2≤k≤n

1
(k−1)k

=
1

1 ·2+
1

2 ·3+
1

3 ·4+ · · ·+ 1
(n−1) ·n =

n−1
n

The following infinite sums are sometimes useful.

281 Theorem The following expansions hold:

1
1−x

=
∞X

n=0
xn = 1+x+x2+x3+ · · · , |x|< 1

1
(1−x)2 =

∞X
n=0

nxn−1 = 1+x+x2+x3+ · · · , |x|< 1

sinx =
∞X

n=0

(−1)nx2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
−·· ·+(−1)n x2n+1

(2n+1)!
+ · · · , x∈ R

cosx =
∞X

n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
−·· ·+(−1)n x2n

(2n)!
+ · · · , x∈ R

ex =
∞X

n=0

xn

n!
= 1+x+

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · , x∈ R

log(1+x) =
∞X

n=1

(−1)n+1xn

n
= x− x2

2
+

x3

3
−·· ·+(−1)n+1xn

n
+ · · · , |x|< 1

(1+x)τ =
∞X

n=0

 
τ
n

!
xn = 1+ τx+

τ(τ−1)
2!

x2+ · · ·+ τ(τ−1)(τ−2) · · ·(τ−n+1)
n!

xn+ · · · , |x|< 1.
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Exercises

282 Problem Find the sum of the following geometric series.

1.
1+3+32+33+ · · ·+349.

2. If y 6= 1,
1+y+y2+y3+ · · ·+y100.

3. If y 6= 1,
1−y+y2−y3+y4−y5+ · · ·−y99+y100.

4. If y 6= 1,
1+y2+y4+y6+ · · ·+y100.

283 Problem Find the sum of all the integers from 1 to 1000 inclusive, which are not multiples of 3 or 5.

284 Problem Find the sum of all integers between 1 and 100 that leave remainder 2 upon division by 6.

285 Problem Find a closed formula for

Dn = 1−2+3−4+ · · ·+(−1)n−1n.

286 Problem Find a closed form for
P

1≤k≤n3k.

287 Problem Let n≥ 1. Find a closed form for
P

0≤k≤n

�n
k

�
(−1)k.

288 Problem Find a closed form for
P

1≤k≤n

�n
k

�
3k.

289 Problem Evaluate the double sum
P

1≤i≤n
P

1≤k≤n 1.

290 Problem Evaluate the double sum
P

1≤i≤n
P

1≤k≤i 1.

291 Problem Evaluate the double sum
P

1≤i≤n
P

1≤k≤i k.

292 Problem Evaluate the double sum
P

1≤i≤n
P

1≤k≤n ik.

293 Problem Factor
1+x+x2+ · · ·+x80

as a polynomial with integer coefficients.

294 Problem Obtain a closed formula for
P

1≤k≤nk ·k!. Hint: (k+1)! = (k+1)k!.

295 Problem A colony of amoebas4 is put in a glass at 2 : 00 PM. One second later each amoeba divides
in two. The next second, the present generation divides in two again, etc.. After one minute, the glass is
full. When was the glass half-full?

4Why are amoebas bad mathematicians? Because they divide to multiply!
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Answers

282 (1) 350−1
2 = 358948993845926294385124, (2)1−y101

1−y , (3) 1+y101

1+y , (4) 1−y102

1−y2

283 We compute the sum of all integers from 1 to 1000 and weed out the sum of the multiples of 3 and the sum of
the multiples of 5, but put back the multiples of 15, which we have counted twice. Put

An = 1+2+3+ · · ·+n,

B= 3+6+9+ · · ·+999= 3A333,

C= 5+10+15+ · · ·+1000= 5A200,

D = 15+30+45+ · · ·+990= 15A66.

The desired sum is

A1000−B−C+D = A1000−3A333−5A200+15A66

= 500500−3·55611−5·20100+15·2211
= 266332.

284 We want the sum of the integers of the form 6r +2, r = 0,1, . . . ,16. But this is

16X
r=0

(6r +2) = 6
16X

r=0

r +
16X

r=0

2= 6
16(17)

2
+2(17) = 850.

285
(2n+1)(−1)n+1+1

4
.

286 Use the same method as in theorem275: put

S= 3+32+ · · ·+3n.

Then
3S= 32+33+ · · ·+3n+3n+1.

Subtracting,
3S−S= (32+33+ · · ·+3n+3n+1)− (3+32+ · · ·+3n) = 3n+1−3.

The answer is
3n+1−3

2
.

287 By the binomial theorem, 0= (1−1)n =
P

0≤k≤n

�
n
k

�
(−1)k.

288 By the binomial theorem, 4n = (1+3)n =
P

0≤k≤n

�
n
k

�
3k, and so

P
1≤k≤n

�
n
k

�
3k = 4n−1.

289 We have X
1≤i≤n

X
1≤k≤n

1=
X

1≤i≤n

n= n2.

290 We have X
1≤i≤n

X
1≤k≤i

1=
X

1≤i≤n

i =
n(n+1)

2
.

291 We have X
1≤i≤n

X
1≤k≤i

k=
X

1≤i≤n

i(i +1)
2

=
n(n+1)(n+2)

6
.
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292 We have X
1≤i≤n

X
1≤k≤n

ik =

� X
1≤i≤n

i

�� X
1≤k≤n

k

�
=

n2(n+1)2

4
.

293 PutS= 1+x+x2+ · · ·+x80. Then

S−xS= (1+x+x2+ · · ·+x80)− (x+x2+x3+ · · ·+x80+x81) = 1−x81,

or S(1−x) = 1−x81. Hence

1+x+x2+ · · ·+x80 =
x81−1
x−1

.

Therefore
x81−1
x−1

=
x81−1
x27−1

· x
27−1
x9−1

· x
9−1

x3−1
· x

3−1
x−1

.

Thus
1+x+x2+ · · ·+x80 = (x54+x27+1)(x18+x9+1)(x6+x3+1)(x2+x+1).

294 From the hint:k ·k! = (k+1)!−k! and we get the telescoping sumX
1≤k≤n

k ·k! =
X

1≤k≤n

(k+1)!−k! = (2!−1!)+ (3!−2!)+ (4!−3!)+ · · · ((n+1)!−n!) = (n+1)!−1!.

295 At 2 : 00 : 59 PM (the second just before 2 : 01 PM.)

Homework

296 Problem Find at least threedifferentsequences that begin with 1, 3, 7 whose terms are generated by
a simple formula or rule. By different, I mean none of the sequences can have exactly the same terms. In
other words, your answer cannot simply be three different ways to generate the same sequence.

297 Problem Let q(n) = 2q(n−1)+2n+5, andq(0) = 0. Computeq(1), q(2), q(3) andq(4).

298 Problem Compute each of the following:

1.
40X

k=5

k

2.
22X
j=5

(2 j+1−2 j)

3.
3X

i=1

4X
j=1

j

299 Problem Here is a standard interview question for prospective computer programmers: You are given
a list of 1,000,001 positive integers from the set{1,2, . . . ,1,000,000}. In your list, every member of
{1,2, . . . ,1,000,000} is listed once, except forx, which is listed twice. How do you find whatx is without
doing a 1,000,000 step search?
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300 Problem Find a closed formula for

Tn = 12−22+32−42+ · · ·+(−1)n−1n2.

301 Problem Show that
1+3+5+ · · ·+2n−1= n2.

302 Problem Show that
nX

k=1

k
k4+k2+1

=
1
2
· n2+n
n2+n+1

.

303 Problem Legend says that the inventor of the game of chess, Sissa ben Dahir, asked the King Shirham
of India to place a grain of wheat on the first square of the chessboard, 2 on the second square, 4 on the
third square, 8 on the fourth square, etc..

1. How many grains of wheat are to be put on the last (64-th) square?

2. How many grains, total, are needed in order to satisfy the greedy inventor?

3. Given that 15 grains of wheat weigh approximately one gram, what is the approximate weight, in
kg, of the wheat needed?

4. Given that the annual production of wheat is 350 million tonnes, how many years, approximately,
are needed in order to satisfy the inventor (assume that production of wheat stays constant)?

304 Problem Consider the following function:

int ferzle(int n) {
if(n<=0) {

return 3;
} else {

return ferzle(n-1) + 2;
}

}

1. Determine whatferzle(n) returns forn= 0,1,2,3,4.

2. Re-writeferzle without using recursion.

305 Problem It is easy to see that we can definen! recursively by defining 0!= 1, and ifn > 0, n! =
n· (n−1)!. Does the following method correctly computen!? If not, state what is wrong with it and fix it.

int factorial(int n) {
return n * factorial(n-1);
}

}

306 Problem A students turned in the code below (which does as its name suggests). I gave them a
‘C’ on the assignment because although it works, it is very inefficient. Write the ‘A’ version of the
method (in other words, a more efficient version). You can safely assume thatn≥ 1. Then compute
sumFromOneToN(30).
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int sumFromOneToN(int n) {
int sum = 0;
for(int i=1;i<=n;i++) {

sum = sum + i;
}

return sum;
}

307 Problem A students turned in the code below (which does as its name suggests). I gave them a
‘C’ on the assignment because although it works, it is very inefficient. Write the ‘A’ version of the
method (in other words, a more efficient version). You can safely assume thatn,m≥ 1. Then compute
sumFromMToN(10,50).

int sumFromMToN(int m, int n) {
int sum = 0;
for(int i=1;i<=n;i++) {

sum = sum + i;
}
for(int i=1;i<m;i++) {

sum = sum - i;
}
return sum;

}
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Chapter 5
Algorithm Analysis

In this chapter we take a look at the analysis of algorithms. Before we dive into that topic, we discuss one
of the most important tools used in analyzing algorithms–asymptotic notation. We end the chapter with a
discussion of the growth rates of several common functions.

5.1 Asymptotic Notation

Asymptotic notationis used to express and compare the growth rate of functions. In our case, the functions
will represent the running time of algorithms. Since the running time of an algorithms is always nonneg-
ative, and since it simplifies the definitions somewhat, we will define the asymptotic notations in terms of
nonnegative functions. We will focus on the most commonly used notations in the analysis of algorithms.

5.1.1 The Notations

308 Definition (Big-O) Let f be a nonnegative function.

We say thatf (n) is Big-O of g(n), written
as f (n) = O(g(n)), iff there are positive
constantsc andn0 such that

f (n)≤ cg(n) for all n≥ n0.

If f (n) = O(g(n)), f (n) grows no faster
than g(n). In other words,g(n) is an
asymptotic upper bound(or just upper
bound) on f (n).

f(n) = O(g(n))

n0

cg(n)

f(n)

☞ The “=” in f (n) = O(g(n)) should be read and thought of as “is”, not “equals”. An alternative
notation is to write f(n) ∈ O(g(n)) instead of f(n) = O(g(n)) . Since O(g(n)) is actually the set of all
functions that grow no faster than g(n), the set notation is actually in some sense more correct. The“=”
notation is used because it comes in handy when doing algebra. You can essentially think of these as being
two different notations for the same thing. Similar statements are true for the other asymptotic notations.

309 Example Prove thatn2+n= O(n3).
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Solution: Here, we havef (n) = n2+ n, andg(n) = n3 Notice that ifn≥ 1, n≤ n3 and
n2≤ n3. Therefore,

n2+n≤ n3+n3 = 2n3

Thus,
n2+n≤ 2n3 for all n≥ 1

Thus, we have shown thatn2+n= O(n3) by definition of Big-O, withn0 = 1, andc= 2.

☞ Notice that if a and b are real numbers with a≤ b, then na ≤ nb whenever n≥ 1. This fact is used
often in these types of proofs.

Sometimes the easiest way to prove thatf (n) = O(g(n)) is to takec to be the sum of the positive coef-
ficients of f (n), although this trick doesn’t always work. We can usually ignore the negative coefficients,
however.1 We leave it to the reader to figure out why.

310 Example To prove 5n2−3n+20= O(n2), we pickc= 5+20= 25. Then ifn≥ n0 = 1,

5n2−3n+20≤ 5n2+20≤ 5n2+20n2 = 25n2.

Therefore, 5n2−3n+20= O(n2).

Things are not always so easy. How would you show that(
√

2)logn+ log2n+n4 is O(2n)? Or that
n2 = O(n2−13n+23)? In general, we simply (or in some cases with much effort) findvaluesc andn0

that work. This gets easier with practice.

☞ The values of the constants used in the proofs do not need to bethe best possible. So, for instance, if
you can show that f(n)≤ 345g(n) for all n≥ 712, then f(n) = O(g(n)). It doesn’t matter whether or not
it is actually true that f(n)≤ 3g(n) for all n≥ 5.

Let’s move on to the other two notations.

311 Definition (Big-Omega) Let f andg be a nonnegative function.

We say thatf (n) is Big-Omegaof g(n),
written as f (n) = Ω(g(n)), iff there are
positive constantsc andn0 such that

cg(n)≤ f (n) for all n≥ n0

If f (n) = Ω(g(n)), f (n) grows no slower
than g(n). In other words,g(n) is an
asymptotic lower bound(or just lower
bound) on f (n).

n0

cg(n)

f(n)

312 Example Prove thatn3+4n2 = Ω(n2).

Proof: Here, we havef (n) = n3+4n2, andg(n) = n2. It is not too hard to see that ifn≥ 1,

n2 < n3≤ n3+4n2

Therefore,
n2≤ n3+4n2 for all n≥ 1

son3+4n2 = Ω(n2) by definition of Big-Ω, with n0 = 1, andc= 1. �

1By “ignore”, I do not literally mean ignore. I mean you can easily deal with them in an inequality like in the next example.
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Proving that af (n) = Ω(g(n)) often requires more thought than proving thatf (n) = O(g(n)). Quite
often, we have to pickc< 1. A good strategy is to pick a value ofc that you think will work, and determine
which value ofn0 is needed. Being able to do some algebra helps. We can sometimes simplify by ignoring
the slower growing terms off (n) with positive coefficients.2

313 Definition (Big-Theta) Let f andg be a nonnegative function.

We say that f (n) is Big-Theta of g(n),
written as f (n) = Θ(g(n)), iff there are
positive constantsc1, c2 andn0 such that

c1g(n)≤ f (n)≤ c2g(n) for all n≥ n0

If f (n) = Θ(g(n)), f (n) grows at the same
rate asg(n). In other words,g(n) is an
asymptotically tight bound(or just tight
bound) on f (n).

c2g(n)

c1g(n)

f(n)

n0

314 Example Prove thatn2+5n+7= Θ(n2)

Proof: Whenn≥ 1,
n2+5n+7≤ n2+5n2+7n2≤ 13n2.

Whenn≥ 0,
n2≤ n2+5n+7

Thus,
n2≤ n2+5n+7≤ 13n2 for all n≥ 1,

son2+5n+7= Θ(n2) by definition of Big-Θ, with n0 = 1, c1 = 1, andc2 = 13. �

Using the definition of Big-Theta can be inconvenient since it involves a double inequality. Luckily,
the following theorem provides us with an easier approach.

315 Theorem If f andg are nonnegative function, thenf (n) = Θ(g(n)) if and only if f (n) = O(g(n))
and f (n) = Ω(g(n)).

Proof: The result follows almost immediately from the definitions.We leave the details to
the reader. �

This theorem implies that no new strategies are necessary for Big-Theta proofs since they can be split
into two proofs—a Big-O proof and a Big-Omega proof.

The following is just a small sampling of the properties these notations have.

316 Theorem The following properties hold.

• Transitivity:

2Again, not literally ignore, but easily deal with with an inequality.
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– f (n) ∈O(g(n)) andg(n) ∈O(h(n))→ f (n) ∈O(h(n))

– f (n) ∈Θ(g(n)) andg(n) ∈ Θ(h(n))→ f (n) ∈ Θ(h(n))

– f (n) ∈Ω(g(n)) andg(n) ∈Ω(h(n))→ f (n) ∈Ω(h(n))

• Scaling: If f (n) ∈O(g(n)) then for anyk> 0, f (n) ∈O(kg(n)). (Also holds for the other two).

• Sums: If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then( f1+ f2)(n) ∈ O(max(g1(n),g2(n))). (Also
holds for the other two).

• Symmetry (sort of):f (n) = O(g(n)) iff g(n) = Ω( f (n)).

How do you use asymptotic notation to express the fact thatf (n) grows slower thang(n)? Saying
f (n) = O(g(n)) doesn’t work, because we only know thatf (n) doesn’t grow faster thang(n). It might
grow slower, but it also might grow at the same rate. With the notation we have, the best way to express
this idea is thatf (n) = O(g(n)) and f (n) 6= Θ(g(n)). But that is awkward. Let’s define a notation for this
instead.

317 Definition Let f andg be nonnegative functions, withg being eventually non-zero. We say thatf (n)
is little-o of g(n), written f (n) = o(g(n)) iff

lim
n→∞

f (n)
g(n)

= 0.

If f (n) = o(g(n)), f (n) grows asymptotically slower thang(n).

Little-omega (ω) can be defined similarly, but where the limit is∞.

5.1.2 Proofs using the definitions

The following example is annotated with comments about the technique that is used in many of these
proofs. We use the following terminology in our explanation. By lower order termwe mean a term that
grows slower, andhigher ordermeans a term that grows faster. Thedominating termis the term that grows
the fastest. For instance, inx3+7x2−4, thex2 term is a lower order term thanx3, andx3 is the dominating
term. We will discuss common growth rates, including how therelate to each other, in Section5.3.

318 Example Find a tight bound onf (x) = x8+7x7−10x5−2x4+3x2−17.

Solution: We will prove thatf (x) = Θ(x8). First, we will prove an upper bound forf (x). It
is clear that whenx> 0,

x8+7x7−10x5−2x4+3x2−17≤ x8+7x7+3x2.

• We can upper bound any function by removing the lower order terms with negative co-
efficients, as long as x> 0.

Next, it is not hard to see that whenx≥ 1,

x8+7x7+3x2≤ x8+7x8+3x8 = 11x8.
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• We can upper bound any function by replacing lower order terms that have positive
coefficients by the dominating term with the same coefficients. Here, we must make sure
that the dominating term is larger than the given term for allvalues of x larger than
some threshold x0, and we must make note of the threshold value x0.

Thus, we have

f (x) = x8+7x7−10x5−2x4+3x2−17≤ 11x8 for all x≥ 1,

and we have proved thatf (x) = O(x8).

Now, we will get a lower bound forf (x). It is not hard to see that whenx≥ 0,

x8+7x7−10x5−2x4+3x2−17≥ x8−10x5−2x4−17.

• We can lower bound any function by removing the lower order terms with positive coef-
ficients, as long as x> 0.

Next, we can see that whenx≥ 1,

x8−10x5−2x4−17≥ x8−10x7−2x7−17x7 = x8−29x7.

• We can lower bound any function by replacing lower order terms with negative coeffi-
cients by a sub-dominating term with the same coefficients. (By sub-dominating, I mean
one which dominates all but the dominating term.) Here, we must make sure that the
sub-dominating term is larger than the given term for all values of x larger than some
threshold x0, and we must make note of the threshold value x0. Making a wise choice for
which sub-dominating term to use is crucial in finishing the proof.

Next, we need to find a valuec > 0 such thatx8− 29x7 ≥ cx8. Doing a little algebra, we
see that this is equivalent to(1− c)x8 ≥ 29x7. Whenx≥ 1, we can divide byx7 and obtain
(1−c)x≥ 29. Solving forc we obtain

c≤ 1− 29
x
.

If x≥ 58, thenc= 1/2 suffices. We have just shown that ifx≥ 58, then

f (x) = x8+7x7−10x5−2x4+3x2−17≥ 1
2

x8.

Thus, f (x) = Ω(x8). Since we have shown thatf (x) = Ω(x8) and thatf (x) = O(x8), we have
shown thatf (x) = Θ(x8).

319 Example Show that12n2+3n= Θ(n2)

Proof: Notice that ifn≥ 1,

1
2

n2+3n≤ 1
2

n2+3n2 =
7
2

n2,

so
1
2

n2+3n= O(n2). Also, whenn≥ 0,

1
2

n2≤ 1
2

n2+3n,

so
1
2

n2+3n= Ω(n2). Since1
2n2+3n= O(n2) and1

2n2+3n= Ω(n2),
1
2

n2+3n= Θ(n2) �

105



106 Chapter 5

320 Example Show that(nlogn−2n+13) = Ω(nlogn)

Proof: We need to show that there exist positive constantsc andn0 such that

0≤ cnlogn≤ nlogn−2n+13 for all n≥ n0.

Sincenlogn−2n≤ nlogn−2n+13, we will instead show that

cnlogn≤ nlogn−2n,

which is equivalent to

c≤ 1− 2
logn

, whenn> 1.

If n≥ 8, then 2/(logn)≤ 2/3, and pickingc= 1/3 suffices. Thus ifc= 1/3 andn0 = 8, then
for all n≥ n0, we have

0≤ cnlogn≤ nlogn−2n≤ nlogn−2n+13.

Thus(nlogn−2n+13) = Ω(nlogn). �

321 Example Show that12n2−3n= Θ(n2)

Proof: We need to find positive constantsc1, c2, andn0 such that

0≤ c1n2≤ 1
2

n2−3n≤ c2n2 for all n≥ n0

Dividing by n2, we get

0≤ c1≤
1
2
− 3

n
≤ c2.

Notice thatc1≤ 1
2− 3

n holds forn≥ 10 andc1 = 1/5. Also, 1
2− 3

n ≤ c2 holds forn≥ 10 and
c2 = 1. Thus, ifc1 = 1/5, c2 = 1, andn0 = 10, then for alln≥ n0,

0≤ c1n2≤ 1
2

n2−3n≤ c2n2 for all n≥ n0.

Thus we have shown that1
2n2−3n= Θ(n2). �

322 Example Show thatn! = O(nn)

Proof: Notice that whenn≥ 1, 0≤ n! = 1·2·3· · ·n≤ n·n· · ·n= nn. Thereforen! = O(nn)
(Heren0 = 1, andc= 1.) �

323 Example Show that(
√

2)logn = O(
√

n), where log means log2.

Proof: It is not too hard to see that

(
√

2)logn = nlog
√

2 = nlog21/2
= n

1
2 log2 = n

1
2 =
√

n.

Thus it is clear that(
√

2)logn = O(
√

n). �
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Proving properties of the asymptotic notations is actuallyno more difficult than the rest of the proofs
we have seen.

324 Example Prove that iff (x) = O(g(x)), andg(x) = O( f (x)), then f (x) = Θ(g(x)).

Proof: If f (x) = O(g(x)), then there are positive constantsc2 andn′0 such that

0≤ f (n)≤ c2g(n) for all n≥ n′0

Similarly, if g(x) = O( f (x)), then there are positive constantsc′1 andn′′0 such that

0≤ g(n)≤ c′1 f (n) for all n≥ n′′0.

We can divide this byc′1 to obtain

0≤ 1
c′1

g(n)≤ f (n) for all n≥ n′′0.

Settingc1 = 1/c′1 andn0 = max(n′0,n
′′
0), we have

0≤ c1g(n)≤ f (n)≤ c2g(n) for all n≥ n0.

Thus, f (x) = Θ(g(x)). �

325 Example Let f (x) = O(g(x)) andg(x) = O(h(x)). Show thatf (x) = O(h(x)).

Proof: If f (x) = O(g(x)), then there are positive constantsc1 andn′0 such that

0≤ f (n)≤ c1g(n) for all n≥ n′0,

and ifg(x) = O(h(x)), then there are positive constantsc2 andn′′0 such that

0≤ g(n)≤ c2h(n) for all n≥ n′′0.

Setn0 = max(n′0,n
′′
0) andc3 = c1c2. Then

0≤ f (n)≤ c1g(n)≤ c1c2h(n) = c3h(n) for all n≥ n0.

Thus f (x) = O(h(x)). �

5.1.3 Proofs using limits

So far we have used the definitions in all of our proofs. The following theorem provides another technique
that is often much easier, assuming you understand and are comfortable with limits.

326 Theorem Let f (n) andg(n) be functions such that

lim
n→∞

f (n)
g(n)

= A.

Then

1. If A= 0, then f (n) = O(g(n)), and f (n) 6= Θ(g(n)). That is, f (n) = o(g(n)).
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2. If A= ∞, then f (n) = Ω(g(n)), and f (n) 6= Θ(g(n)). That is, f (n) = ω(g(n)).

3. If A 6= 0 is finite, thenf (n) = Θ(g(n)).

Notice that if the above limit does not exist, then you probably need to resort to using the definitions.
Luckily, in the analysis of algorithms the above approach works most of the time.

Now is probably a good time to recall a very useful theorem forcomputing limits, calledl’Hopital’s
Rule.

327 Theorem (l’Hopital’s Rule) Let f (x) andg(x) be differentiable functions. If lim
x→∞

f (x) = lim
x→∞

g(x) = 0

or lim
x→∞

f (x) = lim
x→∞

g(x) = ∞, then

lim
x→∞

f (x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

Now let’s see a bunch of examples.

328 Example Find a tight bound onf (x) = x8+7x7−10x5−2x4+3x2−17 using Theorem326.

Solution: We guess (or know, if we read the solution to Example318) that f (x) = Θ(x8).
To prove this, notice that

lim
x→∞

x8+7x7−10x5−2x4+3x2−17
x8 = lim

x→∞
x8

x8 +
7x7

x8 −
10x5

x8 −
2x4

x8 +
3x2

x8 −
17
x8

= lim
x→∞

1+
7
x
− 10

x3 −
2
x4 +

3
x6 −

17
x8

= lim
x→∞

1+0−0−0+0−0= 1

Thus, f (x) = Θ(x8) by the Theorem.

329 Example Find a tight bound onf (x) = x4−23x3+12x2+15x−21.

Solution: We will give solutions using both the definitions and Theorem326 so you can
compare the techniques.
Solution #1
It is clear that whenx≥ 1,

x4−23x3+12x2+15x−21≤ x4+12x2+15x≤ x4+12x4+15x4 = 28x4.

Also,

x4−23x3+12x2+15x−21≥ x4−23x3−21≥ x4−23x3−21x3 = x4−44x3≥ 1
2

x4,

whenever
1
2

x4 ≥ 44x3⇔ x≥ 88.

Thus
1
2

x4≤ x4−23x3+12x2+15x−21≤ 28x4, for all x≥ 88.

We have shown thatf (x) = x4−23x3+12x2+15x−21= Θ(x4).
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Solution #2
From Solution #1 we already know thatf (x) = Θ(x4). We verify this by noticing that

lim
x→∞

x4−23x3+12x2+15x−21 = lim
x→∞

x4

x4 −
23x3

x4 +
12x2

x4 +
15x
x4 −

21
x4

= lim
x→∞

1− 23
x
+

12
x2 +

15
x3 −

21
x4

= lim
x→∞

1−0+0+0−0= 1

330 Example Show that logx= O(x).

Proof:

lim
x→∞

logx
x

= lim
x→∞

1
x

1
= lim

x→∞
1
x
= 0

Therefore, logx= O(x). �

331 Example Show that logn! = O(nlogn)

Proof: In the previous problem, we showed that whenn≥ 1, n! ≤ nn. Notice thatn! ≥ 1,
so taking logs of both sides, we obtain 0≤ logn! ≤ lognn = nlogn for all n≥ 1. Therefore
logn! = O(nlogn). (Here,n0 = 1, andc= 1.) �

332 Example Find a good upper bound onnlog(n2+1)+n2 logn.

Solution: Another example we will do in two ways.
Solution #1:
If n> 1,

log(n2+1)≤ log(n2+n2) = log(2n2) = (log2+ logn2)≤ (logn+2logn) = 3logn

Thus whenn> 1,

0≤ nlog(n2+1)+n2 logn≤ n3logn+n2 logn≤ 3n2 logn+n2 logn≤ 4n2 logn.

Thus,nlog(n2+1)+n2 logn= O(n2 logn).

Solution #2:

lim
x→∞

nlog(n2+1)+n2 logn
n2 logn

= lim
x→∞

nlog(n2+1)
n2 logn

+1

= 1+ lim
x→∞

log(n2+1)
nlogn

= 1+ lim
x→∞

2n
n2+1

1 · logn+n · 1
n

(l’Hopital)

= 1+ lim
x→∞

2n
(n2+1)(logn+1)

= 1+ lim
x→∞

2

2n(logn+1)+(n2+1) · 1
n

(l’Hopital)

= 1+0= 1.

Therefore,nlog(n2+1)+n2 logn.= Θ(n2 logn).
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The last example illustrates an important point: If asked toprove that f (n) = O(g(n)), Theorem315
implies that provingf (n) = Θ(g(n)) suffices.

333 Example Show that 2x = O(3x).

Proof: This is easy to see since lim
x→∞

2x

3x = lim
x→∞

�2
3

�x

= lim
x→∞

0.

Proof #2:
If x≥ 1, then clearly(3/2)x≥ 1, so

2x≤ 2x
�3

2

�x

=
�2×3

2

�x

= 3x.

�

Summary
It is important to remember that a Big-O bound is only anupper bound, and that it may or may not be
a tight bound. So if f (n) = O(n2), it is possible thatf (n) = 3n2+ 4, or f (n) = logn, but f (n) 6= n3.
Conversely, a Big-Omega bound is only alower bound. Thus, if f (n) = Ω(nlogn), it might be the case
that f (n) = 2n, but we know thatf (n) 6= 3n. Unlike the other bounds, a Big-Theta bound is precise. So, if
f (n) =Θ(n2), then we know thatf has a quadratic growth rate. It might be thatf (n)= 3n2, 2n2−43n−4,
or evenn2+nlogn. But we are certain that the fastest growing term off is cn2 for some constantc.

334 Example If f (n) = O(n2) andg(n) = O(n3), can we say thatg(n) grows faster? No. Because the
bounds given are not tight, it is possible thatf (n) = n2 andg(n) = n, so thatf (n) grows faster, or vice-
versa.

5.2 Analyzing Algorithms

In this chapter we are dealing with a seemingly simple question: Given an algorithm, how good is it?I say
“seemingly” simple because unless we define what we mean by “good”, we cannot answer the question.
Do we mean how elegant it is? How easy it is to understand? How easy it is to update if/when necessary?
Whether or not it can be generalized?

Although all of these may be important questions, in algorithm analysis we are usually more interested
in the following two questions:How long does the algorithm take to run, and how much space does
the algorithm require.In fact, we follow the tradition of most books and restrict our discussion to just
the first question. This is usually reasonable since the amount of memory used by most algorithms is
reasonable enough to not matter. There are times, however, when analyzing the space required by an
algorithm is important. For instance, when the data is really large (e.g. the graph that represents friendship
on Facebook) or when you are implementing aspace-time-tradeoffalgorithms.

Although we have simplified the question, we still need to be more specific. What do we mean by
“time”? Do we mean how long it takes in real time (calledwall-clock time)? Or the actual amount of time
our processor used (calledCPU time)? Or thenumber of instructions(or number of operations) executed?

Because the running time of an algorithm is greatly affectedby the characteristics of the computer
system (e.g. processor speed, number of processors, amountof memory, file-system type, etc.), it does not
provide a comparable measure, regardless of whether you useCPU time or wall-clock time. For instance,
if I have an algorithm that takes 1 second and you have an algorithm that takes 1 minute, is mine better?
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It depends. If I ran mine on a supercomputer and you ran yours on a TRS-80 Model 4 (which came out in
1983), it is very possible your algorithm is better. Wall-clock time has the added problem that the other
programs running on the computer can greatly influence it. Sothe same algorithm might take 5 seconds
to run one time and 60 seconds to run another time.

This leaves us with the number of instructions. However, we still have a problem. What is meant by
“instruction”? When you write a program in a language such asJava or C++, it is not executed exactly as
you wrote it–it is compiled into some sort of machine language. The process of compiling does not gen-
erally involve a one-to-one mapping of instructions, so counting Java instructions versus C++ instructions
wouldn’t necessarily be fair. On the other hand, we certainly do not want to look at the machine code in
order to count instructions—machine code is ugly. Further,when analyzing an algorithm, should we even
take into account the exact implementation in a particular language, or should we analyze the algorithm
apart from implementation?

O.K., that’s enough of the complications. Let’s get to the bottom line. When analyzing algorithms,
we generally want to ignore what sort of machine it will run onand what language it will be implemented
in. We also generally do not want to knowexactlyhow many instructions it will take. Instead, we want to
know therate of growthof the number of instructions. This is sometimes called theasymptotic running
timeof an algorithm. In other words, as the size of the input increases, how does that affect the number of
instructions executed? We will typically use the notation from the previous section to specify the running
time of an algorithm. We will call this thecomplexityof the algorithm.

Given an algorithm, thesize of the inputis exactly what it sounds like—the amount of space required
to specify the input. For instance, if an algorithm operateson an array of sizen, we generally say the input
is of sizen. For a graph, it is usually the number of vertices or the number of vertices and edges. When
the input is a single number, it surprisingly gets a lot more complicated for reasons I do not want to get
into right now. We usually don’t need to worry about this case.

Algorithm analysis involves determining the size of the input, n, and then finding a function based on
n that tells us how long the algorithm will take if the input is of sizen. By “how long”, we of course mean
how many operations.

335 Example (Sequential Search) Given an array ofn elements, often one needs to determine if a given
numberval is in the array. One way to do this is with thesequential searchalgorithm that simply looks
through all of the elements in the array until it finds it or reaches the end. The most common version
of this algorithm returns the index of the element, or−1 if the element it not in the array. Here is one
implementation.

int sequentialSearch(int a[],int val) {
for(int i=0;i<a.size();i++) {

if(a[i]==val) {
return i;

}
}
return -1;

}

How many operations doessequentialSearch take to search an array of sizen?

Solution: As mentioned above, we considern as the size of the input. Assigningi = 0 takes
one instruction. Each iteration through the for look incrementsi, comparesi with a.size(),
and comparesa[i] with val. Don’t forget that accessinga[i] and callinga.size() each take
(at least) one instruction. Finally, it takes an instruction to return the value. If theval is in
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the array at positionk, the algorithm will take 2+5k = Θ(k) operations, the 2 coming from
the assignmenti=0 and the return statement. Ifval is not in the array, the algorithm takes
2+5n= Θ(n) instructions.

This last example should bring up a few questions. Did we missany instructions? Did we miss any
possible outcomes that would give us a different answer? Howexactly should we specify our analysis?

Let’s deal with the possible outcomes question first. Generally speaking, when we analyze an algo-
rithm we want to know what happens in one of three cases: The best case, the average case or the worst
case.

As the name suggests, when performing abest caseanalysis, we are trying to determine the smallest
possible number of instructions an algorithm will take. Typically, this is the least useful type of analysis.
If you have experienced a situation when someone said something like “it will only take an hour (or a day)
to fix your MP3 player,” and it actually took 3 hours (or days),you will understand why.

Similarly, theworst caseanalysis considers what is the largest number of instructions that will execute.
This is probably the most common analysis, and typically themost useful. When you pay Amazon for
guaranteed 2-day delivery, you are paying for them to guarantee a worst-case delivery time. However,
this analogy actually breaks down quickly. When you do a worst-case analysis, you know the algorithm
will nevertake longer than what your analysis specified, but occasionally an Amazon delivery is lost or
delayed.

The average caseis a little more complicated, both to define and to compute. The first problem is
determining what “average” means for a particular input and/or algorithm. For instance, what does an
“average” array of values look like? The second problem is that even with a good definition, computing
the average case complexity is usually much more difficult than the other two. It also must be used
appropriately. If you know what the average number of instructions for an algorithm is, you need to
remember that sometimes it might take less time and sometimes it might take more time.

336 Example Continuing thesequentialSearch example, notice that our analysis above reveals that
the best-case performance is 7= Θ(1) operations (if the element sought is the first one in the array) and
the worst-case performance is 2+5n= θ(n) operations (if the element is not in the array). If we assume
that the element we are searching for is equally likely to be anywhere in the array or not in the array, then
the average-case performance should be around 2+5(n/2) = Θ(n) operations.

Notice that the average and worst case complexities are the same. This actually makes sense. We
estimate that the average case takes about half as long as theworst case. But no matter how largen gets,
it is still just half as long. That is, the rate of growth of therunning times is the same.

Now onto another important question: How do we know we counted all of the operations? As it turns
out, we don’t actually care. This is good because determining the exact number is very difficult, if not
impossible. Recall that we said we wanted to know the rate of growth of an algorithm, not the exact
number of instructions. As long as we count all of the “important” ones, we will get the correct rate of
growth. But what are the “important” ones? The termabstract operationis sometimes used to describe
the operations that we will count. Typically you choose one type of operation or a set of operations that
you know will be performed the most often and consider those as the the abstract operation(s).

337 Example The analysis ofsequentialSearch is much easier than I made it out to be earlier. Notice
that the comparison (a[i]==val) is executed as often as any other instruction. In the best case it is
executed once, so the best case isΘ(1). In the worst case it is executedn= Θ(n) times. With the same
assumptions as above, we expect the average to be aboutn/2= Θ(n). Notice that we obtained the same
answers here as we did above.

112



Analyzing Algorithms 113

It is important to make sure that you choose the operations you will count carefully so your analysis is
not incorrect. In addition, you need to look at every instruction in the algorithm to determine whether or
not it can be accomplished in constant time. If not, you need to count it correctly.

338 Example Analyze the following algorithm that find the maximum value in an array.

int max(int a[],int n) {
int max = int.MIN_VAL;
for (int i=0; i<n; i++)

max = Maximum(max, a[i]);
return max;

}

Solution: We focus on the assignment (=) inside the loop and ignore the other instructions.
This should be fine since assignment occurs at least as often as any other instruction. We are
assuming that finding the maximum of two numbers (Maximum) takes constant time, which is
reasonable. It isn’t too difficult to see that the assignmentwill occur n times for an array of
sizen since the code goes through a loop withi = 0, . . . ,n−1. Thus, the complexity ofmax
is Θ(n). Notice that for this algorithm the best, worst, and averageare all exactly the same.3

339 Example Find the complexity of Insertion Sort.

void insertion(int a[]) {
for (int i=1;i<a.size();i++) {

int v=a[i];
int j=i;
while (j > 0 && a[j] > v) {

a[j+1] = a[j];
j--;

}
a[j]=v;

}
}

Solution: Let n = a.size(). We will use the comparison in the while loop as our abstract
operation because it occurs at least as often as any other operation. In fact, we can just count
the number of times the while loop executes since each time itexecutes, it only does a constant
amount of work.4 Notice that the while loop goes fromj = i down to j = 1 unlessa[j] > v

at some point.

In the worst case the while loop executesi times (becausea[i] is always less than or equal to
v). The for loop changes the value ofi from 0 ton−1. A first guess at the complexity would
ben · i. But this doesn’t make sense. What isi? The complexity has to be expressed in terms
of n.

3When an algorithm has no conditional statements, or at leastnone that can cause the algorithm to end earlier, the best,
average, and worst case complexities will usually be the same. I say usually because there is always the possibility of a weird
algorithm that I haven’t thought of that could be an exception.

4Here I am analyzing the algorithm slightly differently. Instead of focusing on an abstract operation, I am counting all of
the operations, but when there are 4 or 7 or 42, I will just think of it as being a constant number—like 1. But be careful! If
something takes more than constant time, but you say it takesconstant time, you will get the answer.
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Instead we need to realize that sincei is changing each time through the for loop, we need to
sum the worst case of the while loop asi is changing. In other words, the complexity is

n−1X
i=1

i = (n−1)n/2= Θ(n2).

This happens, by the way, if the elements in the array begin inreverse order.

In the best case, the while loop only executes once each time through the for loop. This
happens if the array is already sorted. In this case, the complexity is Θ(n).

340 Example Analyze the following algorithm.

for (int i=1; i<=a.size(); i++) {
for (int j=1; j<=a.size(); j++) {

double V=A[i]*A[j];
}

}

Solution: Let n= a.size(). Clearly the assignment (V=A[i]*A[j]) occurs the most often.
The inner loop5 always executesn times, each time doing one assignment. The outer loop
executesn times, and each time it executes, it executes the inner loop.Therefore the total time
is n ·n= Θ(n2). This is the best, worst, and average case complexity since nothing about the
input can change what the algorithm does.

Sometimes people mistakingly think the algorithm takesn+n operations. It is very impor-
tant to carefully think through the analysis so you multiply/add as appropriate for the given
circumstance. In this case, you can think of it beingn ·n because each time the outer loop
executes it takesn time, and that happensn times, so you getn+n+ · · ·+n operations (where
there aren terms in the sum), which is justn ·n.

It is important to be careful not to jump to conclusions when analyzing algorithms. For instance, a
double-nested for-loop should always takeΘ(n2) to execute, right? This is wrong for many reasons. For
instance, consider the next example.

341 Example Analyze the following algorithm.

int k=50;
for (i = 0; i < n; i ++)
for (j = 0; j < k; j ++)
a[i][j] = b[i][j] * x;

Solution: The line in the inner for loop takes constant time (let’s callit c). The inner loop
executesk= 50 times, each time doingc operations. Thus the inner loop does 50·coperations,
which is still just a constant. The outer loop executesn times, each time executing the inner
loop, which takes 50·c operations. Thus, the whole algorithm takes 50·c·n= Θ(n) time.

5Alwaysanalyze from the inside out. The more practice you get, the more it will be obvious that this is the only way that
will consistently work.
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We end this section with a comment that perhaps too few peoplethink about. Theoryandpractice
don’t always agree. Since asymptotic notation ignores theconstants, two algorithms that have the same
complexity are not, in practice, equally good. For instance, if one takes 4· n2 operations and the other
10,000·n2 operations, clearly the first will be preferred even though they are bothΘ(n2) algorithms.

Further, consider this (real-life) situation: You want to multiply two matrices. The standard algorithm
to multiply matrices has complexityΘ(n3). Strassen’s algorithm for matrix multiplication has a complex-
ity of aboutΘ(n2.8). Clearly, Strassen’s algorithm is better asymptotically.In other words, if your matrices
are large enough, Strassen’s algorithm is certainly the better choice. However, it turns out that ifn= 50,
the standard algorithm performs better.6

Analyzing recursive algorithms can be a little more complex. We will consider such algorithms in
Chapter6, where we develop the necessary tools.

5.3 Common Growth Rates

In order for us to compare the efficiency of algorithms, we need to know the growth rates of some common
functions and how they compare to one another. We will brieflydiscuss each of the following complexity
classes. For each,k is a constant.

• Constant:Θ(k), for exampleΘ(1)

• Linear: Θ(n)

• Logarithmic:Θ(logk n)

• nlogn: Θ(nlogk n)

• Quadratic:Θ(n2)

• Polynomial:Θ(nk)

• Exponential:Θ(kn)

342 Definition (Constant) An algorithm with running timeΘ(k) for some constantk is said to have
constantcomplexity. Note that this does not necessarily mean that the algorithm takes exactly the same
amount of time for all inputs, but itdoesmean that there is some numberK such that it always takes no
more thanK operations.

343 Example The following algorithms have constant complexity.

int Fifth_Element(int A[],int n) {
return A[4];

}

int Partial_Sum(int A[],int n) {
int sum=0;
for(int i=0;i<42;i++)

sum=sum+A[i];
return sum;

}

6There is debate about the “crossover point.” This is the point at which the more efficient algorithm is worth using. For
smaller inputs, the overhead associated with the cleverness of the algorithm isn’t worth the extra time it takes. For larger inputs,
the extra overhead is far outweighed by the benefits of the algorithm. For Strassen’s algorithm, this point may be somewhere
between 75 and 100, but don’t quote me on that.
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344 Definition (Linear) Algorithms with running time ofΘ(n) are said to havelinear complexity. Asn
increases, the run time increases in proportion withn. Linear algorithms access each of theirn inputs at
most some constant number of times.

345 Example The following are linear algorithms.

void sum_first_n(int n) {
int i,sum=0;
for (i=1;i<=n;i++)

sum = sum + i;
}

void m_sum_first_n(int n) {
int i,k,sum=0;
for (i=1;i<=n;i++)

for (k=1;k<7;k++)
sum = sum + i;

}

346 Definition (Logarithmic) Algorithms with running time ofΘ(logn) are said to havelogarithmic
complexity. As the input sizen increases, so does the running time, but very slowly. Logarithmic algo-
rithms are typically found when the algorithm can systematically ignore fractions of the input.

Recall that a logarithmic function is the inverse of an exponential function. That is,bx = n is equivalent
to x = logbn. The following identity is very relevant to our discussion of complexity classes involving
logarithms:

(logab)(logbn) = logan

This identity implies that logan=Θ(logbn). In other words, changing the base of a logarithm just changes
the value by a constant amount. Therefore all logarithms belong to the same complexity class. Because of
this, the base will often be omitted from logarithms when they appear in asymptotic notation. In computer
science, the base of logarithms is often 2. Finally, in case you have not seen this notation, you should
know that logan= (logn)a.

347 Example The binary search algorithm has logarithmic complexity. Wewill prove this fact later.

int binarysearch(int a[], int n, int val) {
int l=1, r=n, m;
while (r>=1) {

m = (l+r)/2;
if(a[m]==val)

return m;
if(a[m]>val)

r=m-1;
else

l=m+1;
}
return -1;

}

348 Definition ( nlogn) Many divide-and-conquer algorithms have complexityΘ(nlogn). These algo-
rithms break the input into a constant number of subproblemsof the same type, solve them independently,
and then combine the solutions together. Not all divide-and-conquer algorithms have this complexity,
however. Examples includeQuicksortandMergesort. We’ll analyze Mergesort later.

349 Definition (Quadratic) Algorithms with running time ofΘ(n2) are said to havequadraticcomplex-
ity. As n doubles, the running time quadruples.
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350 Example The following algorithm is quadratic.

int compute_sums(int A[], int n) {
int M[n][n];
int i,j;
for (i=0;i<n;i++)

for (j=0;j<n;j++)
M[i][j]=A[i]+A[j];

return M;
}

351 Definition (Polynomial) Algorithms with running time ofΘ(nk) for some constantk are said to have
polynomialcomplexity. Notice that linear and quadratic are special cases of polynomial. When we say an
efficientalgorithm exists to solve a problem, we typically mean an algorithm with polynomial complexity.

352 Definition (Exponential) Algorithms with running time ofΘ(kn) for some constantk are said to
haveexponentialcomplexity. Since exponential algorithms can only be run for small values ofn, they are
not considered to be efficient. Brute-force algorithms are often exponential.

☞ Unlike logarithms, the the base of exponentials changes thecomplexity class. In other words, an 6=
Θ(bn) unless a= b.

5.3.1 Comparing Growth Rates

Figure5.1shows the value of several functions for various values ofn to give you an idea of their relative
rates of growth. Notice that the bottom of the table is labeled so you can get a sense of how slow logn and
log(logn) grow. Figures5.2 and5.3 are attempting to demonstrate that asn increases, the constants and
lower-order terms do not matter. For instance, notice that although 100n is much larger than 2n for small
values ofn, asn increases, 2n quickly gets much larger than 100. Similarly, in Figure5.3, notice that when
n= 4, n3 andn3+234 are virtually the same.

logn n nlogn n2 n3 2n

0 1 0 1 1 2
0.6931 2 1.39 4 8 4
1.099 3 3.30 9 27 8
1.386 4 5.55 16 64 16
1.609 5 8.05 25 125 32
1.792 6 10.75 36 216 64
1.946 7 13.62 49 343 128
2.079 8 16.64 64 512 256
2.197 9 19.78 81 729 512
2.303 10 23.03 100 1000 1024
2.398 11 26.38 121 1331 2048
2.485 12 29.82 144 1728 4096
2.565 13 33.34 169 2197 8192
2.639 14 36.95 196 2744 16384
2.708 15 40.62 225 3375 32768
2.773 16 44.36 256 4096 65536
2.833 17 48.16 289 4913 131072
2.890 18 52.03 324 5832 262144

log logm logm m

Figure 5.1: A comparison of growth rates

n 100n n2 11n2 n3 2n

1 100 1 11 1 2
2 200 4 44 8 4
3 300 9 99 27 8
4 400 16 176 64 16
5 500 25 275 125 32
6 600 36 396 216 64
7 700 49 539 343 128
8 800 64 704 512 256
9 900 81 891 729 512

10 1000 100 1100 1000 1024
11 1100 121 1331 1331 2048
12 1200 144 1584 1728 4096
13 1300 169 1859 2197 8192
14 1400 196 2156 2744 16384
15 1500 225 2475 3375 32768
16 1600 256 2816 4096 65536
17 1700 289 3179 4913 131072
18 1800 324 3564 5832 262144
19 1900 361 3971 6859 524288

Figure 5.2: Constants don’t matter
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n n2 n2−n n2+99 n3 n3+234
2 4 2 103 8 242
6 36 30 135 216 450

10 100 90 199 1000 1234
14 196 182 295 2744 2978
18 324 306 423 5832 6066
22 484 462 583 10648 10882
26 676 650 775 17576 17810
30 900 870 999 27000 27234
34 1156 1122 1255 39304 39538
38 1444 1406 1543 54872 55106
42 1764 1722 1863 74088 74322
46 2116 2070 2215 97336 97570
50 2500 2450 2599 125000 125234
54 2916 2862 3015 157464 157698
58 3364 3306 3463 195112 195346
62 3844 3782 3943 238328 238562
66 4356 4290 4455 287496 287730
70 4900 4830 4999 343000 343234
74 5476 5402 5575 405224 405458

Figure 5.3: Lower-order terms don’t matter

Figures5.4 through5.8 give a more graphical representation of relative growth rates of several func-
tions.

Here are some of the most important results about the relative growth rate of some common functions.
If you want proofs, try them yourself. Theorems326and327will help.

353 Theorem Let a< b be real numbers. Then

1. na = o(nb).

2. an = o(bn).

354 Theorem Let a> 0 andb> 0 be real numbers. Then logan= o(nb). In other words, any power of a
log grows slower than any polynomial.

355 Theorem Let a> 0 andb > 1 be real numbers. Thenna = o(bn). In other words, any exponential
with base larger than 1 grows faster than any polynomial.

An alternative notation of little-o is≪. In other words,f (n) = o(g(n)) iff f (n)≪ g(n). This notation
is useful in certain contexts, including the following comparison of the growth rate of common functions.

c≪ logn≪ log2n≪
√

n≪ n≪ nlogn≪ n1.1≪ n2≪ n3≪ n4≪ 2n

You should convince yourself that these are correct.
Let me end on a very important note regarding analysis of algorithms and asymptotic growth of func-

tions. If algorithmA is faster than algorithmB, then the running time ofA is less than the running time of
B. On the other hand, ifA’s running time is asymptotically faster than the running time ofB, that meansB
is faster! In other words, the words fast/slow need to be reverse when discussing algorithm speeds versus
the growth of the functions. Put simply:A faster growing complexity means a slower algorithm, and
vice-versa.
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is growing faster than 2x. But see Figure5.7.
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Homework

356 Problem Prove Theorem315.

357 Problem Big-Theta can be thought of as a relation on the set of functions, where( f ,g) ∈ Big-Theta
iff f (n) = Θ(g(n)). Prove that Big-Theta is an equivalence relation.
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Chapter 6
Recursion, Recurrences, and Mathematical
Induction

In this chapter we will explore a proof technique, an algorithmic technique, and a mathematical technique.
Each topic is in some ways very different than the others, yetthey have a whole lot in common. They are
also often used in conjunction.

You have already seenrecurrence relations. Recall that a recurrence relation is a way of defining a
sequence of numbers with a formula that is based on previous numbers in the sequence. You may or may
not be familiar withrecursion, which is an algorithmic technique in which an algorithm calls itself (such
an algorithm is calledrecursive), typically with “smaller” input. Finally, theprinciple of mathematical
inductionis a slick proof technique that works so well that sometimes it feels like you are cheating.

We will see that induction can be used to prove formulas, prove that algorithms—especially recursive
ones—are correct, and help solve recurrence relations. Among other things, recurrence relations can be
used to analyze recursive algorithm. Recursive algorithmscan be used to compute the values defined by
recurrence relations and to solve problems that can be broken into smaller versions of themselves.

As we will see, each of these has one or morebase casesthat can be proved/computed/determined
directly and arecursiveor inductivestep that relies on previous steps. With each, the inductive/recursive
steps must eventually lead to a base case.

Because induction can be used to prove things about the othertwo, we will begin there.

6.1 Mathematical Induction

Let P(n) be a propositional function with domainN, Z+, or sometimes{a,a+1,a+2, . . .}. Theprinciple
of mathematical induction(PMI, or simplyinduction) is usually used to prove statements of the form

for all n≥ a,P(n) is true,

wherea is a constant, usually 0 or 1.
Induction is based on the following fairly intuitive observation. Suppose that we are to perform a task

that involves a certain number of steps. Suppose that these steps must be followed in strict numerical
order. Finally, suppose that we know how to perform then-th task provided we have accomplished the
(n−1)-th task. Thus if we are ever able to start the job (that is, if we have a base case), then we should be
able to finish it (because starting with the base case we go to the next case, and then to the case following
that, etc.).
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132 Chapter 6

Let’s see an example. But first, recallmodus ponens: if p is true andp→ q is true, thenq is true. In
English, “If p is true, and wheneverp is trueq is true, thenq is true.”1

358 Example Assume that I know thatP(1) is true and that wheneverk≥ 1, P(k)→ P(k+1) is true.
What can I conclude?

Solution: Let’s start from the ground up.

We know:P(1) is true, and ifk≥ 1, P(k)→ P(k+1).
SinceP(1) is true, and since 1≥ 1, P(1)→ P(2), thereforeP(2) is true.
SinceP(2) is true, and since 2≥ 1, P(2)→ P(3), thereforeP(3) is true.
SinceP(3) is true, and since 3≥ 1, P(3)→ P(4), thereforeP(4) is true.

...
...

...
...

and this continues, soP(k) is true for allk≥ 1.

This example illustrates the idea behind induction. Induction is based on the fact that ifP(a) is true for
somea≥ 0 (thebase case), and fork≥ a, if P(k) is true, thenP(k+1) is true (theinductive case), then
P(n) is true for alln≥ a. In other words, the principle of mathematical induction isbased on the tautology

[P(a)∧∀k(P(k)→ P(k+1))]→ (∀nP(n)),

where the universe is{a,a+1,a+2, . . .}. We won’t prove that this is a tautology, but the previous example
should help you convince yourself that it is indeed a tautology. It is definitely worth your time to convince
yourself that this is a tautology, so if you aren’t convinced, reread the example, think about it some more,
and/or ask someone to help you see it.

To prove a statement using induction, you start by proving one or morebase cases. Then you show that
if P(k) is true for anyk which is at least as large as the base case(s), thenP(k+1) is true. Alternatively, you
can show that ifP(k−1) is true fork larger than any of the base cases, thenP(k) is true. The assumption
thatP(k) is true is called theinductive hypothesis, and proving thatP(k+1) is true based on the inductive
hypothesis is called theinductive step. Let’s see an example.

359 Example Prove that the sum of the firstn odd integers isn2. That is, show that
Pn

i=1(2i−1) = n2 for
all n≥ 1.

Proof:
Let P(n) be the statement “

Pn
i=1(2i−1) = n2”.2

Since
P1

i=1(2i−1) = 2 ·1−1= 1= 12, P(1) is true (the base case).
Now letk≥ 1 and assumeP(k) is true. That is,

Pk
i=1(2i−1) = k2 (the inductive hypoth-

esis).
Then (the inductive step)

k+1X
i=1

(2i−1) =
kX

i=1

(2i−1)+(2(k+1)−1)

= k2+(2k+2−1)
= k2+2k+1
= (k+1)2

1We can also write this as the tautology[p∧ (p→ q)]→ q.
2 Notice the quotes in the statement. It is important that you include these. This is particularly important if you use notation

such asP(n) =“
Pn

i=1(2i−1) = n2”, which is common. Without the quotes, this becomesP(n) =
Pn

i=1(2i−1) = n2, which is
definingP(n) to be

Pn
i=1(2i−1) and saying that it is also equal ton2. These arenotsaying the same thing.
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Mathematical Induction 133

Thus P(k+ 1) is true. Since we proved thatP(1) is true, and thatP(k)→ P(k+ 1)
wheneverk≥ 1, P(n) is true for alln≥ 1 by the principle of mathematical induction.

�

Notice that the proof had four components (or three if you lump the second and third together), each
of which is necessary:

1. We proved the statement for thebase case.

2. We assumed it was true fork. That is, we made theinductive hypothesis.

3. We proved that it was true fork+1 based on the assumption that it is true fork. That is, we did the
inductive step.

4. We appealed to the principle of mathematical induction inthesummary.

It is important to note that explicitly definingP(k) and using it throughout is not necessary. The whole
proof could have been written without definingP(k), although the proof would have been longer. In other
words, we often useP(k) for convenience and clarity.

The form of induction we have discussed up to this point only assumes the statement is true for one
value ofk. This is sometimes calledweak induction. In strong induction, we assume that the statement is
true for all values up to and includingk. In other words, with strong induction, the inductive hypothesis
involves proving that

[P(a)∧P(a+1)∧· · ·∧P(k)]→ P(k+1) if k≥ a.

This may look more complicated, but practically speaking, there is really very little difference. Essentially,
strong induction just allows us to assumemorethan weak induction. Let’s see an example of why we might
need strong induction.

360 Example Show that every integern≥ 2 can be written as the product of primes.

Proof: Let P(n) be the statement “n can be written as the product of primes.” We need to
show that for alln≥ 2, P(n) is true.
Base case:Since 2 is clearly prime, it can be written as the product of one prime. ThusP(2)
is true.
Inductive Hypothesis: Assume[P(2)∧P(3)∧· · ·∧P(k−1)] is true fork> 2.
Inductive Step: We need to show thatP(k) is true. If k is prime, clearlyP(k) is true. Ifk is
not prime, then we can writek = a ·b, where 2≤ a≤ b < k. By hypothesis,P(a) andP(b)
are true, soa andb can be written as the product of primes. Therefore,k can be written as the
product of primes, namely the primes from the factorizations ofa andb. ThusP(k) is true.
Summary: Since we proved thatP(2) is true, and that[P(2)∧P(3)∧ · · ·∧P(k−1)]→ P(k)
if k> 2, by the principle of mathematical induction,P(n) is true for alln≥ 2. That is, every
integersn≥ 2 can be written as the product of primes. �

Notice that there is no way we could have used weak induction in the previous example. Also notice
that we labeled the four parts of the proof. Although that is not required, I highly recommend labeling at
least thebase caseandinductive stepfor a while.

You can split an induction proof into more than four steps. Here I outline one way to approach in-
duction proofs that I think helps you work through the whole concept of induction. These steps and this
approach are not required, but I think if you use it for your first several proofs, it will help you immensely.
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1. Define: DefineP(n) based on the statement.
P(n) should be a statement about a single instance, not about a series of instances. For example, it
should be statements like “2n is even” or “A set withn elements has 2n subsets,”NOTof the form
“2n is even ifn> 1,” “n2 > 0 if n 6= 0,” or “For all n> 1, a set withn elements has 2n subsets.”

2. Rephrase:Rephrase the statement usingP(n). This step is mostly for your own clarity.
In almost all cases, the rephrased statement should be “For all n ≥ a, P(n) is true,” wherea is
some constant, often 0 or 1. If the statement cannot be phrased in this way, induction may not be
appropriate.

3. Base Case:Prove the base case or cases.
For most statements, this means showing thatP(a) is true, wherea is the value from the rephrased
statement. Sometimes one must prove multiple base cases, usually P(a), P(a+1), . . . ,P(a+ i) for
somei > 0. For most statements, 1 or 2 base cases suffice.

4. Hypothesis:Write down what you are assuming. This is almost always one of

P(k) is true,

P(k−1) is true,

or

[P(a)∧P(a+1)∧· · ·∧P(k)] is true.

Sometimes it is helpful to write out the hypothesis explicitly (that is, write down the whole statement
with k or k−1 plugged in).

5. Goal: Explicitly write down what your next step is. This is anotherstep that is mostly for clarity.
It is almost always “I need to show thatP(k+1) is true” (or ”I need to show thatP(k) is true”).

Note: At this point in the proof you shouldnot write out P(k+ 1) unless you preface it with a
statement like “I need to show that...”. Since you are about to prove thatP(k+1) is true, you don’t
know that it is true yet, so writing it down as if it is a fact is incorrect and confusing.

6. Inductive: Given theHypothesis, prove theGoal statement.
This is the longest, and most varied, part of the proof. Once you get the hang of induction, you will
typically only think about two parts of the proof—the base case and this step. The rest will become
second nature.

Note: The inductive step shouldnot start with writing downP(k+1). Especially whenP involves
a formula, some students want to write outP(k+1) and work both sides until they get them to be
the same. This isnot a proper proof technique. You cannot start with something you do not know
and then work it until you get to something you do know and thendeclare it is true. I will have more
to say on this later.

7. Summary: Almost always either:
“Since we proved thatP(a) is true, and thatP(k)→ P(k+1), by PMI, P(n) is true for alln≥ a.”
or
“Since we proved thatP(a) is true, and that[P(a)∧P(a+1)∧· · ·∧P(k)]→ P(k+1), by PMI, P(n)
is true for alln≥ a.”

Let’s see this approach in action.
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361 Example Prove thatn< 2n for all integersn≥ 1.

Proof: For this proof, I will explicitly show the steps as suggestedabove.

Define: Let P(n) be the statement “n< 2n”.
Rephrase:We want to prove thatP(n) is true for alln≥ 1.
Base Case:Since 1< 21, P(1) is clearly true.
Hypothesis: We assumeP(k) is true ifk≥ 1. That is,k< 2k

Goal: We need to show thatP(k+1)is true.
Inductive: By hypothesis (sinceP(k) is true), we know thatk< 2k, thus

k+1 < 2k+1 adding 1 to both sides of previous
< 2k+2k since 1< 2k whenk≥ 1
= 2(2k) algebra
= 2k+1 algebra

Since we have shown thatk+1< 2k+1, P(k+1) is true.
Summary: Since we proved thatP(1) is true, and thatP(k)→ P(k+1), by PMI,
P(n) is true for alln≥ 1.

�

Here is one final tip that is often relevant to theinductivestep. Many statementsP(k) are of the form
“LHS(k) = RHS(k),”3 where= might be replaced with≥, ≤, etc. For instance, ifP(k) is the statement
“k > 2k”, LHS(k) = k, andRHS(k) = 2k. In these cases, the goal of the induction step is to show that
LHS(k+1) = RHS(k+1) given thatLHS(k)=RHS(k). The way this is usually done is as follows:

LHS(k+1) = LHS(k)+stuff applying algebra
= RHS(k)+stuff by hypothesis (sinceP(k) is true)
= · · · 1 or most steps, usually involving algebra
= RHS(k+1) more algebra, resulting in the goal

Several of the examples in this section follow this pattern,including the first two examples you saw. Notice
that these exampledo notbegin the inductive step by writing outLHS(k+1) = RHS(k+1). They start by
writing LHS(k+1), and use algebra, etc. until they get toRHS(k+1). You should do the same.

362 Example Prove the generalized form of DeMorgan’s law. That is, show that for anyn≥ 2, if p1, p2,
. . ., pn are propositions, then¬(p1∨ p2∨· · ·∨ pn) = (¬p1∧¬p2∧· · ·∧¬pn).

Proof: To see that there are variations on how induction proofs can be written, we provide
several proofs of this one. Each one is shorter than the previous one.
Proof 1: (Using the approach described above)

Define: LetP(n) be the statement “¬(p1∨p2∨· · ·∨pn)= (¬p1∧¬p2∧· · ·∧¬pn).”
Rephrase:For all n≥ 2, P(n) is true.
Base Case:P(2) is DeMorgan’s law, which is clearly true.
Hypothesis: We assumeP(k) is true.

3LHSstands forleft hand sideandRHSstands forright hand side

135



136 Chapter 6

Goal: We need to show thatP(k+1)is true.
Induction: Notice that

¬(p1∨ p2∨· · ·∨ pk+1) = ¬((p1∨ p2∨· · ·∨ pk)∨ pk+1) associative law
= ¬(p1∨ p2∨· · ·∨ pk)∧¬pk+1 DeMorgan’s law
= (¬p1∧¬p2∧· · ·∧¬pk)∧¬pk+1 hypothesis
= (¬p1∧¬p2∧· · ·∧¬pk∧¬pk+1) associative law

ThusP(k+1) is true.
Summary: Since we proved thatP(2) is true, and thatP(k)→ P(k+1) if k≥ 2,
by thePMI, P(n) is true for alln≥ 2.

Proof 2: (A typical proof)
Let P(n) be the statement “¬(p1∨ p2∨· · ·∨ pn) = (¬p1∧¬p2∧· · ·∧¬pn).” We want to show
that for alln≥ 2, P(n) is true.P(2) is DeMorgan’s law, so the base case is true. AssumeP(k)
is true. Then

¬(p1∨ p2∨· · ·∨ pk+1) = ¬((p1∨ p2∨· · ·∨ pk)∨ pk+1) associative law
= ¬(p1∨ p2∨· · ·∨ pk)∧¬pk+1 DeMorgan’s law
= (¬p1∧¬p2∧· · ·∧¬pk)∧¬pk+1 hypothesis
= (¬p1∧¬p2∧· · ·∧¬pk∧¬pk+1) associative law

ThusP(k+1) is true. Since we proved thatP(2) is true, and thatP(k)→ P(k+1) if k≥ 2, by
thePMI, P(n) is true for alln≥ 2.

Proof 3: (Not explicitly defining/usingP(n))
We know that¬(p1∨ p2) = (¬p1∧¬p2) since this is simply DeMorgan’s law. Assume the
statement is true fork. That is,¬(p1∨ p2∨· · ·∨ pk) = (¬p1∧¬p2∧· · ·∧¬pk). Then we can
see that

¬(p1∨ p2∨· · ·∨ pk+1) = ¬((p1∨ p2∨· · ·∨ pk)∨ pk+1) associative law
= ¬(p1∨ p2∨· · ·∨ pk)∧¬pk+1 DeMorgan’s law
= (¬p1∧¬p2∧· · ·∧¬pk)∧¬pk+1 hypothesis
= (¬p1∧¬p2∧· · ·∧¬pk∧¬pk+1) associative law

Thus the statement is true fork+1. Since we have shown that the statement is true forn= 2,
and that whenever it is true fork it is true fork+1, by thePMI, the statement is true for all
n≥ 2.

Proof 4: (Shorter base case proof, no restatement of hypothesis)
The casek= 2 is DeMorgan’s law. Assume the statement is true fork. Then

¬(p1∨ p2∨· · ·∨ pk+1) = ¬((p1∨ p2∨· · ·∨ pk)∨ pk+1) associative law
= ¬(p1∨ p2∨· · ·∨ pk)∧¬pk+1 DeMorgan’s law
= (¬p1∧¬p2∧· · ·∧¬pk)∧¬pk+1 hypothesis
= (¬p1∧¬p2∧· · ·∧¬pk∧¬pk+1) associative law

Thus the statement is true fork+1. Since we have shown that the statement is true forn= 2,
and that whenever it is true fork it is true fork+1, by thePMI, the statement is true for all
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n≥ 2.

Proof 5: (Shorter summary)
The casek= 2 is DeMorgan’s law. Assume the statement is true fork. Then

¬(p1∨ p2∨· · ·∨ pk+1) = ¬((p1∨ p2∨· · ·∨ pk)∨ pk+1) associative law
= ¬(p1∨ p2∨· · ·∨ pk)∧¬pk+1 DeMorgan’s law
= (¬p1∧¬p2∧· · ·∧¬pk)∧¬pk+1 hypothesis
= (¬p1∧¬p2∧· · ·∧¬pk∧¬pk+1) associative law

Thus the statement is true fork+1. By thePMI, the statement is true for alln≥ 2.

Proof 6: (Algebra steps not justified)
The casek= 2 is DeMorgan’s law, and if the statement is true fork, then

¬(p1∨·· ·∨ pk+1)=¬(p1∨·· ·∨ pk)∧¬pk+1=(¬p1∧·· ·∧¬pk)∧¬pk+1=(¬p1∧¬p2∧·· ·∧¬pk∧¬pk+1)

Thus the statement is true fork+1. By thePMI, the statement is true for alln≥ 2.

Proof 7: (An unacceptable proof for this class, but common in journalarticles)
The result follows easily by induction. �

363 Example Prove that the expression

33n+3−26n−27

is a multiple of 169 for all natural numbersn.

Proof: Let P(n) be the assertion “∃T ∈ N with 33n+3−26n−27= 169T.” We will prove
thatP(1) is true and thatP(n−1)→P(n). Whenn= 1 notice that 33·1+3−26·1−27= 676=
169·4, soP(1) is true. Now,P(n−1) means there isN ∈N such that 33(n−1)+3−26(n−1)−
27= 169N, i.e., forn> 1,

33n−26n−1= 169N

for some integerN. Then

33n+3−26n−27 = 27·33n−26n−27

= 27(33n−26n−1)+676n

= 27·169N+169·4n

= 169(27·N+ ·4n)

which is divisible by 169. The assertion is thus establishedby induction. �

364 Example Prove that ifk is odd, then 2n+2|k2n−1 for all natural numbersn.

Proof: The statement is evident forn= 1 sincek21−1= k2−1= (k−1)(k+1) is divisible
by 21+2 = 8 for any odd natural numberk because both(k− 1) and (k+ 1) are divisible
by 2 and one of them is divisible by 4. Assume that 2n+2|k2n − 1, and let us prove that
2n+3|k2n+1− 1. Sincek2n+1− 1 = (k2n− 1)(k2n

+ 1), we see that 2n+2 divides(k2n− 1), so
the problem reduces to proving that 2|(k2n+1). This is obviously true sincek2n odd makes
k2n+1 even. �
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365 Example Let fn be then-th Fibonacci number. Prove that for integern≥ 1,

fn−1 fn+1 = f 2
n +(−1)n.

Proof: Forn= 1, we have

f0 f2 = 0 ·1= 12+(−1)1 = f 2
1 +(−1)1,

and so the assertion is true forn= 1. Supposen> 1, and that the assertion is true forn. That
is,

fn−1 fn+1 = f 2
n +(−1)n,

which can be rewritten as
f 2
n = fn−1 fn+1− (−1)n

Then
fn fn+2 = fn( fn+1+ fn)

= fn fn+1+ f 2
n

= fn fn+1+ fn−1 fn+1− (−1)n

= fn+1( fn+ fn−1)+(−1)n+1

= fn+1 fn+1+(−1)n+1

= f 2
n+1+(−1)n+1,

and so the assertion follows by induction. �

☞ There is an important but subtle point that should be made. Whether you assume P(k) or P(k−1)
is true, you must specify the values of k precisely based on your choice. For instance, if you assume P(k)
is true for all k> a, you have a problem. Although you known P(a) is true (because it is a base case),
when you assume P(k) is true for k> a, the smallest k can be is a+1. In other words, when you prove
P(k)→ P(k+1), you leave out P(a)→ P(a+1). But that means you can’t get anywhere from the base
case, so the whole proof is invalid.

366 Example What is wrong with the following (supposed) proof thatan = 1 for n≥ 0:

Proof: Base case:Sincea0 = 1, the statement is true forn= 0.
Inductive step:Assumea j = 1 for 0≤ j ≤ k. Then

ak+1 =
ak ·ak

ak−1 =
1 ·1
1

= 1.

Summary:Therefore by PMI,an = 1 for all n≥ 0. �

Solution: The base case is correct, and there is nothing wrong with the summary, assuming
the inductive step is correct. The fact thatak = 1 andak−1 = 1 are correct by the inductive
hypothesis. Sincej ≥ 1, the algebra is correct. So what is wrong? Notice that if we had
allowed j = 0, a−1 would be in the denominator, but we don’t know whether or nota−1 = 1.
Thus we needed to assumej > 0. As it turns out, that is precisely where the problem lies.
We proved thatP(0) is true and thatP(k)→ P(k+1) is true whenk > 0. Thus, we know
thatP(1)→ P(2), andP(2)→ P(3), etc., but we never showed thatP(0)→ P(1) because, of
course, it isn’t true. The induction doesn’t work withoutP(0)→ P(1).
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Induction proofs are both intuitive and non-intuitive. Onethe one hand, when you talk through the
idea, it seems to make sense. On the other hand, it almost seems like you are usingcircular reasoning. It
is important to understand that induction proofs donot rely on circular reasoning. Circular reasoning is
when you assumep in order to provep. But here we are not doing that. We are assumingP(k) and using
that fact to proveP(k+1), a different statement. However, we arenot assuming thatP(k) is true for all
k≥ a. We are proving thatif we assume that P(k) is true, thenP(k+1) is true. The difference between
these statements may seem subtle, but it is important.

Exercises

367 Problem Prove by induction that ifn non-parallel straight lines on the plane intersect at a common
point, they divide the plane into 2n regions.

368 Problem Demonstrate by induction that no matter hown straight lines divide the plane, it is always
possible to colour the regions produced in two colours so that any two adjacent regions have different
colours.

369 Problem Prove, by induction onn, that 1·2+2 ·22+3 ·23+ · · ·+n ·2n = 2+(n−1)2n+1.

Answers

367 The assertion is clear forn= 1 since a straight line divides the plane into two regions. AssumePn−1, that is, that
n−1 non-parallel straight lines intersecting at a common point divide the plane into 2(n−1) = 2n−2 regions. A
new line non-parallel to them but passing through a common point will lie between two of the old lines, and divide
the region between them into two more regions, producing then 2n−2+2= 2n regions, demonstrating the assertion.

368 For n = 1 straight lines this is clear. AssumePn−1, the proposition that this is possible forn− 1> 1 lines is
true. So consider the plane split byn−1 lines into regions and coloured as required. Consider now anew line added
to then−1 lines. This line splits the plane into two regions, say I andII. We now do the following: in region I we
leave the original coloration. In region II we switch the colours. We now have a coloring of the plane in the desired
manner. For, either the two regions lie completely in regionI or completely in region II, and they are coloured in the
desired manner by the induction hypothesis. If one lies in region I and the other in region II, then they are coloured
in the prescribed manner because we switched the colours in the second region.

369 Forn= 1 we have 1·2= 2+(1−1)22, and so the statement is true forn= 1. Assume the statement is true for
n, that is, assume

P(n) : 1·2+2·22+3·23+ · · ·+n·2n = 2+(n−1)2n+1.

We need to show
P(n+1) : 1·2+2·22+3·23+ · · ·+(n+1) ·2n+1 = 2+n2n+2.

Adding (n+1)2n+1 to both sides ofP(n) and simplifying the right side, we obtain

1·2+2·22+3·23+ · · ·+n·2n+(n+1)2n+1 = 2+(n−1)2n+1+(n+1)2n+1

= 2+2n2n+1

= 2+n2n+2,

provingP(n+1). The result follows by induction.
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6.2 Recursion

You have seen examples of recursion if you have seen Russian Matryoshka dolls (Google it), two almost
parallel mirrors, a video camera pointed at the monitor, or apicture of a painter painting a picture of
a painter painting a picture of a painter... More importantly for us, recursion is a very useful tool to
implement algorithms.

370 Definition An algorithm isrecursiveif it calls itself.

Some problems can be solved by combining solutions of smaller instances of the given problem. Re-
cursion can be useful in these cases. Examples that you may have already seen includebinary search,
Quicksort, andMergesort.

If a subroutine/function simply called itself as a part of its execution, it would result in infinite re-
cursion. This is a bad thing. Therefore, when using recursion, one must ensure that at some point, the
subroutine/function terminates without calling itself. Before getting into more details, let’s see an example.

371 Example Notice that

1! = 1
2! = 2×1 = 2×1!
3! = 3×2×1 = 3×2!
4! = 4×3×2×1 = 4×3!

and in general, whenn> 1
n! = n× (n−1)×·· ·×2×1 = n× (n−1)!

In other words, we can definen! recursively as follows:

n! =
¨

1 whenn= 1
n∗ (n−1)! otherwise

This leads to the following recursive algorithm to computen!.

// Returns n!, assuming n>=0.
int factorial(int n) {

if (n<=1)
return 1;

else
return n*factorial(n-1);

}

Notice that ifn≤ 1,factorial does not make a recursive call. Also notice that when a recursive call
is made tofactorial, the argument is smaller. Both of these are of critical importance, as we will see
next.

Every recursive algorithm needs

➊ Base case(s): One or more cases which are solved non-recursively. In other words, when an al-
gorithm gets to the base case, it does not call itself again. This is also called astopping caseor
terminating condition.

➋ Inductive case(s): One or more recursive rule for all cases except the base case.
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➌ Progress:The inductive case(s) should always progress toward the base case. Often this means the
arguments will get smaller until they approach the base case, but sometimes it is more complicated
than this.

In general, we can solve a problem with recursion if we can:

➊ Find one or more simple cases of the problem that can be solveddirectly.

➋ Find a way to break up the problem into smaller instances of thesameproblem.

➌ Find a way to combine the smaller solutions.

372 Example Implement an algorithmcountdown(int n) that outputs the integers fromn down to 1,
wheren> 0. So, for example,countdown(5)would output “5 4 3 2 1”.

Solution: One way to do this is with a simple loop:4

void countdown(int n) {
for(i=n;i>0;i--)

print(i);
}

Of course, if we did this, we wouldn’t learn anything about recursion. So, let’s consider how
to do it with recursion. Notice thatcountdown(n) outputsn followed by the numbers from
n−1 down to 1. But the numbersn−1 down to 1 are the output fromcountdown(n-1).
This leads to the following recursive algorithm:

void countdown(int n) {
print(n);
countdown(n-1):

}

To see if this is correct, we can trace through
the execution ofcountdown(3) (see the ta-
ble to the right). Unfortunately,countdown
will never terminate. We are supposed to stop
printing whenn = 1, but we didn’t take that
into account. To fix this, we can modify it
so that a call tocountdown(0) produces no
output and does not callcountdown again.

Execution of outputs then executes
countdown(3) 3 countdown(2)
countdown(2) 2 countdown(1)
countdown(1) 1 countdown(0)
countdown(0) 0 countdown(-1)
countdown(-1) -1 countdown(-2)

...
...

...

Calls tocountdown(n) should also produce no output whenn< 0. The following algorithm
takes care of both problems and is our final solution.

void countdown(int n) {
if(n>0) {

print(n);
countdown(n-1):

}
}

4For simplicity, we will sometimes useprint to output results and not worry about spacing, etc. You can think of this as
being equivalent to Java’sSystem.out.print(i+" ") or C++’scout<<i<<" ", or C’sprintf("%d ",i).
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Notice that whenn≤ 0, countdown(n) does nothing, makingn≤ 0 thebase cases. When
n> 0, countdown(n) callscountdown(n-1), makingn> 0 theinductive cases. Finally,
whencountdown(n)makes a recursive call it is tocountdown(n-1), so the inductive cases
progressto the base case.

Although recursion is a great technique to solving many problems, care must be taken when using it.
Not only is it easy to make simple mistakes like we did in the last example, but recursive algorithms often
take more memory than iterative ones.

373 Example Consider our algorithms forn!. The iterative one from Example72 uses memory to store
four numbers:n, f , i, and return value.5 The recursive one from Example371 uses memory to store
two numbers:n and the return value. Although the recursive algorithm usesless memory, it is called
multiple times, and every call needs its own memory. For instance, a call tofactorial(3) will call
factorial(2)which will call factorial(1). Thus, computing 3! requires enough memory to store 6
numbers, which is more than the 4 required by the iterative algorithm. In general, the recursive algorithm
to computen! will need to store 2n numbers, whereas the iterative one will still just need 4.

Since computers have a finite amount of memory, and since every call to a function requires its own
memory, there is a limit to how many recursive calls can be made in practice. In fact some languages,
including Java, have a defined limit to how deep the recursioncan be. Even for those that don’t have a
limit, if you run out of memory, you can certainly expect bad things to happen. This is one of the reasons
recursion is avoided when possible. Good compilers remove recursion whenever possible, but it is not
always possible.

There are many possible errors that one can make when implementing recursive algorithms. Let’s see
a few of the most common ones.

374 Example The following algorithm is supposed to sum the numbers from 1to n:

void Sum1toN(int n) {
if (n == 0)

return(0);
else

return(n + Sum1toN(n-1));
}

Unfortunately the algorithm will go into infinite recursionif n< 0. Like our original solution to the
countdown problem, the mistake here is animproper base case.

375 Example It is easy to get things backwards when recursion is involved. For instance, one of these
routines prints from 1 up ton, the other fromn down to 1. We leave it to you to figure out which is which.

void PrintN(int n) {
if (n > 0) {

PrintN(n-1);
print(n);
}

}

void NPrint(int n) {
if (N > 0) {

print(n);
NPrint(n-1);
}

}

5I won’t get technical here, but memory needs to be allocated for the value returned by a function.
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The next example is a classic example of a more subtle problemthat can occur with recursive algo-
rithms.

376 Example Recall theFibonacci sequence, defined by the recurrence relation

fn =

8><>: 0 if n=0
1 if n=1
fn−1+ fn−2 if n> 1.

Let’s see an iterative and a recursive algorithm to computefn. The iterative algorithm (on the left) starts
with f0 and f1 and computes eachfi based onfi−1 and fi−2 for i from 2 ton. As it goes, it needs to keep
track of the previous two values. The recursive algorithm (on the right) just uses the definition and is pretty
straightforward.

int Fib(int n) {
int fib, fibm1, fibm2, index;
if (n <= 1) return(n);
else {

fibm2 = 0;
fibm1 = 1;
index = 1;
while (index < n) {

fib = fibm1 + fibm2;
fibm2 = fibm1;
fibm1 = fib;
index = index + 1;
}

return(fib);
}

}

int FibR(int n) {
if (n <= 1)

return(n);
else

return(FibR(n-1) + FibR(n-2));
}

}

Which algorithm is better? It is pretty clear that the recursive algorithm is much shorter and was a lot
easier to write. It is also a lot easier to make a mistake implementing the iterative algorithm. However, it
turns out that in this case the iterative version is actuallymuch betterwhen it comes to efficiency. In fact,
computingf40 takes virtually no time with the iterative algorithm, but several seconds with the recursive
algorithm. The recursive algorithm gets much worse asn increases. We will see why later.

We conclude this section by summarizing some of the advantages and disadvantages of recursion.
The advantages include:

➊ Recursion often mimics the way we think about a problem, thusthe recursive solutions can be very
intuitive to program.

➋ Often recursive algorithms to solve problems are much shorter than iterative ones. This can make
the code easier to understand, modify, and/or debug.

➌ The best known algorithms for many problems are based on a divide-and-conquer approach:

• Divide the problem into a set of smaller problems

• Solve each small problem separately
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• Put the results back together for the overall solution

These divide-and-conquer techniques are often best thought of in terms of recursive functions.

Perhaps the main disadvantage of recursion is the extra timeand space required. We have already
discussed the extra space. The extra time comes from the factthat when a recursive call is made, the
operating system has to record how to restart the calling subroutine later on, pass the parameters from the
calling subroutine to the called subroutine (often by pushing the parameters onto a stack controlled by
the system), set up space for the called subroutine’s local variables, etc. The bottom line is that calling a
function is not “free”.

Example376demonstrates a more subtle disadvantage of recursion—the potential for hidden ineffi-
ciencies. On the other hand, if such inefficiencies are found, there are techniques that can often easily
remove them (e.g. a technique called memoization6).

Exercises

377 Problem Prove that the recursivecountdown(n) algorithm from Example372works correctly.

Answers

377 Notice that ifn≤ 0,countdown(0)prints nothing, so it works in that case. Fork≥ 0, assumecountdown(k)
works correctly.7 Thencountdown(k+1) will print ‘ k’ and callcountdown(k). By the inductive hypothe-
sis,countdown(k) will print ‘ kk− 1. . .21’, socountdown(k+1) will print ‘ k+ 1kk− 1. . .21’, so it works
properly. By PMI,countdown(n)works for alln≥ 0.

6.3 Recurrence Relations

Recall that arecurrence relationis simply a sequence that is recursively defined. More formally, a recur-
rence relation is a formula that definesan in terms ofai , for one or more values ofi < n.8

378 Example We previously saw that we can definen! by 0! = 1, and ifn> 0, n! = n · (n−1)!. This is a
recurrence relation for the sequencen!.

Similarly, recall then-th Fibonacci number, given byf0 = f1 = 1 and forn> 1, fn = fn−1+ fn−2. This
is recurrence relation for the sequence of Fibonacci numbers.

379 Example Each of the following are recurrence relations.

tn = n · tn−1+4 · tn−3

rn = rn/2+1

an = an−1+2 ·an−2+3 ·an−3+4 ·an−4

pn = pn−1 · pn−2

sn = sn−3+n2−4n+32

6No, that’s not a typo. Google it.
7We are lettingn = 0 be the base case. You could also letn = 1 be the base case, but then you would need to prove that

countdown(1)works.
8You might see recurrence relations written in terms of subscripted letters, likean, or using functional notation, likea(n).

Although there are technical differences between these notations, you can think of them as being essentially equivalent.
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Notice that recurrence relations have 2 types of terms:recursiveterm(s) and thenon-recursiveterms.
These are synonymous with theinductiveandbasecases of recursive algorithms. In the previous example,
the recursive term ofsn is sn−3 and the non-recursive term isn2−4n+32.

In computer science, recurrence relations are used to analyze recursive algorithms. We won’t get too
technical yet, but let’s see a simple example.

380 Example How many multiplications are required to computefn using the algorithm from Example
371?

Solution: Let Mn be the number of multiplications needed to computefn using the algorithm
from Example371. From the code, it is obvious thatM1 = 0. If n > 1, the algorithm uses
one multiplication and then makes a recursive call tofn−1. The recursive call doesMn−1
multiplications. Therefore,Mn = Mn−1+1.

Given a recurrence relation foran, you can’t just plug inn and get an answer. For instance, ifan =
n · an−1, anda1 = 1, what isa(100)? Not obvious, is it? That is the reason whysolving recurrence
relations is so important. As mentioned previously, solving a recurrence relation simply means finding a
closed form expressionfor it.

381 Example It is not too difficult to see that the recurrence from Example380has the solutionM(n) =
n−1. To prove it, notice that with this assumption,Mn−1+1= (n−2)+1= n−1= Mn, so the solution
is consistent with the recurrence relation.
We can also prove it with induction: We know thatM1 = 0, so the base case ofn = 1 is true. Assume
Mk = k−1. Then we have

Mk+1 = Mk+1= (k−1)+1= k,

so the formula is correct fork+1. Thus, by PMI, the formula is correct for allk≥ 1.

The last example demonstrates an important fact about recurrence relations used to analyze algorithms.
The recursive terms come from when a recursive function calls itself. The non-recursive terms come from
the other work that is done by the algorithm, including any splitting or combining of data that must be
done.

382 Example Consider thebinary searchalgorithm to find an item on a sorted list. Informally, the algo-
rithm works as follows. We want to find a valuev in a sorted array of sizen.

• We compare the middle valuemof the array tov.

• If the m= v, we are done.

• Else ifm< v, we binary search the left half of the array.

• Else (m> v), we binary search the right half of the array.

• Now, we have the same problem, but only half the size.

Here is an implementation of the algorithm:
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boolean binarySearch(int[] A,int First,int Last,int Value) {
if(Last>=First) {

int mid=(Last+First)/2;
if(Value==A[mid])

return true;
else if(Value<A[mid])

return binarySearch(A,First,mid-1,Value);
else

return binarySearch(A,mid+1,Last,Value);
} else {

return false;
}

}

Find a recurrence relation for the worst-case complexity ofbinarySearch.

Solution: Let T(n) be the complexity ofbinarySearch for an array of sizen. Notice that
the only things done in the algorithm are to find the middle element, make a few comparisons,
perhaps make a recursive call, and return a value. Aside fromthe recursive call, the amount of
work done is constant. Notice that at most one recursive callis made, and that the array passed
in is half the size. ThereforeT(n) = T(n/2)+ 1.9 We’ll see how to solve this recurrence
shortly.

383 Example Give a recurrence relation for the complexity of the following algorithm:

int Nothing(int n) {
if(n>5) {

return Nothing(n-1)+Nothing(n-1)+Nothing(n-5)+Nothing(sqrt(n));
}
else {

return n;
}

}

Solution: It is not hard to see that ifT(n) is the running time forNothing(n), then

T(n) = 2T(n−1)+T(n−5)+T(
√

n)+O(1).

There is no general method to solve recurrences. There are many strategies, however. In the next few
sections we will discuss four common techniques:substitution method, iteration method, Master method
andcharacteristic equation methodfor linear recurrences.

6.3.1 Substitution Method

Thesubstitution methodmight be better called theguess and prove it by induction method. Why? Because
to use it, you first have to figure out what you think the solution is, and then you need to actually prove
it. Because of the close tie between recurrence relations and induction, it is the most natural technique to
use. Let’s see an example.

9Technically, the recurrence relation isT(n) = T(⌊n/2⌋)+1 sincen/2 might not be an integer. It turns out that most of the
time we can ignore the floors/ceilings and still obtain the correct answer.
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384 Example Consider the recurrence

S(n) =
¨

1 whenn= 1
S(n−1)+n otherwise

Prove that the solution isS(n) =
n(n+1)

2
.

Proof: Whenn= 1, S(1) = 1= 1(1+1)
2 . Assume that for 0≤ j < k, S( j) = j( j+1)

2 . Then

S(k) = S(k−1)+k (Definition ofS(k))

=
(k−1)(k)

2
+k (Inductive hypothesis)

=
k2−k

2
+k (The rest is just algebra)

=
k2−k+2k

2

=
k2+k

2

=
k(k+1)

2

Thus,S(n) = n(n+1)
2 for all n≥ 1. �

385 Example Solve the recurrence

Hn =

¨
1 whenn= 1
2Hn−1+1 otherwise

Proof: Notice thatH1 = 1, H2 = 2·1+1= 3, H3 = 2·3+1= 7, andH4 = 2·7+1= 15. It
sure looks likeHn = 2n−1, but now we need to prove it. SinceH1 = 1= 21−1, we have our
base case ofn= 1. AssumeHn = 2n−1. Then

Hn+1 = 2Hn+1

= 2(2n−1)+1

= 2n+1−1,

and the result follows by induction. �

386 Example Why was the recursive algorithm to computefn from Example376so bad?

Solution: Let’s count the number of additionsFibR(n) computes since that is the main
thing that the algorithm does.10 Let F(n) be the number of additions required to compute
fn usingFibR(n). SinceFibR(n) performs one addition and then callsFibR(n-1) and
FibR(n-2), it is easy to see that

F(n) = F(n−1)+F(n−2)+1,

10Alternatively, we could count the number of recursive callsmade. This is reasonable since the amount of work done by the
algorithm, aside from the recursive calls, is constant. Therefore, the time it takes to computefn is proportional to the number
of recursive calls made. This would produce a slightly different answer, but they would be comparable.
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whereF(0) = F(1) = 0 is clear from the algorithm. We could use the method for linear
recurrences that will be outlined later to solve this, but the algebra gets a bit messy. Instead,
Let’s see if we can figure it out by computing some values.

F(0) = 0

F(1) = 0

F(2) = F(1)+F(0)+1= 1

F(3) = F(2)+F(1)+1= 2

F(4) = F(3)+F(2)+1= 4

F(5) = F(4)+F(3)+1= 7

F(6) = F(5)+F(4)+1= 12

F(7) = F(6)+F(5)+1= 20

No pattern is evident unless you add one to each of these. If you do, you will get 1,1,2,3,5,8,13,21,
etc., which looks a lot like the Fibonacci sequence startingwith f1. So it appearsF(n) =
fn+1−1. To verify this, first notice thatF(0) = 0= f1−1 andF(1) = 0= f2−1. Assume it
holds for all values less thank. Then

F(k) = F(k−1)+F(k−2)+1

= fk−1+ fk−1−1+1

= fk+ f k−1−1

= fk+1−1.

The result follows by induction.

So what does this mean? It means in order to computefn, FibR(n) performs fn+1+1 ad-
ditions. In other words, it computesfn by adding a bunch of 0s and 1s, which doesn’t seem
very efficient. Sincefn grows exponentially (we’ll see this in Example403), thenF(n) does
as well. That pretty much explains what is wrong with the recursive algorithm.

6.3.2 Iteration Method

With the iteration method, we expand the recurrence and express it as a summation dependent only onn
and initial conditions. Then we evaluate the summation.

387 Example Solve the recurrence

R(n) =
¨

1 whenn= 1
2R(n/2)+n/2 otherwise
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Proof: We have

R(n) = 2R(n/2)+n/2

= 2(2R(n/4)+n/4)+n/2

= 22R(n/4)+n/2+n/2

= 22R(n/4)+n

= 22(2R(n/8)+n/8)+n

= 23R(n/8)+n/2+n

= 23R(n/8)+3n/2

= 23(2R(n/16)+n/16)+3n/2

= 24R(n/16)+n/2+3n/2

= 24R(n/16)+2n
...

= 2kR(n/(2k))+kn/2

= 2log2 nR(n/(2log2n))+(log2n)n/2

= nR(n/n)+(log2n)n/2

= nR(1)+(log2n)n/2

= n+(log2n)n/2

�

Using this method requires a little abstract thinking and pattern recognition. It also requires good
algebra skills. Care must be taken when doing algebra, especially with the non-recursive terms. Sometimes
you should add/multiply (depending on context) them all together, and other times you should leave them
as is. The problem is that it takes experience (i.e. practice) to determine which one is better in a given
situation. The key is flexibility. If you try doing it one way and don’t see a pattern, try another way.

Here is my suggestion for using this method

➊ Iterate enough times so you are certain of what the pattern is. Typically this means at least 3 or 4
iterations.

➋ As you iterate, make adjustments to your algebra as necessary so you can see the pattern. For
instance, whether you write 23 or 8 can make a difference in seeing the pattern.

➌ Once you see the pattern, generalize it, writing what it should look like afterk iterations.

➍ Determine the value ofk that will get you to the base case, and then plug it in.

➎ Simplify.

388 Example Solve the recurrence

Hn =

¨
1 whenn= 1
2Hn−1+1 otherwise
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Solution:

Hn = 2Hn−1+1

= 2(2Hn−2+1)+1= 22Hn−2+2+1

= 22(2Hn−3+1)+2+1= 23Hn−3+22+2+1
...

= 2n−1H1+2n−2+2n−3+ · · ·+2+1

= 2n−1+2n−2+2n−3+ · · ·+2+1

= 2n−1

Thus,Hn = 2n−1.

6.3.3 Master Method

We will omit the proof of the following theorem which is particularly certain recursive algorithms.

389 Theorem (Master Theorem) Let T(n) be a monotonically increasing function satisfying

T(n) = aT(n/b)+ f (n)

T(1) = c

wherea≥ 1, b≥ 2, andc> 0. If f (n) = θ(nd), whered≥ 0, then

T(n) =

8><>: Θ(nd) i f a < bd

Θ(nd logn) i f a = bd

Θ(nlogb a) i f a > bd

390 Example Solve the recurrence
T(n) = 4T(n/2)+n.

Solution: We havea= 4,b= 2, andd = 1. Since 4> 21, T(n) = Θ(nlog2 4) = Θ(n2) by the
third case of the Master Theorem.

391 Example Solve the recurrence
T(n) = 4T(n/2)+n2.

Solution: We havea= 4,b= 2, andd = 2. Since 4= 22, we haveT(n) = Θ(n2 logn) by
the second case of the Master Theorem.

392 Example Solve the recurrence
T(n) = 4T(n/2)+n3.

Solution: Here,a= 4,b= 2, andd = 3. Since 4< 23, we haveT(n) = Θ(n3) by the first
case of the Master Theorem.
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Wow. That was easy.11 But the ease of use of the Master Method comes with a cost. Notice that we
do not get anexactsolution, but only anasymptoticsolution. Depending on the context, this may be good
enough. If you need an exact numerical solution, the Master Method will do you no good. But when
analyzing algorithms, typically we are more interested in the asymptotic behavior. In that case, it works
great.

393 Example Let’s redo one from a previous section. Solve the recurrence

R(n) =
¨

1 whenn= 1
2R(n/2)+n/2 otherwise

Solution: Here, we havea = 2, b = 2, andd = 1. Since 2= 21, R(n) = Θ(n1 logn) =
Θ(nlogn). Recall that in Example387 we showed thatR(n) = n+(log2n)n/2. Sincen+
(log2n)n/2= Θ(nlogn), our solution is consistent.

394 Example What is the time complexity ifbinary search?

Solution: We previously saw that the number of comparisons needed for binary search is
T(n) = T(n/2)+1. Here we havea= 1, b= 2, andd = 0. Since 1= 20, the second case of
the Master Theorem tells is thatT(n) = Θ(n0 logn) = Θ(logn).

6.3.4 Linear Recurrence Relations

Although in my mind linear recurrence relations are of the least importance of these four methods for
computer scientists, we will discuss them briefly, both for completeness sake, and because we can talk
about the Fibonacci number again.

395 Definition Let c0,c2, . . . ,ck be real constants andf : N→ R a function. A recurrence relation of the
form

c0an+c1an+1+c2an+2+ · · ·+ckan+k = f (n), n≥ 0. (6.1)

is called alinear recurrence relation(or linear difference equation). If f is identically zero, we say
that the equation ishomogeneous, and otherwise we say the equation isnonhomogeneous.

Notice that equation6.1above is equivalent to

an+k = c′0an+c′1an+1+c′2an+2+ · · ·+c′k−1an+k−1+ f (n),

wherec′i = −ci/cn+k, which is the form we are more used to. Since the technique used to solve these
involves factoring polynomials, it is more convenient to have all of the terms on the same side of the
equation, which is why we think of them in the form of equation6.1when solving them.

Theorderof the recurrence is the difference between the highest and the lowest subscripts. For exam-
ple

un+2−un+1 = 2

is of the first order, and
un+4+9u2

n = n5

is of the fourth order.
There is a general technique that can be used to solve linear homogeneous recurrence relations. How-

ever, we will restrict our discussion to first and second order recurrences.
11Almost too easy...
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First Order Recurrences

We outline a method for solving first order linear recurrencerelations of the form

xn = axn−1+ f (n),a 6= 1,

where f is a polynomial.

1. First solve the homogeneous recurrencexn = axn−1 by “raising the subscripts” in the formxn =
axn−1. This we call thecharacteristic equation. Canceling this givesx = a. The solution to the
homogeneous equationxn = axn−1 will be of the formxn = Aan, whereA is a constant to be deter-
mined.

2. Test a solution of the formxn = Aan+g(n), whereg is a polynomial of the same degree asf .

396 Example Let x0 = 7 andxn = 2xn−1,n≥ 1. Find a closed form forxn.

Solution: Raising subscripts we have the characteristic equationxn = 2xn−1. Canceling,
x= 2. Thus we try a solution of the formxn = A2n, wereA is a constant. But 7= x0 = A20

and soA= 7. The solution is thusxn = 7(2)n.

Here is a different method that sometimes works. We have:

x0 = 7
x1 = 2x0

x2 = 2x1
x3 = 2x2
...

...
...

xn = 2xn−1

Multiplying both columns,

x0x1 · · ·xn = 7 ·2nx0x1x2 · · ·xn−1.

Canceling the common factors on both sides of the equality,

xn = 7 ·2n.

397 Example Let x0 = 7 andxn = 2xn−1+1,n≥ 1. Find a closed form forxn.

Solution: By raising the subscripts in the homogeneous equation we obtain xn = 2xn−1 or
x= 2. A solution to the homogeneous equation will be of the formxn = A(2)n. Now f (n) = 1
is a polynomial of degree 0 (a constant) and so we test a particular constant solutionC. The
general solution will have the formxn = A2n+B. Now, 7= x0 = A20+B = A+B. Also,
x1 = 2x0+7= 15 and so 15= x1 = 2A+B. Solving the simultaneous equations

A+B= 7,

2A+B= 15,

we findA= 8,B=−1. So the solution isxn = 8(2n)−1= 2n+3−1.
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398 Example Let x0 = 2,xn = 9xn−1−56n+63. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic
equationxn = 9xn−1 or x = 9. A solution to the homogeneous equation will be of the form
xn = A(9)n. Now f (n) = −56n+63 is a polynomial of degree 1 and so we test a particular
solution of the formBn+C. The general solution will have the formxn = A9n+Bn+C. Now
x0 = 2,x1 = 9(2)−56+63= 25,x2 = 9(25)−56(2)+63= 176. We thus solve the system

2= A+C,

25= 9A+B+C,

176= 81A+2B+C.

We findA= 2,B= 7,C= 0. The general solution isxn = 2(9n)+7n.

399 Example Let x0 = 1,xn = 3xn−1−2n2+6n−3. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic
equationxn = 3xn−1 or x = 9. A solution to the homogeneous equation will be of the form
xn = A(3)n. Now f (n) =−2n2+6n−3 is a polynomial of degree 2 and so we test a particular
solution of the formBn2+Cn+D. The general solution will have the formxn = A3n+Bn2+
Cn+D. Now x0 = 1,x1 = 3(1)− 2+ 6− 3 = 4,x2 = 3(4)− 2(2)2 + 6(2)− 3 = 13,x3 =
3(13)−2(3)2+6(3)−3= 36. We thus solve the system

1= A+D,

4= 3A+B+C+D,

13= 9A+4B+2C+D,

36= 27A+9B+3C+D.

We findA= B= 1,C= D = 0. The general solution isxn = 3n+n2.

400 Example Find a closed form forxn = 2xn−1+3n−1,x0 = 2.

Solution: We test a solution of the formxn = A2n+B3n. Thenx0 = 2,x1 = 2(2)+30 = 5.
We solve the system

2= A+B,

7= 2A+3B.

We findA= 1,B= 1. The general solution isxn = 2n+3n.

We now tackle the case whena= 1. In this case, we simply consider a polynomialg of degree 1 higher
than the degree off .

401 Example Let x0 = 7 andxn = xn−1+n,n≥ 1. Find a closed formula forxn.
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Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic
equationxn = xn−1 or x = 1. A solution to the homogeneous equation will be of the form
xn = A(1)n = A, a constant. Nowf (n) = n is a polynomial of degree 1 and so we test a
particular solution of the formBn2+Cn+D, one more degree than that off . The general
solution will have the formxn = A+Bn2+Cn+D. SinceA andD are constants, we may
combine them to obtainxn = Bn2+Cn+E. Now, x0 = 7,x1 = 7+1= 8,x2 = 8+2= 10. So
we solve the system

7= E,

8= B+C+E,

10= 4B+2C+E.

We findB=C=
1
2
,E = 7. The general solution isxn =

n2

2
+

n
2
+7.

Second Order Recurrences

All the recursions that we have so far examined are first orderrecursions, that is, we find the next term
of the sequence given the preceding one. Let us now briefly examine how to solve some second order
recursions.

We now outline a method for solving second order homogeneouslinear recurrence relations of the
form

xn = axn−1+bxn−2.

1. Find the characteristic equation by “raising the subscripts” in the formxn = axn−1+bxn−2. Cancel-
ing this givesx2−ax−b= 0. This equation has two rootsr1 andr2.

2. If the roots are different, the solution will be of the formxn = A(r1)
n +B(r2)

n, whereA,B are
constants.

3. If the roots are identical, the solution will be of the formxn = A(r1)
n+Bn(r1)

n.

402 Example Let x0 = 1,x1 =−1,xn+2+5xn+1+6xn = 0.

Solution: The characteristic equation isx2 + 5x+ 6 = (x+ 3)(x+ 2) = 0. Thus we test
a solution of the formxn = A(−2)n+B(−3)n. Since 1= x0 = A+B,−1 = −2A− 3B, we
quickly find A= 2,B=−1. Thus the solution isxn = 2(−2)n− (−3)n.

403 Example Find a closed form for the Fibonacci recursionf0 = 0, f1 = 1, fn = fn−1+ fn−2.

Solution: The characteristic equation isf 2− f − 1 = 0, whence a solution will have the
form

fn = A

 
1+
√

5
2

!n

+B

 
1−
√

5
2

!n

.

The initial conditions give
0= A+B,

1= A

 
1+
√

5
2

!
+B

 
1−
√

5
2

!
=

1
2
(A+B)+

√
5

2
(A−B) =

√
5

2
(A−B)
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This givesA=
1√
5
,B=− 1√

5
. We thus have theCauchy-Binet Formula:

fn =
1√
5

 
1+
√

5
2

!n

− 1√
5

 
1−
√

5
2

!n

(6.2)

404 Example Solve the recursionx0 = 1,x1 = 4,xn = 4xn−1−4xn−2 = 0.

Solution: The characteristic equation isx2−4x+4= (x−2)2 = 0. There is a multiple root
and so we must test a solution of the formxn = A2n+Bn2n. The initial conditions give

1= A,

4= 2A+2B.

This solves toA= 1,B= 1. The solution is thusxn = 2n+n2n.

Exercises

405 Problem (Lines on the Plane) Find a recurrence relation for the number of regions into which the
plane is divided byn straight lines if every pair of lines intersect, but no threelines intersect.

406 Problem Solve the recursionan = 1+
Pn−1

k=1 ak for n≥ 2 anda1 = 1.

407 Problem Let x0 = 1,xn = 3xn−1−2n2+6n−3. Find a closed form for this recursion.

408 Problem Find a closed form forxn = 2xn−1+3n−1,x0 = 2.

409 Problem Let x0 = 2,xn = 9xn−1−56n+63. Find a closed form for this recursion.

410 Problem Let x0 = 7 andxn = xn−1+n,n≥ 1. Find a closed formula forxn.

411 Problem There are two urns, one is full of water and the other is empty.On the first stage, half of the
contains of urn I is passed into urn II. On the second stage 1/3of the contains of urn II is passed into urn
I. On stage three, 1/4 of the contains of urn I is passed into urn II. On stage four 1/5 of the contains of urn
II is passed into urn I, and so on. What fraction of water remains in urn I after the 1978th stage?

412 Problem (Derangements) An absent-minded secretary is fillingn envelopes withn letters. Find
a recurrence relation for the numberDn of ways in which she never stuffs the right letter into the right
envelope.

Answers

405 Let an be this number. Clearlya1 = 2. Thenth line is cut by the previousn−1 lines atn−1 points, addingn
new regions to the previously existingan−1. Hence

an = an−1+n, a1 = 2.
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Notice that
a2 = a1+2,
a3 = a2+3,
a4 = a3+4,
...

...
...

an−1 = an−2+(n−1),
an = an−1+n,

Add these equalities together, we get

a2+a3+a4+ · · ·+an−1+an = a1+a2+a3+a4+ · · ·+an−1+(2+3+ · · ·+n).,

Solving foran yields

an = a1+

�
n(n+1)

2
−1
�
=

n2+n+2
2

.

406 Observe that

an−an−1 =

 
1+

n−1X
k=1

ak

!
−
 

1+
n−2X
k=1

ak

!
= an−1.

This means thatan = 2an−1 and so
an = 2an−1

an−1 = 2an−2
...

...
...

a2 = 2a1

Multiplying all these equalities,

anan−1 · · ·a2 = 2n−1an−1an−2 · · ·a1 =⇒ an = 2n−1a1 = 2n−1.

407 xn = 3n+n2. We leave it to the reader to verify this.

408 xn = 2n+3n. We leave it to the reader to verify this.

409 xn = 2(9n)+7n. We leave it to the reader to verify this.

410 We have
x0 = 7
x1 = x0+1
x2 = x1+2
x3 = x2+3
...

...
...

xn = xn−1+n

Adding both columns,

x0+x1+x2+ · · ·+xn = 7+x0+x2+ · · ·+xn−1+(1+2+3+ · · ·+n).

Cancelling and using the fact that 1+2+ · · ·+n=
n(n+1)

2
,

xn = 7+
n(n+1)

2
.
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411 Let xn,yn,n = 0,1,2, . . . denote the fraction of water in urns I and II respectively at stagen. Observe that
xn+yn = 1 and that

x0 = 1; y0 = 0

x1 = x0− 1
2x0 =

1
2; y1 = y1+

1
2x0 =

1
2

x2 = x1+
1
3y1 =

2
3; y2 = y1− 1

3y1 =
1
3

x3 = x2− 1
4x2 =

1
2; y1 = y1+

1
4x2 =

1
2

x4 = x3+
1
5y3 =

3
5; y1 = y1− 1

5y3 =
2
5

x5 = x4− 1
6x4 =

1
2; y1 = y1+

1
6x4 =

1
2

x6 = x5+
1
7y5 =

4
7; y1 = y1− 1

7y5 =
3
7

x7 = x6− 1
8x6 =

1
2; y1 = y1+

1
8x6 =

1
2

x8 = x7+
1
9y7 =

5
9; y1 = y1− 1

9y7 =
4
9

A pattern emerges (which may be proved by induction) that at each odd stagen we havexn = yn =
1
2 and that at each

even stage we have (ifn= 2k) x2k =
k+1
2k+1,y2k =

k
2k+1. Since1978

2 = 989 we havex1978=
990
1979.

412 Number the envelopes 1,2,3, · · · ,n. We condition on the last envelope. Two events might happen.Eithern and
r (for some 1≤ r ≤ n−1) trade places or they do not.

In the first case, the two lettersr and n are misplaced. Our task is just to misplace the othern− 2 letters,
(1,2, · · · , r−1, r +1, · · · ,n−1) in the slots(1,2, · · · , r−1, r +1, · · · ,n−1). This can be done inDn−2 ways. Since
r can be chosen inn−1 ways, the first case can happen in(n−1)Dn−2 ways.

In the second case, let us say that letterr, (1≤ r ≤ n−1) moves to then-th position butn moves not to ther-th
position. Sincer has been misplaced, we can just ignore it. Sincen is not going to ther-th position, we may relabel
n asr. We now haven−1 numbers to misplace, and this can be done inDn−1 ways.

As r can be chosen inn− 1 ways, the total number of ways for the second case is(n− 1)Dn−1. ThusDn =
(n−1)Dn−2+(n−1)Dn−1.

6.4 Analyzing Recursive Algorithms

In Section6.3 we already saw a few examples of analyzing recursive algorithms. We will provide a few
more examples in this section. In case it isn’t clear, the most common method to analyze a recursive
algorithm is to develop and solve a recurrence relation for its running time. Let’s see some examples.

413 Example What is the worst-case running time of Mergesort?

Solution: The algorithm forMergesort is below. LetT(n) be the worst-case running
time ofMergesort on an array of sizen= right− le f t. Recall thatMerge takes two sorted
arrays and merges them into one sorted array in timeΘ(n), wheren is the number of elements
in both arrays. Since the two recursive calls toMergsort are on arrays of half the size,
they each require timeT(n/2) in the worst-case. The other operations take constant time,as
indicated below.
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Analysis of Mergesort
Algorithm Time required
Mergesort(int[] A,int left,int right) { T(n)

if (left < right) { C1

int mid = (left + right)/2; C2

Mergesort(A, left, mid); T(n/2)
Mergesort(A, mid + 1, right); T(n/2)
Merge(A, left, mid, right); Θ(n)

}
}

Given this, we can see that

T(n) = C1+C2+T(n/2)+T(n/2)+Θ(n)

= 2T(n/2)+Θ(n).

For simplicity, we will write this asT(n) = 2T(n/2)+cn for some constantc.

We could use the Master Theorem to prove thatT(n) = Θ(nlogn), but that would be too easy.
Instead, we will use induction to prove thatT(n) = O(nlogn), and leave theΩ-bound to the
reader.

By definition,T(n) = O(nlogn) if and only if there exists constantsk andn0 such thatT(n)≤
knlogn for all n≥ n0.

For the base case, notice thatT(2) = a for some constanta, anda≤ k2log2= 2k as long as
we pickk≥ a/2. Now, assume thatT(n/2)≤ k(n/2) log(n/2). Then

T(n) = 2T(n/2)+cn

≤ 2(k(n/2) log(n/2)+cn

= knlog(n/2)+cn

= knlogn−knlog2+cn

= knlogn+(c−k)n

≤ knlogn if k≥ c

As long as we pickk=max{a/2,c}, we haveT(n)≤ knlogn, soT(n)=O(nlogn) as desired.

414 Example (Towers of Hanoi) The following legend is attributed to French mathematicianEdouard
Lucas in 1883. The tower of Brahma had 64 disks of gold restingon three diamond needles. At the
beginning of time, God placed these disks on the first needle and ordained that a group of priests should
transfer them to the third needle according to the followingrules:

1. The disks are initially stacked on peg A, in decreasing order (from bottom to top).

2. The disks must be moved to another peg in such a way that onlyone disk is moved at a time and
without stacking a larger disk onto a smaller disk.

When they finish, the Tower will crumble and the world will end. How many moves does it take to solve
theTowers of Hanoiproblem withn disks?

Solution: The usual (and best) algorithm to solve theTowers of Hanoiis as follows:
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• Move the topn−1 disk to from peg 1 to peg 2.

• Move the last disk from peg 1 to peg 3.

• Move the topn−1 disks from peg 2 to peg 3.

The only question is how to move the topn−1 disks. The answer is simple: using the same
algorithm (with the peg numbers switched). Don’t worry if you don’t see why this works. Our
main concern here is analyzing the algorithm.

Let H(n) be the time required to solve theTowers of Hanoiproblem withn disks. Assuming
moving a single disk takes 1 operations (soH(1) = 1), the above algorithm requires

H(n) = H(n−1)+1+H(n−1) = 2H(n−1)+1

operations. As with the first example, we want a closed form for H(n). But we already showed
thatH(n) = 2n−1 in Examples385and388.

6.4.1 The Average Complexity of Quicksort

In this section we give a proof that the average case running time of randomized quicksort isΘ(nlogn).
This proof gets its own section because the analysis is fairly involved. This proof is based on the one
presented in Section 8.4 of the classicIntroduction to Algorithmsby Cormen, Leiserson, and Rivest.
The algorithm they give is slightly different, and they include some interesting insights, so read their
proof/discussion if you get a chance.

There are several slight variations of the quicksort algorithm, and although the exact running times are
different for each, the asymptotic running times are all thesame. We begin by presenting the following
version ofQuicksort, written in C++.
Quicksort(int A[],int l, int r) {

if (r > l) {
int p = RPartition(A,l,r);
Quicksort(A,l,p-1);
Quicksort(A,p+1,r);
}

}

int RPartition(int A[], int l, int r) {
int piv=l+(rand()%(r-l+1);
Swap(A[l],A[piv]);
int i = l+1;
int j = r;
while (1) {

while (A[i] <= A[l] && i<r)
++i;

while (A[j] >= A[l] && j>l)
--j;

if (i >= j) {
Swap(A[j],A[l]);
return j;
}

else Swap(A[i],A[j]);
}

}
We will base our analysis on this version ofQuicksort. It is straightforward to see that the runtime

of RPartition is Θ(n). (A proof of this is left to the reader). We start by developing a recurrence
relation for the average case runtime ofQuicksort.

415 Theorem Let T(n) be the average case runtime ofQuicksort on an array of sizen. Then

T(n) =
2
n

n−1X
k=1

T(k)+Θ(n).
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Proof: Since the pivot element is chosen randomly, it is equally likely that the pivot will end
up at any position froml to r. That is, the probability that the pivot ends up at locationl + i is
1/n for eachi = 0, . . . , r− l . If we average over all of the possible pivot locations, we obtain

T(n) =
1
n

�
n−1X
k=0

(T(k)+T(n−k−1))

�
+Θ(n)

=
1
n

n−1X
k=0

T(k)+
1
n

n−1X
k=0

T(n−k−1)+Θ(n)

=
1
n

n−1X
k=0

T(k)+
1
n

n−1X
k=0

T(k)+Θ(n)

=
2
n

n−1X
k=0

T(k)+Θ(n)

=
2
n

n−1X
k=1

T(k)+Θ(n).

The last step holds sinceT(0) = 0. �

We will need the following result in order to solve the recurrence relation.

416 Lemma For anyn≥ 3,

n−1X
k=2

k logk≤ 1
2

n2 logn− 1
8

n2.

Proof: We can write the sum as

n−1X
k=2

k logk=
⌈n/2⌉−1X

k=2

k logk+
n−1X

k=⌈n/2⌉
k logk

Then we can bound(k logk) by (k log(n/2)) = k(logn−1) in the first sum, and by(k logn) in
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the second sum. This gives

n−1X
k=2

k logk =
⌈n/2⌉−1X

k=2

k logk+
n−1X

k=⌈n/2⌉
k logk

≤
⌈n/2⌉−1X

k=2

k(logn−1)+
n−1X

k=⌈n/2⌉
k logn

= (logn−1)
⌈n/2⌉−1X

k=2

k+ logn
n−1X

k=⌈n/2⌉
k

= logn
⌈n/2⌉−1X

k=2

k−
⌈n/2⌉−1X

k=2

k+ logn
n−1X

k=⌈n/2⌉
k

= logn
n−1X
k=2

k−
⌈n/2⌉−1X

k=2

k

≤ logn
n−1X
k=1

k−
⌈n/2⌉−1X

k=1

k

≤ (logn)
1
2
(n−1)n− 1

2
(
n
2
−1)

n
2

=
1
2

n2 logn− n
2

logn− 1
8

n2+
n
4

≤ 1
2

n2 logn− 1
8

n2.

The last step holds since
n
4
≤ n

2
logn,

whenn≥ 3. �

Now we are ready for the final analysis.

417 Theorem Let T(n) be the average case runtime ofQuicksort on an array of sizen. Then

T(n) = Θ(nlogn).

Proof: We need to show thatT(n) = O(nlogn) and T(n) = Ω(nlogn). To prove that
T(n) = O(nlogn), we will show that for some constanta,

T(n)≤ anlogn for all n≥ 2.12

Whenn= 2,
anlogn= a2log2= 2a,

12We pick 2 for the base case sincenlogn=0 if n= 1, so we cannot make the inequality hold. Another solution would be to
show thatT(n)≤ anlogn+b. In this case,b can be chosen so that the inequality holds forn= 1.
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anda can be chosen large enough so thatT(2) ≤ 2a. Thus, the inequality holds for the base
case. Assume thatT(1) = C, for some constantC. For 2< k < n, assumeT(k) ≤ aklogk.
Then

T(n) =
2
n

n−1X
k=1

T(k)+Θ(n)

≤ 2
n

n−1X
k=2

aklogk+
2
n

T(1)+Θ(n) (by assumption)

=
2a
n

n−1X
k=2

k logk+
2
n
C+Θ(n)

≤ 2a
n

n−1X
k=2

k logk+C+Θ(n) (since2
n ≤ 1)

≤ 2a
n

�1
2

n2 logn− 1
8

n2
�
+C+Θ(n) (by Lemma 2)

= anlogn− a
4

n+C+Θ(n)

= anlogn+
�

Θ(n)+C− a
4

n
�

≤ anlogn (choosea soΘ(n)+C≤ a
4n)

We have shown that with an appropriate choice ofa, T(n)≤ anlogn for all n≥ 2, soT(n) =
O(nlogn).
We leave it to the reader to show thatT(n) = Ω(nlogn). �

Homework

418 Problem Assuming the priests can move one disk per second, that they started moving disks 6000
years ago, and that the legend of the Towers of Hanoi is true, when will the world end?

419 Problem Prove that for all positive integersn,
nX

i=1
i · i! = (n+1)!−1.

420 Problem Prove that for all positive integersn, f 2
1 + f 2

2 + · · ·+ f 2
n = fn fn+1, where fn is thenth Fi-

bonacci number.

421 Problem Explain why the following joke never ends:Pete and Repete got in a boat. Pete fell off.
Who’s left?.

422 Problem Binary palindromes can be defined recursively byλ ,0,1∈ P, and wheneverp ∈ P, then
1p1∈ P and 0p0∈ P. (Note: λ is the notation sometimes used to denote theempty string—that is, the
string of length 0. Also, 1p1 means the binary string obtained by appending 1 to the beginand end of
string p. Similarly for 0p0.) Notice that there is 1 palindrome of length 0 (λ ), 2 of length 1 (0, 1), 2 of
length 2 (00, 11), 4 of length 3 (000, 010, 101, 111), etc.
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1. Prove that the number of binary palindromes of length 2k (even length) is 2k for all k≥ 0. (Hint:
Use induction and don’t over think it).

2. Prove that the number of binary palindromes of length 2k+1 (odd length) is 2k+1 for all k≥ 0.

423 Problem Prove that the recursive algorithmfactorial(n) from Example371works correctly for
n≥ 0.

424 Problem Prove that theRPartition algorithm from Section6.4.1has complexityΘ(n).
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Chapter 7
Counting

In this chapter we provide a very brief introduction to a fieldcalled combinatorics. It turns out that
combinatorial problems are notoriously deceptive. Sometimes they can seem much harder than they are,
and at other times they seem easier than they are. In fact, there are many cases in which one combinatorial
problem will be relatively easy to solve, but a very closely related problem that seems almost identical will
be very difficult to solve.

When solving combinatorial problems, you need to make sure you fully understand what is being
asked and make sure you are taking everything into account appropriately. I used to tell students that
combinatorics was easy. I don’t say that anymore. In some sense it is easy. But itis also easy to make
mistakes.

7.1 The Multiplication and Sum Rules

We begin our study of combinatorial methods with the following two fundamental principles.

425 Rule (Sum Rule: Disjunctive Form) Let E1,E2, . . . ,Ek, be pairwise finite disjoint sets. Then

|E1∪E2∪· · ·∪Ek|= |E1|+ |E2|+ · · ·+ |Ek|.

Another way of putting the sum rule is this: If you have to accomplish some task and you can do it in one
of n1 ways, or one ofn2 ways, etc., up to one ofnk ways, and none of the ways of doing the task on any of
the list are the same, then there aren1+n2+ · · ·+nk ways of doing the task.

426 Rule (Product Rule) Let E1,E2, . . . ,Ek, be finite sets. Then

|E1×E2×·· ·×Ek|= |E1| · |E2| · · · |Ek|.

Another way of putting the product rule is this: If you need toaccomplish some task that takesk steps,
and there aren1 ways of accomplishing the first step,n2 ways of accomplishing the second step, etc., and
nk ways of accomplishing thekth step, then there aren1n2 · · ·nk ways of accomplishing the task.

427 Example I have 5 brown shirts, 4 green shirts, 10 red shirts, and 3 blueshirts. How many choices do
I have if I intend to wear one shirt?

Solution: Since each list of shirts is independent of the others, I can use the sum rule.
Therefore I can choose any of my 5+4+10+4= 22 shirts.
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428 Example I have 5 pairs of socks, 10 pairs of shorts, and 8 t-shirts. Howmany choices do I have if I
intend to wear one of each?

Solution: I can think of choosing what to wear as a task broken into 3 steps: I have to choose
a pair of socks (5 ways), a pair of shorts (10 ways), and finallya t-shirt (8 ways). Thus I have
5×10×8= 400 choices.

429 Example If license plates are required to have 3 letters followed by 3digits, how many license plates
are possible?

Solution: There are 26 choices for each of the first three characters, and 10 choices for each
of the final three characters. Therefore, there are 263 ·103 possible license plates.

430 Example What is the value ofsumafter each of the following segments of code?
int sum=0;
for(int i=0;i<n;i++) {

for(int i=0;i<m;i++) {
sum = sum + 1;

}
}

int sum=0;
for(int i=0;i<n;i++) {

sum = sum + 1;
}
for(int i=0;i<m;i++) {

sum = sum + 1;
}

Solution: In the code on the left, the inner loop executesm times, so every time the inner
loop executes,sumgetsm added to it. The outer loop executesn times, each time calling the
inner loop. Thereforem is added tosum ntimes, sosum= n×m at the end.

In the code on the right, The first loop addsn to sum, and then the second loop addsm to sum.
Therefore,sum= n+mat the end.

431 Example How many ordered pairs of integers(x,y) are there such that 0< |xy| ≤ 5?

Solution: Let Ek = {(x,y) ∈ Z2 : |xy|= k} for k= 1, . . . ,5. Then the desired number is

|E1|+ |E2|+ · · ·+ |E5|.

Then

E1 = {(−1,−1),(−1,1),(1,−1),(1,1)}
E2 = {(−2,−1),(−2,1),(−1,−2),(−1,2),(1,−2),(1,2),(2,−1),(2,1)}
E3 = {(−3,−1),(−3,1),(−1,−3),(−1,3),(1,−3),(1,3),(3,−1),(3,1)}
E4 = {(−4,−1),(−4,1),(−2,−2),(−2,2),(−1,−4),(−1,4),(1,−4),

(1,4),(2,−2),(2,2),(4,−1),(4,1)}
E5 = {(−5,−1),(−5,1),(−1,−5),(−1,5),(1,−5),(1,5),(5,−1),(5,1)}

The desired number is therefore 4+8+8+12+8= 40.

432 Example The positive divisors of 400 are written in increasing order

1,2,4,5,8, . . .,200,400.

How many integers are there in this sequence. How many of the divisors of 400 are perfect squares?
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Solution: Since 400= 24 ·52, any positive divisor of 400 has the form 2a5b where 0≤ a≤ 4
and 0≤ b≤ 2. Thus there are 5 choices fora and 3 choices forb for a total of 5·3 = 15
positive divisors.

To be a perfect square, a positive divisor of 400 must be of theform 2α5β with α ∈ {0,2,4}
andβ ∈ {0,2}. Thus there are 3·2= 6 divisors of 400 which are also perfect squares.

It is easy to generalize Example432to obtain the following theorem. following theorem.

433 Theorem Let the positive integern have the prime factorization

n= pa1
1 pa2

2 · · · p
ak
k ,

where thepi are distinct primes, and theai are integers≥ 1. If d(n) denotes the number of positive divisors
of n, then

d(n) = (a1+1)(a2+1) · · ·(ak+1).

434 Example The integers from 1 to 1000 are written in succession. Find the sum of all the digits.

Solution: When writing the integers from 000 to 999 (with three digits), 3×1000= 3000
digits are used. Each of the 10 digits is used an equal number of times, so each digit is used
300 times. The the sum of the digits in the interval 000 to 999 is thus

(0+1+2+3+4+5+6+7+8+9) ·300= 13500.

Therefore, the sum of the digits when writing the integers from 1 to 1000 is 13500+ 1 =
13501.

Aliter: Pair up the integers from 0 to 999 as

(0,999), (1,998), (2,997), (3,996), . . . ,(499,500).

Each pair has sum of digits 27 and there are 500 such pairs. Adding 1 for the sum of digits of
1000, the required total is

27·500+1= 13501.

435 Example The strictly positive integers are written in succession

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, . . .

Which digit occupies the 3000-th position?

Solution: Upon using

9 ·1= 9 1-digit integers,
90·2= 180 2-digit integers,
900·3= 2700 3-digit integers,

a total of 9+180+2700= 2889 digits have been used, so the 3000-th digit must belong to
a 4-digit integer. There remains to use 3000−2889= 111 digits, and 111= 4 ·27+ 3, so
the 3000-th digit is the third digit of the 28-th 4-digit integer, that is, the third digit of 4027,
namely 2.
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7.2 Pigeonhole Principle

The following theorem seems so obvious that it doesn’t need to be stated. However, it often come in handy
in unexpected situations.

436 Theorem (The Pigeonhole Principle) If n is a positive integer andn+1 or more objects are placed
into n boxes, then one of the boxes contains at least two objects.

437 Example In any group of 13 people, there are always two who have their birthday on the same month.
Similarly, if there are 32 people, at least two people were born on the same day of the month.

The pigeonhole principle can be generalized.

438 Theorem (The Generalized Pigeonhole Principle) If n objects are placed intok boxes, then there
is at least one box that contains at least⌈n/k⌉ objects.

Proof: Assume not. Then each of thek boxes contains no more than⌈n/k⌉− 1 objects.
Notice that⌈n/k⌉< n/k+1 (convince yourself that this is always true). Thus, the total number
of objects in thek boxes is at most

k(⌈n/k⌉−1)< k(n/k+1−1) = n,

contradicting the fact that there aren objects in the boxes. Therefore, some box contains at
least⌈n/k⌉ objects. �

The Pigeonhole Principle is useful in provingexistenceproblems, that is, we show that something
exists without actually identifying it concretely.

439 Example Show that amongst any seven distinct positive integers not exceeding 126, one can find two
of them, saya andb, which satisfy

b< a≤ 2b.

Solution: Split the numbers{1,2,3, . . . ,126} into the six sets

{1,2},{3,4,5,6},{7,8, . . .,13,14},{15,16, . . .,29,30},

{31,32, . . . ,61,62} and{63,64, . . . ,126}.
By the Pigeonhole Principle, two of the seven numbers must lie in one of the six sets, and
obviously, any such two will satisfy the stated inequality.

440 Example Given any 9 integers whose prime factors lie in the set{3,7,11} prove that there must be
two whose product is a square.

Solution: For an integer to be a square, all the exponents of its prime factorisation must be
even. Any integer in the given set has a prime factorisation of the form 3a7b11c. Now each
triplet (a,b,c) has one of the following 8 parity patterns: (even, even, even), (even, even, odd),
(even, odd, even), (even, odd, odd), (odd, even, even), (odd, even, odd), (odd, odd, even), (odd,
odd, odd). In a group of 9 such integers, there must be two withthe same parity patterns in
the exponents. Take these two. Their product is a square, since the sum of each corresponding
exponent will be even.
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441 Example Prove that if five points are taken on or inside a unit square, there must always be two

whose distance is≤
√

2
2

.

Solution: Split the square into four congruent squares as shown to the right.
Two of the points must fall into one of the smaller squares, and the longest

distance there is, by the Pythagorean Theorem,
q
(1

2)
2+(1

2)
2 =

√
2

2
.

442 Example Given any set of ten natural numbers between 1 and 99 inclusive, prove that there are two
disjoint nonempty subsets of the set with equal sums of theirelements.

Solution: There are 210−1= 1023 non-empty subsets that one can form with a given 10-
element set. To each of these subsets we associate the sum of its elements. The maximum
value that any such sum can achieve is 90+91+ · · ·+99= 945< 1023. Therefore, there must
be at least two different subsets that have the same sum.

443 Example Prove that if 55 of the integers from 1 to 100 are selected, then two of them differ by 10.

Solution: First observe that if we choosen+ 1 integers from any set of 2n consecutive
integers, there will always be some two that differ byn. This is because we can pair the 2n
consecutive integers

{a+1,a+2,a+3, . . .,a+2n}
into then pairs

{a+1,a+n+1},{a+2,a+n+2}, . . .,{a+n,a+2n},

and ifn+1 integers are chosen from this, there must be two that belongto the same group.

So now group the one hundred integers as follows:

{1,2, . . .20},{21,22, . . . ,40},

{41,42, . . . ,60}, {61,62, . . . ,80}
and

{81,82, . . . ,100}.
If we select fifty five integers, then we must have selected at least⌈55/5⌉ = 11 from one of
the groups. From that group, by the above observation (letn = 10), there must be two that
differ by 10.

444 Example Label one disc “1”, two discs “2”, three discs “3”, . . . , fifty discs “50”. Put these 1+2+3+
· · ·+50= 1275 labeled discs in a box. Discs are then drawn from the box at random without replacement.
What is the minimum number of discs that must me drawn in orderto guarantee drawing at least ten discs
with the same label?

Solution: If we draw all the 1+2+ · · ·+9 = 45 labelled “1”, . . . , “9” and any nine from
each of the discs “10”, . . . , “50”, we have drawn 45+9 · 41= 414 discs. The 415-th disc
drawn will assure at least ten discs from a label.

175



176 Chapter 7

7.3 Permutations and Combinations

Most counting problems we will be dealing with can be classified into one of four categories. We explain
such categories by means of an example.

445 Example Consider the set{a,b,c,d}. Suppose we “select” two letters from these four. Depending
on our interpretation, we may obtain the following answers.

➊ Permutations with repetitions. The order of listing the letters is important, andrepetition isal-
lowed. In this case there are 4·4= 16 possible selections:

aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd

➋ Permutations without repetitions. The order of listing the letters is important, andrepetition is
notallowed. In this case there are 4·3= 12 possible selections:

ab ac ad
ba bc bd
ca cb cd
da db dc

➌ Combinations with repetitions. Theorder of listing the letters isnot important, andrepetition is

allowed. In this case there are
4 ·3
2

+4= 10 possible selections:

aa ab ac ad
bb bc bd

cc cd
dd

➍ Combinations without repetitions. Theorder of listing the letters isnot important, andrepetition

is notallowed. In this case there are
4 ·3
2

= 6 possible selections:

ab ac ad
bc bd

cd

Although most of the simple types of counting problems we want to solve can be reduced to one of
these four, care must be taken. The previous example assumedthat we had a set ofdistinguishableobjects.
When objects are not distinguishable, the situation is a more complicated.

The next four sections provide more details and examples of each of the four interpretations from the
previous example.
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7.3.1 Permutations without Repetitions

446 Definition Let x1,x2, . . . ,xn be n distinct objects. Apermutationof these objects is simply a rear-
rangement of them.

447 Example There are 24 permutations of the letters inMATH, namely

MATH MAHT MTAH MTHA MHTA MHAT
AMTH AMHT ATMH ATHM AHTM AHMT
TAMH TAHM TMAH TMHA THMA THAM
HATM HAMT HTAM HTMA HMTA HMAT

448 Theorem Let x1,x2, . . . ,xn ben distinct objects. Then there aren! permutations of them.

Proof: The first position can be chosen inn ways, the second object inn−1 ways, the third
in n−2, etc. This gives

n(n−1)(n−2) · · ·2 ·1= n!.

�

449 Example A bookshelf contains 5 German books, 7 Spanish books and 8 French books. Each book is
different from one another. How many different arrangements can be done of these books if

➊ we put no restrictions on how they can be arranged?

➋ books of each language must be next to each other?

➌ all the French books must be next to each other?

➍ no two French books must be next to each other?

Solution:

➊ We are permuting 5+7+8 = 20 objects. Thus the number of arrangements sought is
20!= 2432902008176640000.

➋ “Glue” the books by language, this will assure that books of the same language are
together. We permute the 3 languages in 3! ways. We permute the German books in 5!
ways, the Spanish books in 7! ways and the French books in 8! ways. Hence the total
number of ways is 3!5!7!8!= 146313216000.

➌ Align the German books and the Spanish books first. Putting these 5+7 = 12 books
creates 12+1= 13 spaces (we count the space before the first book, the spacesbetween
books and the space after the last book). To assure that all the French books are next each
other, we “glue” them together and put them in one of these spaces. Now, the French
books can be permuted in 8! ways and the non-French books can be permuted in 12!
ways. Thus the total number of permutations is

(13)8!12!= 251073478656000.
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➍ Align the German books and the Spanish books first. Putting these 5+7 = 12 books
creates 12+1= 13 spaces (we count the space before the first book, the spacesbetween
books and the space after the last book). To assure that no twoFrench books are next to
each other, we put them into these spaces. The first French book can be put into any of
13 spaces, the second into any of 12 remaining spaces, etc., and the eighth French book
can be put into any 6 remaining spaces. Now, the non-French books can be permuted in
12! ways. Thus the total number of permutations is

(13)(12)(11)(10)(9)(8)(7)(6)12!,

which is 24856274386944000.

7.3.2 Permutations with Repetitions

We now consider permutations with repeated objects.

450 Example In how many ways may the letters of the word

MASSACHUSETTS

be permuted to form different strings?

Solution: We put subscripts on the repeats forming

MA1S1S2A2CHUS3ET1T2S4.

There are now 13 distinguishable objects, which can be permuted in 13! different ways by
Theorem448. But this counts some arrangements multiple times since in reality the dupli-
cated letters are not distinguishable. Consider a single permutation of all of the distinguishable
letters. If I permute the lettersA1A2, I get the same permutation when ignoring the subscripts.
The same thing is true ofT1T2. Similarly, there are 4! permutations ofS1S2S3S4, so there are
4! permutations that look the same (without the subscripts). Since I can do all of these inde-
pendently, there are 2!2!4! permutations that look identical when the subscripts are removed.
This is true of every permutation. Therefore, the actual number of permutations is

13!
2!4!2!

= 64864800.

If you do not follow this example, I highly recommend trying this yourself by determining the number
of permutations of a few smaller words with fewer repeats—for instance, tryTALL, SELLSandAEEEI1.
Using reasoning analogous to the one of example450, we may prove the following theorem.

451 Theorem Let there bek types of objects:n1 of type 1;n2 of type 2; etc. Then the number of ways in
which thesen1+n2+ · · ·+nk objects can be rearranged is

(n1+n2+ · · ·+nk)!
n1!n2! · · ·nk!

.

1O.K., I admit that this isn’t a word. I couldn’t come up with a 5or six letter word with three repeats
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452 Example In how many ways may we permute the letters of the wordMASSACHUSETTSin such a
way thatMASSis always together, in this order?

Solution: The particleMASScan be considered as one block along with the remaining 9
lettersA, C, H, U, S, E, T, T, S. There are twoS’s2 and twoT ’s and so the total number of
permutations sought is

10!
2!2!

= 907200.

453 Example In how many ways may we write the number 9 as the sum of three positive integer sum-
mands? Here order counts, so, for example, 1+7+1 is to be regarded different from 7+1+1.

Solution: We first look for answers with

a+b+c= 9,1≤ a≤ b≤ c≤ 7

and we find the permutations of each triplet. We have

(a,b,c) Number of permutations

(1,1,7)
3!
2!

= 3

(1,2,6) 3! = 6
(1,3,5) 3! = 6

(1,4,4)
3!
2!

= 3

(2,2,5)
3!
2!

= 3

(2,3,4) 3! = 6

(3,3,3)
3!
3!

= 1

Thus the number desired is

3+6+6+3+3+6+1= 28.

454 Example In how many ways can the letters of the wordMURMUR be arranged without letting two
letters which are alike come together?

Solution: If we started with, say ,MU then theR could be arranged as follows:

M U R R ,

M U R R ,or

M U R R .

In the first case there are 2!= 2 ways of putting the remainingM andU, in the second there
are 2!= 2 ways and in the third there is only 1! way. Thus starting the word with MU gives
2+2+1 = 5 possible arrangements. In the general case, we can choose the first letter of the
word in 3 ways, and the second in 2 ways. Thus the number of wayssought is 3·2 ·5= 30.3

2Remember, the other twoS’s are part ofMASS, which we are now treating as a single object.
3It should be noted that this analysis worked because the three letters each occurred twice. If this was not the case we would

have had to work harder to solve the problem.
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455 Example In how many ways can the letters of the wordAFFECTION be arranged, keeping the
vowels in their natural order and not letting the twoF’s come together?

Solution: There are
9!
2!

ways of permuting the letters ofAFFECTION . The 4 vowels can be

permuted in 4! ways, and in only one of these will they be in their natural order. Thus there are
9!

2!4!
ways of permuting the letters ofAFFECTION in which their vowels keep their natural

order. If we treatFF as a single letter, there are 8! ways of permuting the lettersso that the

F ’s stay together. Hence there are
8!
4!

permutations ofAFFECTION where the vowels occur

in their natural order and theFF ’s are together. In conclusion, the number of permutations
sought is

9!
2!4!
− 8!

4!
=

8!
4!

�9
2
−1

�
=

8 ·7 ·6 ·5 ·4!
4!

· 7
2
= 5880

7.3.3 Combinations without Repetitions

456 Definition Let n,k be non-negative integers with 0≤ k≤ n. Thebinomial coefficient

 
n
k

!
(read “n

choose k”) is defined and denoted by 
n
k

!
=

n!
k!(n−k)!

=
n · (n−1) · (n−2) · · ·(n−k+1)

1 ·2 ·3· · ·k .

☞ Observe that in the last fraction, there are k factors in boththe numerator and denominator. Also,
observe the boundary conditions 

n
0

!
=

 
n
n

!
= 1,

 
n
1

!
=

 
n

n−1

!
= n.

457 Example We have  
6
3

!
=

6 ·5 ·4
1 ·2 ·3 = 20, 

11
2

!
=

11·10
1 ·2 = 55, 

12
7

!
=

12·11·10·9 ·8 ·7 ·6
1 ·2 ·3 ·4 ·5 ·6 ·7 = 792, 

110
109

!
= 110, 

110
0

!
= 1.

If there aren kittens and you decide to takek of them home, you also decidednot to taken−k of them
home. This idea leads to the following important theorem.
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458 Theorem If n,k∈ Z, with 0≤ k≤ n, then 
n
k

!
=

n!
k!(n−k)!

=
n!

(n−k)!(n− (n−k))!
=

 
n

n−k

!
Proof: Sincek= n− (n−k), the result is obvious. �

459 Example  
11
9

!
=

 
11
2

!
= 55, 

12
5

!
=

 
12
7

!
= 792.

460 Definition Let there ben distinguishable objects. Ak-combinationis a selection ofk, (0≤ k≤ n)
objects from then made without regards to order.

461 Example The 2-combinations from the list{X,Y,Z,W} are

XY,XZ,XW,YZ,YW,WZ.

462 Example The 3-combinations from the list{X,Y,Z,W} are

XYZ,XYW,XZW,YWZ.

463 Theorem Let there ben distinguishable objects, and letk, 0≤ k ≤ n. Then the numbers ofk-

combinations of thesen objects is

 
n
k

!
.

Proof: Pick any of thek objects. They can be ordered inn(n−1)(n−2) · · ·(n−k+1), since
there aren ways of choosing thefirst, n−1 ways of choosing thesecond, etc. This particular
choice ofk objects can be permuted ink! ways. Hence the total number ofk-combinations is

n(n−1)(n−2) · · ·(n−k+1)
k!

=

 
n
k

!
.

�

464 Example From a group of 10 people, we may choose a committee of 4 in

 
10
4

!
= 210 ways.

465 Example Three different integers are drawn from the set{1,2, . . . ,20}. In how many ways may they
be drawn so that their sum is divisible by 3?

Solution: In {1,2, . . . ,20} there are

6 numbers leaving remainder 0
7 numbers leaving remainder 1
7 numbers leaving remainder 2
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The sum of three numbers will be divisible by 3 when (a) the three numbers are divisible by 3;
(b) one of the numbers is divisible by 3, one leaves remainder1 and the third leaves remainder
2 upon division by 3; (c) all three leave remainder 1 upon division by 3; (d) all three leave
remainder 2 upon division by 3. Hence the number of ways is 

6
3

!
+

 
6
1

! 
7
1

! 
7
1

!
+

 
7
3

!
+

 
7
3

!
= 384.

466 Example To count the number of shortest routes fromA to B in Figure7.1, observe that any shortest
path must consist of 6 horizontal moves and 3 vertical ones for a total of 6+3= 9 moves. Once we choose
which 6 of these 9 moves are horizontal the 3 vertical ones aredetermined. For instance, if I choose to go
horizontal on moves 1, 2, 4, 6, 7, and 8, then moves 3, 5 and 9 must be vertical. Thus there are

�9
6

�
= 84

paths.
Another way to think about it is that we need to compute the number of permutations ofEEEEEENNN,

whereE means move east, andN means move north. The number of permutations is 9!/(6!3!) =
�9

6

�
.

467 Example To count the number of shortest routes fromA to B in Figure7.2that pass through pointO
we count the number of paths fromA to O (of which there are

�5
3

�
= 20) and the number of paths fromO

to B (of which there are
�4

3

�
= 4). Thus the desired number of paths is

�5
3

��4
3

�
= (20)(4) = 80.

A

B

Figure 7.1: Example466.

b

A

O
B

Figure 7.2: Example467.

7.3.4 Combinations with Repetitions

468 Theorem (De Moivre) Let n be a positive integer. The number of positive integer solutions to

x1+x2+ · · ·+xr = n

is  
n−1
r−1

!
.

Proof: Write n as
n= 1+1+ · · ·+1+1,

where there aren 1s andn−1 +s. To decomposen in r summands we only need to choose
r − 1 pluses from then− 1, For instance, writingn = 7 as 7= 2+ 3+ 2 is equivalent to
7= (1+1)+(1+1+1)+(1+1), where the+’s outside of the parentheses are the ones we
chose. This proves the theorem. �

469 Example In how many ways may we write the number 9 as the sum of three positive integer sum-
mands? Here order counts, so, for example, 1+7+1 is to be regarded different from 7+1+1.

182



Permutations and Combinations 183

Solution: Notice that this is the same problem as Example453. We are seeking integral
solutions to

a+b+c= 9, a> 0,b> 0,c> 0.

By Theorem468this is  
9−1
3−1

!
=

 
8
2

!
= 28.

☞ The solution in Example469was much easier than the solution in Example453, demonstrating the
fact that choosing the right tool for the job can make a huge difference. Sometimes recognizing the best
tool for the job can be tricky. Of course, the more problems ofthis type you solve, the easier it gets.
Similarly, having more tools in your bag gives you more options.

This also demonstrates something that is true of a lot of combinatorial problems: There are often
several valid ways of approaching them. But there are also a lot of invalid approaches, so be careful!

470 Example In how many ways can 100 be written as the sum of four positive integer summands?

Solution: We want the number of positive integer solutions to

a+b+c+d = 100,

which by Theorem468is  
99
3

!
= 156849.

The following corollary is similar to Theorem468except that the numbers are allowed to be 0.

471 Corollary Let n be a positive integer. The number of non-negative integer solutions to

y1+y2+ · · ·+yr = n

is  
n+ r−1

r−1

!
.

Proof: Setxi−1= yi for i = 1, . . . , r. Thenxi ≥ 1, and equation

x1−1+x2−1+ · · ·+xr −1= n

is equivalent to
x1+x2+ · · ·+xr = n+ r,

which from Theorem468, has  
n+ r−1

r−1

!
solutions. �

472 Example Find the number of quadruples(a,b,c,d) of integers satisfying

a+b+c+d = 100, a≥ 30,b> 21,c≥ 1,d≥ 1.
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Solution: Puta′+29= a,b′+20= b. Then we want the number of positive integer solutions
to

a′+29+b′+21+c+d = 100,

or
a′+b′+c+d = 50.

By Theorem468this number is  
49
3

!
= 18424.

473 Example In how many ways may 1024 be written as the product of three positive integers?

Solution: Observe that 1024= 210. We need a decomposition of the form 210= 2a2b2c, that
is, we need integers solutions to

a+b+c= 10, a≥ 0,b≥ 0,c≥ 0.

By Corollary471there are
�10+3−1

3−1

�
=
�12

2

�
= 66 such solutions.

7.4 Binomial Theorem

It is well known that
(a+b)2 = a2+2ab+b2 (7.1)

Multiplying this last equality bya+b one obtains

(a+b)3 = (a+b)2(a+b) = a3+3a2b+3ab2+b3

Again, multiplying
(a+b)3 = a3+3a2b+3ab2+b3 (7.2)

by a+b one obtains

(a+b)4 = (a+b)3(a+b) = a4+4a3b+6a2b2+4ab3+b4

This generalizes, as we see in the next theorem.

474 Theorem (Binomial Theorem) Let x andy be variables andn be a nonnegative integer. Then

(x+y)n =
nX

i=0

 
n
i

!
xn−iyi .

475 Example

(4x+5)3 =

 
3
0

!
(4x)350+

 
3
1

!
(4x)2(5)1+

 
3
2

!
(4x)1(5)2+

 
3
3

!
(4x)053

= (4x)3+3(4x)2(5)+3(4x)(5)2+53

= 64x3+240x2+300x+125
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476 Example

(2x−y2)4 =

 
4
0

!
(2x)4+

 
4
1

!
(2x)3(−y2)+

 
4
2

!
(2x)2(−y2)2+

 
4
3

!
(2x)(−y2)3+

 
4
4

!
(−y2)4

= (2x)4+4(2x)3(−y2)+6(2x)2(−y2)2+4(2x)(−y2)3+(−y2)4

= 16x4−32x3y2+24x2y4−8xy6+y8

The most important things to remember when using the binomial theorem are not to forget the binomial
coefficients, and not to forget that the powers (i.e.xn−i andyi) apply to the whole term, including any
coefficients. A specific case that is easy to forget is a negative sign on the coefficient. We skip a few steps
(e.g. the step of explicitly writing out the binomial coefficient) in the next few examples.

477 Example

(2+ i)5 = 25+5(2)4(i)+10(2)3(i)2+10(2)2(i)3+5(2)(i)4+ i5

= 32+80i−80−40i +10+ i
= −38+39i

478 Example

(
√

3+
√

5)4 = (
√

3)4+4(
√

3)3(
√

5)+6(
√

3)2(
√

5)2+4(
√

3)(
√

5)3+(
√

5)4

= 9+12
√

15+90+20
√

15+25
= 124+32

√
15

479 Example Given thata−b= 2,ab= 3 find a3−b3.

Solution: One has
8 = 23

= (a−b)3

= a3−3a2b+3ab2−b3

= a3−b3−3ab(a−b)
= a3−b3−18,

whencea3−b3 = 26.

If we ignore the variables in the Binomial Theorem and write down the coefficients for increasing
values ofn, a pattern, calledPascal’s Triangleemerges.

Notice that each entry different from 1 is the sum of the two neighbors just above it. This leads to the
following theorem

480 Theorem (Pascal’s Identity) Let n andk be positive integers withk≤ n. Then 
n+1

k

!
=

 
n

k−1

!
+

 
n
k

!
.
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
...

Figure 7.3: Pascal’s Triangle

7.5 Inclusion-Exclusion

The Sum Rule425 gives us the cardinality for unions of finite sets that are mutually disjoint. In this
section we will drop the disjointness requirement and obtain a formula for the cardinality of unions of
general finite sets.

The Principle ofInclusion-Exclusionis attributed to both Sylvester and to Poincaré. We will only
consider the cases involving two and three sets, although the principle easily generalizes tok sets.

481 Theorem (Inclusion-Exclusion for Two Sets)

|A∪B|= |A|+ |B|− |A∩B|

Proof: Clearly there are|A∩B| elements that are in bothA andB. Therefore,|A|+ |B| is the
number of element inA andB, where the elements in|A∩B| are counted twice. From this it
is clear that|A∪B|= |A|+ |B|− |A∩B|. �

482 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also known that 10 both smoke and
chew. How many among the 40 neither smoke nor chew?

Solution: Let A denote the set of smokers andB the set of chewers. Then

|A∪B|= |A|+ |B|− |A∩B|= 28+16−10= 34,

meaning that there are 34 people that either smoke or chew (orpossibly both). Therefore the
number of people that neither smoke nor chew is 40−34= 6.

483 Example Consider the setA that are multiples of 2 no greater than 114. That is,

A= {2,4,6, . . . ,114}.

➊ How many elements are there inA?

➋ How many are divisible by 3?

➌ How many are divisible by 5?
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➍ How many are divisible by 15?

➎ How many are divisible by either 3, 5 or both?

➏ How many are neither divisible by 3 nor 5?

➐ How many are divisible by exactly one of 3 or 5?

Solution: Let Ak⊂ A be the set of those integers divisible byk.

➊ Notice that the elements are 2= 2(1), 4= 2(2), . . . , 114= 2(57). Thus|A|= 57.

➋ Notice that
A3 = {6,12,18, . . . ,114}= {1 ·6,2 ·6,3 ·6, . . .,19·6},

so |A3|= 19.

➌ Notice that

A5 = {10,20,30, . . . ,110}= {1 ·10,2 ·10,3 ·10, . . .,11·10},

so |A5|= 11.

➍ Notice thatA15 = {30,60,90}, so|A15|= 3.

➎ First notice thatA3∩A5 =A15. Then it is clear that the answer is|A3∪A5|= |A3|+ |A5|=
|A15|= 19+11−3= 27.

➏ We want
|A\ (A3∪A5)|= |A|− |A3∪A5|= 57−27= 30.

➐ We want
|(A3∪A5)\ (A3∩A5)| = |(A3∪A5)|− |A3∩A5|

= 27−3
= 24.

484 Example How many integers between 1 and 1000 inclusive, do not share acommon factor with 1000,
that is, are relatively prime to 1000?

Solution: Observe that 1000= 2353, and thus from the 1000 integers we must weed out
those that have a factor of 2 or of 5 in their prime factorization. If A2 denotes the set of

those integers divisible by 2 in the interval[1,1000] then clearly|A2|=
�1000

2

�
= 500. Sim-

ilarly, if A5 denotes the set of those integers divisible by 5 then|A5|=
�1000

5

�
= 200. Also

|A2∩A5|=
�1000

10

�
= 100. This means that there are|A2∪A5|= 500+200−100= 600 inte-

gers in the interval[1,1000] sharing at least a factor with 1000, thus there are 1000−600=400
integers in[1,1000] that do not share a factor prime factor with 1000.

We now derive a three-set version of the Principle of Inclusion-Exclusion.
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485 Theorem (Inclusion-Exclusion for Three Sets)

|A∪B∪C| = |A|+ |B|+ |C|
−|A∩B|− |B∩C|− |C∩A|
+|A∩B∩C|

Proof: Using the associativity and distributivity of unions of sets, we see that

|A∪B∪C| = |A∪ (B∪C)|
= |A|+ |B∪C|− |A∩ (B∪C)|
= |A|+ |B∪C|− |(A∩B)∪ (A∩C)|
= |A|+ |B|+ |C|− |B∩C|− |A∩B|− |A∩C|+ |(A∩B)∩ (A∩C)|
= |A|+ |B|+ |C|− |B∩C|− (|A∩B|+ |A∩C|− |A∩B∩C|)
= |A|+ |B|+ |C|− |A∩B|− |B∩C|− |C∩A|+ |A∩B∩C|.

�

486 Example How many integers between 1 and 600 inclusive are not divisible by 3, nor 5, nor 7?

Solution: Let Ak denote the numbers in[1,600] which are divisible byk= 3,5,7. Then

|A3| = ⌊600
3 ⌋ = 200,

|A5| = ⌊600
5 ⌋ = 120,

|A7| = ⌊600
7 ⌋ = 85,

|A15| = ⌊600
15 ⌋ = 40

|A21| = ⌊600
21 ⌋ = 28

|A35| = ⌊600
35 ⌋ = 17

|A105| = ⌊600
105⌋ = 5

By Inclusion-Exclusion there are 200+120+85−40−28−17+5= 325 integers in[1,600]
divisible by at least one of 3, 5, or 7. Those not divisible by these numbers are a total of
600−325= 275.

487 Example

How many integral solutions to the equation

a+b+c+d = 100,

are there given the following constraints:

1≤ a≤ 10, b≥ 0, c≥ 2,20≤ d≤ 30?
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Solution: We use Inclusion-Exclusion. There are
�80

3

�
= 82160 integral solutions to

a+b+c+d = 100, a≥ 1,b≥ 0,c≥ 2,d≥ 20.

Let A be the set of solutions with

a≥ 11,b≥ 0,c≥ 2,d≥ 20

andB be the set of solutions with

a≥ 1,b≥ 0,c≥ 2,d≥ 31.

Then|A|=
�70

3

�
, |B|=

�69
3

�
, |A∩B|=

�59
3

�
and so

|A∪B|=
 

70
3

!
+

 
69
3

!
−
 

59
3

!
= 74625.

The total number of solutions to

a+b+c+d = 100

with
1≤ a≤ 10, b≥ 0, c≥ 2,20≤ d≤ 30

is thus  
80
3

!
−
 

70
3

!
−
 

69
3

!
+

 
59
3

!
= 7535.

Exercises

488 Problem Telephone numbers inLand of the Flying Camelshave 7 digits, and the only digits available
are{0,1,2,3,4,5,7,8}. No telephone number may begin in 0, 1 or 5. Find the number of telephone
numbers possible that meet the following criteria:

➊ You may repeat all digits.

➋ You may not repeat any of the digits.

➌ You may repeat the digits, but the phone number must be even.

➍ You may repeat the digits, but the phone number must be odd.

➎ You may not repeat the digits and the phone numbers must be odd.

489 Problem The number 3 can be expressed as a sum of one or more positive integers in four ways,
namely, as 3, 1+2, 2+1, and 1+1+1. Show that any positive integern can be so expressed in 2n−1

ways.

490 Problem How many two or three letter initials for people are available if at least one of the letters
must be a D and one allows repetitions?
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491 Problem The sequence of palindromes, starting with 1 is written in ascending order

1,2,3,4,5,6,7,8,9,11,22,33, . . .

Find the 1984-th positive palindrome.

492 Problem Would you believe a market investigator that reports that of1000 people, 816 like candy,
723 like ice cream, 645 cake, while 562 like both candy and icecream, 463 like both candy and cake, 470
both ice cream and cake, while 310 like all three? State your reasons!

493 Problem An auto insurance company has 10,000 policyholders. Each policy holder is classified as

• young or old,

• male or female, and

• married or single.

Of these policyholders, 3000 are young, 4600 are male, and 7000 are married. The policyholders can also
be classified as 1320 young males, 3010 married males, and 1400 young married persons. Finally, 600 of
the policyholders are young married males.

How many of the company’s policyholders are young, female, and single?

494 Problem In Medieval Highthere are forty students. Amongst them, fourteen like Mathematics, six-
teen like theology, and eleven like alchemy. It is also knownthat seven like Mathematics and theology,
eight like theology and alchemy and five like Mathematics andalchemy. All three subjects are favoured
by four students. How many students like neither Mathematics, nor theology, nor alchemy?

495 Problem (Lewis Carroll in A Tangled Tale.) In a very hotly fought battle, at least 70% of the com-
batants lost an eye, at least 75% an ear, at least 80% an arm, and at least 85% a leg. What can be said
about the percentage who lost all four members?

496 Problem An urn contains 28 blue marbles, 20 red marbles, 12 white marbles, 10 yellow marbles, and
8 magenta marbles. How many marbles must be drawn from the urnin order to assure that there will be
15 marbles of the same color?

497 Problem The nine entries of a 3× 3 grid are filled with−1, 0, or 1. Prove that among the eight
resulting sums (three columns, three rows, or two diagonals) there will always be two that add to the same
number.

498 Problem Forty nine women and fifty one men sit around a round table. Demonstrate that there is at
least a pair of men who are facing each other.

499 Problem An eccentric widow has five cats4. These cats have 16 kittens among themselves. What is
the largest integern for which one can say that at least one of the five cats hasn kittens?

500 Problem Given any set of ten natural numbers between 1 and 99 inclusive, prove that there are two
disjoint nonempty subsets of the set with equal sums of theirelements.

4Why is it always eccentric widows who have multiple cats?
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Answers

488 We have

➊ This is 5·86 = 1310720.

➋ This is 5·7·6·5·4·3·2= 25200.

➌ This is 5·85 ·4= 655360.

➍ This is 5·85 ·4= 655360.

➎ We condition on the last digit. If the last digit were 1 or 5 then we would have 5 choices for the first digit, and
so we would have

5·6·5·4·3·2·2= 7200

phone numbers. If the last digit were either 3 or 7, then we would have 4 choices for the last digit and so we
would have

4·6·5·4·3·2·2= 5760

phone numbers. Thus the total number of phone numbers is

7200+5760= 12960.

489 n= 1+1+ · · ·+1| {z }
n−1 +′s

. One either erases or keeps a plus sign.

490 (262−252)+ (263−253) = 2002

491 It is easy to see that there are 9 palindromes of 1-digit, 9 palindromes with 2-digits, 90 with 3-digits, 90
with 4-digits, 900 with 5-digits and 900 with 6-digits. The last palindrome with 6 digits, 999999, constitutes the
9+9+90+90+900+900= 1998th palindrome. Hence, the 1997th palindrome is 998899,the 1996th palindrome
is 997799, the 1995th palindrome is 996699, the 1994th is 995599, etc., until we find the 1984th palindrome to be
985589.

492 Let C denote the set of people who like candy,I the set of people who like ice cream, andK denote the set of
people who like cake. We are given that|C|= 816,|I |= 723,|K|= 645,|C∩ I |= 562,|C∩K|= 463,|I ∩K|= 470,
and card(C∩ I ∩K) = 310. By Inclusion-Exclusion we have

|C∪ I ∪K| = |C|+ |I |+ |K|
−|C∩ I |− |C∩K|− |I ∩C|
+|C∩ I ∩K|

= 816+723+645−562−463−470+310
= 999.

The investigator miscounted, or probably did not report oneperson who may not have liked any of the three things.

493 LetY,F,S,M stand for young, female, single, male, respectively, and let Ma stand for married. We have

|Y∩F ∩S| = |Y∩F|− |Y∩F ∩Ma|
= |Y|− |Y∩M|

−(|Y∩Ma|−card(Y∩Ma∩M))
= 3000−1320− (1400−600)
= 880.
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494 Let A be the set of students liking Mathematics,B the set of students liking theology, andC be the set of students
liking alchemy. We are given that

|A|= 14, |B|= 16, |C| = 11, |A∩B|= 7, |B∩C|= 8, |A∩C|= 5,

and
|A∩B∩C|= 4.

By the Principle of Inclusion-Exclusion,

|A∩B∩C|= 40−|A|− |B|− |C|+ |A∩B|+ |A∩C|+ |B∩C|− |A∩B∩C|

Substituting the numerical values of these cardinalities

40−14−16−11+7+5+8−4= 15.

495 Let A denote the set of those who lost an eye,B denote those who lost an ear,C denote those who lost an arm
andD denote those losing a leg. Suppose there aren combatants. Then

n ≥ |A∪B|
= |A|+ |B|− |A∩B|
= .7n+ .75n−|A∩B|,

n ≥ |C∪D|
= |C|+ |D|− |C∩D|
= .8n+ .85n−card(C∩D) .

This gives
|A∩B| ≥ .45n,

|C∩D| ≥ .65n.

This means that
n ≥ |(A∩B)∪ (C∩D)|

= |A∩B|+ |C∩D|− |A∩B∩C∩D|
≥ .45n+ .65n−|A∩B∩C∩D|,

whence
|A∩B∩C∩D| ≥ .45+ .65n−n= .1n.

This means that at least 10% of the combatants lost all four members.

496 If all the magenta, all the yellow, all the white, 14 of the redand 14 of the blue marbles are drawn, then in
among these 8+ 10+ 12+ 14+ 14= 58 there are no 15 marbles of the same color. Thus we need 59 marbles in
order to insure that there will be 15 marbles of the same color.

497 There are seven possible sums, each one a number in{−3,−2,−1,0,1,2,3}. By the Pigeonhole Principle, two
of the eight sums must add up to the same.

498 Pick a pair of different sex facing one another, that is, forming a “diameter” on the table. On either side of the
diameter there must be an equal number of people, that is, forty nine. If all the men were on one side of the diameter
then we would have a total of 49+1= 50, a contradiction.

499 We haveV16
5 W = 4, so there is at least one cat who has four kittens.

500 There are 210−1= 1023 non-empty subsets that one can form with a given 10-element set. To each of these
subsets we associate the sum of its elements. The maximum value that any such sum can achieve is 90+91+ · · ·+
99= 945< 1023. Therefore, there must be at least two different subsets thathave the same sum.
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Homework

501 Problem (E ötv ös, 1947) Prove that amongst six people in a room there are at least three who know
one another, or at least three who do not know one another.

502 Problem Suppose that the letters of the English alphabet are listed in an arbitrary order.

1. Prove that there must be four consecutive consonants.

2. Give a list to show that there need not be five consecutive consonants.

3. Suppose that all the letters are arranged in a circle. Prove that there must be five consecutive conso-
nants.

503 Problem Bob has ten pockets and forty four silver dollars. He wants toput his dollars into his pockets
so distributed that each pocket contains a different numberof dollars.

1. Can he do so?

2. Generalize the problem, consideringp pockets andn dollars. The problem is most interesting when

n=
(p−1)(p−2)

2
.

Why?

504 Problem Expand

1. (x−4y)3

2. (x3+y2)4

3. (2+3x)3

4. (2i−3)4

5. (2i +3)4+(2i−3)4

6. (2i +3)4− (2i−3)4

7. (
√

3−
√

2)3

8. (
√

3+
√

2)3+(
√

3−
√

2)3

9. (
√

3+
√

2)3− (
√

3−
√

2)3

505 Problem Prove that
(a+b+c)2 = a2+b2+c2+2(ab+bc+ca)

Prove that
(a+b+c+d)2 = a2+b2+c2+d2+2(ab+ac+ad+bc+bd+cd)

Generalize.

506 Problem Compute(x+2y+3z)2.
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507 Problem Given thata+2b=−8, ab= 4, find (i) a2+4b2, (ii) a3+8b3, (iii)
1
a
+

1
2b

.

508 Problem The sum of the squares of three consecutive positive integers is 21170. Find the sum of the
cubes of those three consecutive positive integers.

509 Problem What is the coefficient ofx4y6 in

(x
√

2−y)10?

510 Problem Expand and simplify

(
È

1−x2+1)7− (
È

1−x2−1)7.

511 Problem There are approximately 7,000,000,000 people on the planet. Assume that everyone has a
name that consists of exactlyk lower-case letters from the English alphabet.

1. If k= 8, is it guaranteed that two people have the same name? Explain.

2. What is the maximum value ofk that would guarantee that at least two people have the same name?

3. What is the maximum value ofk that would guarantee that at least 100 people have the same name?

4. Now assume that names can be between 1 andk characters long. What is the maximum value ofk
that would guarantee that at least two people have the same name?

512 Problem Password cracking is the process of determining someone’s password, typically using a
computer. One way to crack passwords is to perform an exhaustive search that tries every possible string
of a given length until it (hopefully) finds it. Assume your computer can test 10,000,000 passwords per
second. How long would it take to crack passwords with the following restrictions? Give answers in
seconds, minutes, hours, days, or years depending on how large the answer is (e.g. 12,344,440 seconds
isn’t very helpful). Start by determining how many possiblepasswords there are in each case.

1. 8 lower-case alphabetic characters.

2. 8 alphabetic characters (upper or lower).

3. 8 alphabetic (upper or lower) and numeric characters.

4. 8 alphabetic (upper or lower), numeric characters, and special characters (assume there are 32 al-
lowable special characters).

5. 8 or fewer alphabetic (upper or lower) and numeric characters.

6. 10 alphabetic (upper or lower), numeric characters, and special characters (assume there are 32
allowable special characters).

7. 8 characters, with at least one upper-case, one lower-case, one number, and one special character.
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513 Problem IP addresses are used to identify computers on a network. In IPv4, IP addresses are 32
bits long. They are usually written using dotted-decimal notation, where the 32 bits are split up into 4
8-bit segments, and each 8-bit segment is represented in decimal. So the IP address 10000001 11000000
00011011 00000100 is represented as 129.192.27.4. Thesubnet maskof a network is a string ofk ones
followed by 32− k zeros, where the value ofk can be different on different networks. For instance, the
subnet mask might be 11111111111111111111111100000000, which is 255.255.255.0 in dotted decimal.
To determine thenetid, an IP address is bitwise ANDed with the subnet mask. To determine thehostid, an
IP address is bitwise ANDed with the bitwise complement of the subnet mask. Since every computer on a
network needs to have a differenthostid, the number of possiblehostids determines the maximum number
of computers that can be on a network.

Assume that the subnet mask on my computer is currently 255.255.255.0 and my IP address is
209.140.209.27.

1. What are thenetidandhostidof my computer?

2. How many computers can be on the network that my computer ison?

3. In 2010, Hope College’s network was not split into subnetworks like it is currently, so all of the
computers were on a single network that had a subnet mask of 255.255.240.0. How many computers
could be on Hope’s network in 2010?

514 Problem Prove that
nX

k=0

 
n
k

!
= 2n by counting the number of binary strings of lengthn in two ways.

515 Problem You get a new job and your boss gives you 2 choices for your salary. You can either make
$100 per day or you can start at $.01 on the first day and have your salary doubled every day. You know
that you will work fork days. For what values ofk should you take the first offer? The second? Explain.

516 Problem The 300-level courses in the CS department are split into three groups: Foundations (361,
385), Applications (321, 342, 392), and Systems (335, 354, 376). In order to get a BS in computer science
at Hope you need to take at least one course from each group.

1. How many different ways are there of satisfying this requirement by taking exactly 3 courses?

2. If you take four 300-level courses, how many different possibilities do you have that satisfy the
requirements?

3. How many ways are there to take 300-level courses that satisfy the requirements?

4. What is the fewest number of 300-level courses you need to take to guarantee that you will satisfy
the requirement no matter which courses you choose?

517 Problem In March of every year people fill out brackets for the NCAA Basketball Tournament. They
pick the winner of each game in each round. We will assume the tournament starts with 64 teams (it has
become a little more complicated than this recently). The first round of the tournament consists of 32
games, the second 16 games, the third 8, the fourth 4, the fifth2, and the final 1. So the total number of
games is 32+16+8+4+2+1 = 63. You can arrive at the number of games in a different way. Every
game has a loser who is out of the tournament. Since only 1 of the 64 teams remains at the end, there must
be 63 losers, so there must be 63 games. Notice that we can alsowrite 1+2+4+8+16+32= 63 as

5X
k=0

2k = 26−1.
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1. Use a combinatorial proof to show that for anyn> 0,
nX

k=0

2k = 2n+1−1. (That is, define an appro-

priate set and count the cardinality of the set in two ways to obtain the identity.)

2. When you fill out a bracket you are picking who you think the winner will be of each game. How
many different ways are there to fill out a bracket? (Hint: If you don’t over think it, this is pretty
easy.)

3. If everyone on the planet (7,000,000,000) filled out a bracket, is it guaranteed that two people will
have the same bracket? Explain.

4. Assume that everyone on the planet fills outk different brackets and that no brackets are repeated
(either by an individual or by anybody else). How large wouldk have to be before it is guaranteed
that somebody has a bracket that correctly predicts the winner of every game?

5. Assume every pair of people on the planet gets together to fill out a bracket (so everyone has
6,999,999 brackets, one with every other person on the planet). What is the smallest and largest
number of possible repeated brackets?

518 Problem Mega Millions has 56 white balls numbered 1-56 and one red ball numbered 1-46. To play
you pick 5 white balls and 1 red ball. Then 5 of the 56 balls and 1of the 46 balls are drawn randomly (or
so they would have us believe). You win if you match all 6 balls.

1. How many different draws are possible?

2. If everyone in the U.S.A. bought a ticket (about 314,000,000), is it guaranteed that two people have
the same numbers? Three people?

3. If everyone in the U.S.A. bought a ticket, what is the maximum number of people that are guaranteed
to share the jackpot?

4. Which is more likely: Winning Mega Millions or picking every winner in the NCAA Basketball
Tournament (see previous question)?

5. (hard) What is the largest value ofk such that you are more likely to pick at leastk winners in the
NCAA Basketball Tournament than you are to win Mega Millions?

519 Problem I am implementing a data structure that consists ofk lists. I want to store a total ofn objects
in this data structure, with each item being stored on one of the lists. All of the lists will have the same
capacity (e.g. perhaps each list can hold up to 10 elements).
Write a methodminimumCapacity(int n, int k) that computes the minimum capacity each of the
k lists must have to accommodaten objects. In other words, if the capacity is less than this, then there is
no way the objects can all be stored on the lists. You may assume integer arithmetic truncates (essentially
giving you thefloor function), but that there is noceiling function available.

520 Problem How many license plates can be made using either three letters followed by three digits or
four letters followed by two digits?

521 Problem How many license plates can be made using 4 letters and 3 numbers if the letters cannot be
repeated?
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522 Problem How many bit strings of length 8 either begin with three 1s or end with four 0s?

523 Problem How many alphabetic strings are there whose length is at most5?

524 Problem How many bit strings are there of length at least 4 and at most 6?

525 Problem How many subsets with 4 or more elements does a set of size 30 have?

526 Problem Prove that at a gathering ofn≥ 2 people, there are two people who have shaken hands with
the same number of people.

527 Problem Given a group of ten people, prove that at least 4 are male or atleast 7 are female.

528 Problem My family wants to take a group picture. There are 7 men and 5 women, and we want none
of the women to stand next to each other. How many different ways are there for us to line up?

529 Problem My family (7 men and 5 women) wants to select a group of 5 of us toplan Christmas. We
want at least 1 man and 1 woman in the group. How many ways are there for us to select the members of
this group?

530 Problem Compute each of the following:
�8

4

�
,
�9

9

�
,
�7

3

�
, 8!, and 5!

531 Problem For what value(s) ofk is
�18

k

�
largest? smallest?

532 Problem For what value(s) ofk is
�19

k

�
largest? smallest?

533 Problem A computer network consists of 10 computers. Each computer is directly connected to zero
or more of the other computers. Prove that there are at least two computers in the network that are directly
connected to the same number of other computers.

534 Problem Simplify the following expression so it does not involve anyfactorials or binomial coeffi-
cients:

�x
y

�
/
�x+1

y−1

�
.

535 Problem What is the coefficient ofx6y9 in (3x−2y)15?

536 Problem Prove that for any positive integern,
nX

k=0

(−2)k

 
n
k

!
= (−1)n. (Hint: Don’t use induction.)

537 Problem Write a methodchoose(int n, int k) (in a Java-like language) that computes
�n

k

�
.

Your implementation should be as efficient as possible.
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Chapter 8
Graph Theory

8.1 Simple Graphs

538 Definition A simple graph (network) G= (V,E) consists of a non-empty setV (called thevertex
(node)set) and a setE (possibly empty) of unordered pairs of elements (called theedgesor arcs) of V.

Vertices are usually represented by means of dots on the plane, and the edges by means of lines connecting
these dots. See figures8.1through8.4for some examples of graphs.

v1

Figure 8.1: K1, a
graph with|V| = 1
and|E|= 0.

v2 v1

Figure 8.2: K2, a
graph with|V| = 2
and|E|= 1.

v2 v1

v3

Figure 8.3: K3, a
graph with|V| = 3
and|E|= 3.

v2 v1

v4v3

Figure 8.4: A
graph with|V| = 3
and|E|= 5.

539 Definition If v andv′ are vertices of a graphG which are joined by an edgee, we say thatv is adjacent
to v′ and thatv andv′ areneighbours, and we writee= vv′. We say that vertexv is incidentwith an edge
e if v is an endpoint ofe. In this case we also say thate is incident withv.

540 Definition Thedegreeof a vertex is the number of edges incident to it.

Depending on whether|V| is finite or not, the graph is finite or infinite. In these notes we will only
consider finite graphs.

Our definition of a graph does not allow that two vertices be joined by more than one edge. If this were
allowed we would obtain amultigraph. Neither does it allowloops, which are edges incident to only one
vertex. A graph with loops is apseudograph.

541 Definition Thecomplete graphwith n verticesKn is the graph where any two vertices are adjacent.
ThusKn has

�n
2

�
edges.
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Figure8.1showsK1, figure8.2showsK2, figure8.3showsK3, and figure8.5showsK4, figure8.6shows
K5.

v2 v1

v4v3

Figure 8.5: K4.

A

B

C

D E

Figure 8.6: K5.

A B C

D E F
Figure 8.7: K3,3.

v2 v1

v4v3

Figure 8.8: P3.

542 Definition Let G= (V,E) be a graph. A subsetS⊆V is anindependent setof vertices ifuv 6∈ E for
all u,v in S (S may be empty). Abipartite graphwith bipartition X,Y is a graph such thatV = X ∪Y,
X∩Y =∅, andX andY are independent sets.X andY are called thepartsof the bipartition.

543 Definition Km,n denotes thecomplete bipartite graphwith m+n vertices. One part, withm vertices,
is connected to every other vertex of the other part, withn vertices.

544 Definition A u−v walk in a graphG= (V,E) is an alternating sequence of vertices and edges inG
with starting vertexu and ending vertexv such that every edge joins the vertices immediately preceding it
and immediately following it.

545 Definition A u− v trail in a graphG= (V,E) is au− v walk that does not repeat an edge, while a
u−v pathis a walk that which does not repeat any vertex.

546 Definition Pn denotes apath of lengthn. It is a graph withn edges, andn+1 verticesv0v1 · · ·vn,
wherevi is adjacent tovi+1 for n= 0,1, . . . ,n−1.

547 Definition Cn denotes acycleof lengthn. It is a graph withn edges, andn verticesv1 · · ·vn, wherevi

is adjacent tovi+1 for n= 1, . . . ,n−1, andv1 is adjacent tovn.

548 Definition Qn denotes then-dimensional cube(or hypercube). It is a simple graph with 2n vertices,
which we label withn-tuples of 0’s and 1’s. Vertices ofQn are connected by an edge if and only if they
differ by exactly one coordinate. Observe thatQn hasn2n−1 edges.

Figure8.7showsK3,3, figure8.8showsP3, figure8.9showsC5, figure8.10showsQ2, and figure8.11
showsQ3.

A

B

C

D E

Figure 8.9: C5.

01 11

1000

Figure 8.10: Q2.

011 111

101001

010 110

100000
Figure 8.11: Q3.

A

B

CE D
F

G

Figure 8.12: Example
550.
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549 Definition A subgraph G1 = (V1,E1) of a graphG= (V,E) is a graph withV1⊆V andE1⊆ E.

We will now give a few examples of problems whose solutions become simpler when using a graph-
theoretic model.

550 Example If the points of the plane are coloured with three different colours, red, white, and blue,
say, show that there will always exist two points of the same colour which are 1 unit apart.

Solution: In figure8.12all the edges have length 1. Assume the property does not holdand
thatA is coloured red,B is coloured white,D coloured blue. ThenF must both be coloured
red. SinceE andC must not be red, we also conclude thatG is red. But thenF andG are at
distance 1 apart and both coloured red which contradicts ourassumption that the property did
not hold.

551 Example A wolf, a goat, and a cabbage are on one bank of a river. The ferryman wants to take them
across, but his boat is too small to accommodate more than oneof them. Evidently, he can neither leave
the wolf and the goat, or the cabbage and the goat behind. Can the ferryman still get all of them across the
river?

Solution: Represent the position of a single item by 0 for one bank of theriver and 1
for the other bank. The position of the three items can now be given as an ordered triplet,
say(W,G,C). For example,(0,0,0) means that the three items are on one bank of the river,
(1,0,0) means that the wolf is on one bank of the river while the goat and the cabbage are on
the other bank. The object of the puzzle is now seen to be to move from (0,0,0) to (1,1,1),
that is, traversingQ3 while avoiding certain edges. One answer is

000→ 010→ 011→ 001→ 101→ 111.

This means that the ferryman (i) takes the goat across, (ii) returns and that the lettuce over
bringing back the goat, (iii) takes the wolf over, (iv) returns and takes the goat over. Another
one is

000→ 010→ 110→ 100→ 101→ 111.

This means that the ferryman (i) takes the goat across, (ii) returns and that the wolf over bring-
ing back the goat, (iii) takes the lettuce over, (iv) returnsand takes the goat over. The graph
depicting both answers can be seen in figure8.13. You can find a pictorial representation at
http://www.cut-the-knot.org/ctk/GoatCabbageWolf.shtml.

101

001011

010

110 100

000 111

Figure 8.13: Example551.

552 Example Prove that amongst six people in a room there are at least three who know one another, or
at least three who do not know one another.
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Solution: In graph-theoretic terms, we need to show that every colouring of the edges of
K6 into two different colours, say red and blue, contains a monochromatic triangle (that is,
the edges of the triangle have all the same colour). Consideran arbitrary person of this group
(call him Peter). There are five other people, and of these, either three of them know Peter or
else, three of them do not know Peter. Let us assume three do know Peter, as the alternative is
argued similarly. If two of these three people know one another, then we have a triangle (Peter
and these two, see figure8.14, where the acquaintances are marked by solid lines). If no two
of these three people know one another, then we have three mutual strangers, giving another
triangle (see figure8.15).

Peter

Figure 8.14: Example552.

Peter

Figure 8.15: Example552.

553 Example Mr. and Mrs. Landau invite four other married couples for dinner. Some people shook
hands with some others, and the following rules were noted: (i) a person did not shake hands with himself,
(ii) no one shook hands with his spouse, (iii) no one shook hands more than once with the same person.
After the introductions, Mr. Landau asks the nine people howmany hands they shook. Each of the nine
people asked gives a different number. How many hands did Mrs. Landau shake?

Solution: The given numbers can either be 0,1,2, . . . ,8, or 1,2, . . . ,9. Now, the sequence
1,2, . . . ,9 must be ruled out, since if a person shook hands nine times, then he must have
shaken hands with his spouse, which is not allowed. The only permissible sequence is thus
0,1,2, . . . ,8. Consider the person who shook hands 8 times, as in figure8.16. Discounting
himself and his spouse, he must have shaken hands with everybody else. This means that he is
married to the person who shook 0 hands! We now consider the person that shook 7 hands, as
in figure8.17. He didn’t shake hands with himself, his spouse, or with the person that shook
0 hands. But the person that shook hands only once did so with the person shaking 8 hands.
Thus the person that shook hand 7 times is married to the person that shook hands once.
Continuing this argument, we see the following pairs(8,0), (7,1), (6,2), (5,3). This leaves
the person that shook hands 4 times without a partner, meaning that this person’s partner did
not give a number, hence this person must be Mrs. Landau! Conclusion: Mrs. Landau shook
hands four times. A graph of the situation appears in figure8.18.

Mr. Landau

8

76
5

4

3
2 1

0

Figure 8.16: Example553.

Mr. Landau

8

76
5

4

3
2 1

0

Figure 8.17: Example553.

Mr. Landau

8

76
5

4

3
2 1

0

Figure 8.18: Example553.
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8.2 Graphic Sequences

554 Definition A sequence of non-negative integers isgraphic if there exists a graph whose degree se-
quence is precisely that sequence.

555 Example The sequence 1,1,1 is graphic, sinceK3 is a graph with this degree sequence, and in gen-
eral, so is the sequencen,n, . . . ,n| {z }

n+1 n′s

, sinceKn+1 has this degree sequence. The degree sequence 1,2,2, . . . ,2| {z }
n twos

,1

is graphic, sincePn+1 has this sequence. The degree sequence 2,2, . . . ,2| {z }
n twos

is graphic, sinceCn has this se-

quence. The sequence 0,1,2,3,4,5,6,7,8 is graphic, but the sequence 1,2,3,4,5,6,7,8,9 is not according
to Example553.

8.3 Connectivity

556 Definition A graph isconnectedif there is a path between every pair of vertices. Acomponentof a
graph is a maximal connected subgraph.

557 Definition A forest is a graph with no cycles (acyclic). Atree is a connected acyclic graph. A
spanning treeof a graph of a connected graphG is a subgraph ofG which is a tree and having exactly the
same of vertices asG.

8.4 Traversability

We start with the following, which is valid not only for simple graphs, but also for multigraphs and
pseudographs.

558 Theorem (Handshake Lemma) Let G= (V,E) be a graph. ThenX
v∈V

degv= 2|E|.

Proof: If the edge connects two distinct vertices, as sum traversesthrough the vertices, each
edge is counted twice. If the edge is a loop, then every vertexhaving a loop contributes 2 to
the sum. This gives the theorem. �

559 Corollary Every graph has an even number of vertices of odd degree.

Proof: The sum of an odd number of odd numbers is odd. Since the sum of the degrees of
the vertices in a simple graph is always even, one cannot havean odd number of odd degree
vertices. �

560 Definition A trail is a walk where all the edges are distinct. AnEulerian trail on a graphG is a trail
that traverses every edge ofG. A tour of G is a closed walk that traverses each edge ofG at least once. An
Euler touron G is a tour traversing each edge ofG exactly once, that is, a closed Euler trail. A graph is
Eulerian if it contains an Euler tour.

561 Theorem A nonempty connected graph is Eulerian if and only if has no vertices of odd degree.
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Proof: Assume first thatG is Eulerian, and letC be an Euler tour ofC starting and ending
at vertexu. Each time a vertexv is encountered alongC, two of the edges incident tov are
accounted for. SinceC contains every edge ofG, d(v) is then even for allv 6= u. Also, sinceC
begins and ends inu, d(u) must also be even.

Conversely, assume thatG is a connected nonEulerian graph with at least one edge and no
vertices of odd degree. LetW be the longest walk inG that traverses every edge at most once:

W = v0,v0v1,v1,v1v2,v2, ...,vn−1,vn−1vn,vn.

ThenW must traverse every edge incident tovn, otherwise,W could be extended into a longer
walk. In particular,W traverses two of these edges each time it passes throughvn and traverses
vn−1vn at the end of the walk. This accounts for an odd number of edges, but the degree of
vn is even by assumption. Hence,W must also begin atvn, that is,v0 = vn. If W were not
an Euler tour, we could find an edge not inW but incident to some vertex inW sinceG is
connected. Call this edgeuvi . But then we can construct a longer walk:

u,uvi,vi ,vivi+1, ...,vn−1vn,vn,v0v1, ...,vi−1vi ,vi .

This contradicts the definition ofW, soW must be an Euler tour. �

The following problem is perhaps the originator of graph theory.

562 Example (K önigsberg Bridge Problem) The town of Königsberg (now called Kaliningrad) was
built on an island in the Pregel River. The island sat near where two branches of the river join, and the
borders of the town spreaded over to the banks of the river as well as a nearby promontory. Between these
four land masses, seven bridges had been erected. The townsfolk used to amuse themselves by crossing
over the bridges and asked whether it was possible to find a trail starting and ending in the same location
allowing one to traverse each of the bridges exactly once. Figure8.19has a graph theoretic model of the
town, with the seven edges of the graph representing the seven bridges. By Theorem561, this graph is not
Eulerian so it is impossible to find a trail as the townsfolk asked.

A

B

C

D

Figure 8.19: Example562.

563 Definition A Hamiltonian cyclein a graph is a cycle passing through every vertex.G is Hamiltonian
if it contains a Hamiltonian cycle.

Unlike Theorem561, there is no simple characterisation of all graphs with a Hamiltonian cycle. We have
the following one way result, however.

564 Theorem (Dirac’s Theorem, 1952) Let G= (V,E) be a graph withn= |E| ≥ 3 edges whose every
vertex has degree≥ n

2. ThenG is Hamiltonian.
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Proof: Arguing by contradiction, supposeG is a maximal non-Hamiltonian with withn≥ 3,
and thatG has more than 3 vertices. ThenG cannot be complete. Leta andb be two non-
adjacent vertices ofG. By definition ofG, G+ab is Hamiltonian, and each of its Hamiltonian
cycles must contain the edgeab. Hence, there is a Hamiltonian pathv1v2 . . .vn in G beginning
at v1 = a and ending atvn = b. Put

S= {vi : avi+1 ∈ E} and {v j : v jb∈ E}.

As vn ∈ S∩T we must have|S∪T| = n. Moreover,S∩T =∅, since ifvi§∩T thenG would
have the Hamiltonian cycle

v1v2 · · ·vivnvn−1 · · ·vi+1v1,

as in figure8.20, contrary to the assumption thatG is non-Hamiltonian. But then

d(a)+d(b) = |S|+ |T|= |S∪T|+ |S∩T|< n.

But since we are assuming thatd(a)≥ n
2

andd(b)≥ n
2

, we have arrived at a contradiction.�

v1 v2 v2 vi vi+1 vn−1 vn

Figure 8.20: Theorem564

8.5 Planarity

565 Definition A graph isplanar if it can be drawn in a plane with no intersecting edges.

566 Example K4 is planar, as shown in figure8.21.

A
B

CD

2
3

4
1

Figure 8.21: Example568.

567 Definition A faceof a planar graph is a region bounded by the edges of the graph.

568 Example From figure8.21, K4 has 4 faces. Face1 which extends indefinitely, is called theoutside
face.
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569 Theorem (Euler’s Formula) For every drawing of a connected planar graph withv vertices,eedges,
and f faces the following formula holds:

v−e+ f = 2.

Proof: The proof is by induction one. Let P(e) be the proposition thatv−e+ f = 2 for
every drawing of a graphG with eedges. Ife= 0 and it is connected, then we must havev= 1
and hencef = 1, since there is only the outside face. Therefore,v−e+ f = 1−0+1 = 2,
establishingP(0).

Assume nowP(e) is true, and consider a connected graphG with e+1 edges. Either

➊ G has no cycles. Then there is only the outside face, and sof = 1. Since there aree+1
edges andG is connected, we must havev = e+2. This gives(e+2)− (e+1)+1=
2−1+1= 2, establishingP(e+1).

➋ or G has at least one cycle. Consider a spanning tree ofG and an edgeuv in the cycle, but
not in the tree. Such an edge is guaranteed by the fact that a tree has no cycles. Deleting
uv merges the two faces on either side of the edge and leaves a graph G′ with only e
edges,v vertices, andf faces.G′ is connected since there is a path between every pair
of vertices within the spanning tree. Sov−e+ f = 2 by the induction assumptionP(e).
But then

v−e+ f = 2 =⇒ (v)− (e+1)+( f +1) = 2 =⇒ v−e+ f = 2,

establishingP(e+1).

This finishes the proof. �

570 Theorem Every simple planar graph withv≥ 3 vertices has ate≤ 3v−6 edges. Every simple planar
graph withv≥ 3 vertices and which does not have aC3 hase≤ 2v−4 edges.

Proof: If v= 3, both statements are plainly true so assume thatG is a maximal planar graph
with v≥ 4. We may also assume thatG is connected, otherwise, we may add an edge toG.
SinceG is simple, every face has at least 3 edges in its boundary. If there aref faces, letFk

denote the number of edges on thek-th face, for 1≤ k≤ f . We then have

F1+F2 · · ·+Ff ≥ 3 f .

Also, every edge lies in the boundary of at most two faces. Hence if E j denotes the number of
faces that thej-th edge has, then

2e≥ E1+E2+ · · ·+Ee.

SinceE1+E2+ · · ·+Ee = F1+F2 · · ·+Ff , we deduce that 2e≥ 3 f . By Euler’s Formula we
then havee≤ 3v−6.

The second statement follows forv= 4 by inspecting all graphsG with v= 4. Assume then
thatv≥ 5 and thatG has no cycle of length 3. Then each face has at least four edgeson its
boundary. This gives 2e≥ 4 f and by Euler’s Formula,e≤ 2v−4. �
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571 Example K5 is not planar by Theorem570sinceK5 has
�5

2

�
= 10 edges and 10> 9= 3(5)−6.

572 Example K3,3 is not planar by Theorem570sinceK3,3 has 3·3= 9 edges and 9> 8= 2(6)−4.

573 Definition A polyhedronis a convex, three-dimensional region bounded by a finite number of polyg-
onal faces.

574 Definition A Platonic solidis a polyhedron having congruent regular polygon as faces and having
the same number of edges meeting at each corner.

By puncturing a face of a polyhedron and spreading its surface into the plane, we obtain a planar graph.

575 Example (Platonic Solid Problem) How many Platonic solids are there? Ifm is the number of
faces that meet at each corner of a polyhedron, andn is the number of sides on each face, then, in the
corresponding planar graph, there arem edges incident to each of thev vertices. As each edge is incident
to two vertices, we havemv= 2e, and if each face is bounded byn edges, we also haven f = 2e. It follows
from Euler’s Formula that

2e
m
−e+

2e
n

= 2 =⇒ 1
m
+

1
n
=

1
e
+

1
2
.

We must haven≥ 3 andm≥ 3 for a nondegenerate polygon. Moreover, if eithern or m were≥ 6 then

≤ 1
3
+

1
6
=

1
2
<

1
e
+

1
2
.

Thus we only need to check the finitely many cases with 3≤ n,m≤ 5. The table below gives the existing
polyhedra.

n m v e f polyhedron
3 3 4 6 4 tetrahedron
4 3 8 12 6 cube
3 4 6 12 8 octahedron
3 5 12 30 20 icosahedron
5 3 20 30 12 dodecahedron

576 Example (Regions in a Circle) Prove that the chords determined byn points on a circle cut the
interior into 1+

�n
2

�
+
�n

4

�
regions provided no three chords have a common intersection.

Solution: By viewing the points on the circle and the intersection of two chords as vertices, we obtain
a plane graph. Each intersection of the chords is determinedby four points on the circle, and hence our
graph hasv =

�n
4

�
+n vertices. Since each vertex inside the circle has degree 4 and each vertex on the

circumference of the circle has degreen+1, the Handshake Lemma (Theorem558) we have a total of

e=
1
2

 
4

 
n
4

!
+n(n+1)

!
edges. Discounting the outside face, our graph has

f −1= 1+e−v= 1+2

 
n
4

!
+

n2

2
+

n
2
−
  

n
4

!
+n

!
= 1+

 
n
2

!
+

 
n
4

!
faces or regions.
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Exercises

577 Problem Seventeen people correspond by mail with one another—each one with all the rest. In their
letters only three different topics are discussed. Each pair of correspondents deals with only one of these
topics. Prove that there at least three people who write to each other about the same topic.

578 Problem If a given convex polyhedron has six vertices and twelve edges, prove that every face is a
triangle.

579 Problem Prove, using induction, that the sequence

n,n,n−1,n−1, . . . ,4,4,3,3,2,2,1,1

is always graphic.

580 Problem Seven friends go on holidays. They decide that each will senda postcard to three of the
others. Is it possible that every student receives postcards from precisely the three to whom he sent
postcards? Prove your answer!

Answers

577 Choose a particular person of the group, say Charlie. He corresponds with sixteen others. By the Pigeonhole
Principle, Charlie must write to at least six of the people ofone topic, say topic I. If any pair of these six people
corresponds on topic I, then Charlie and this pair do the trick, and we are done. Otherwise, these six correspond
amongst themselves only on topics II or III. Choose a particular person from this group of six, say Eric. By the
Pigeonhole Principle, there must be three of the five remaining that correspond with Eric in one of the topics, say
topic II. If amongst these three there is a pair that corresponds with each other on topic II, then Eric and this pair
correspond on topic II, and we are done. Otherwise, these three people only correspond with one another on topic
III, and we are done again.

578 Let x be the average number of edges per face. Then we must havex f = 2e. Hencex=
2e
f
=

24
8

= 3. Since no

face can have fewer than three edges, every face must have exactly three edges.

579 The sequence 1,1 is clearly graphic. Assume that the sequence

n−1,n−1, . . . ,4,4,3,3,2,2,1,1

is graphic and add two vertices,u,v. Joinv to one vertex of degreen−1, one of degree ofn−2,, etc., one vertex of
degree 1. Sincev is joined ton−1 vertices, andu so far is not joined to any vertex, we have a sequence

n,n−1,n−1,n−1,n−2,n−2, . . . ,4,4,3,3,2,2,1,0.

Finally, join u to v to obtain the sequence

n,n,n−1,n−1, . . . ,4,4,3,3,2,2,1,1.

580 The sequence 3,3,3,3,3,3,3 is not graphic, as the number of vertices of odd degree is odd. Thus the given
condition is not realizable.

Homework

581 Problem Determine whether there is a simple graph with eight vertices having degree sequence
6,5,4,3,2,2,2,2.
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Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the samesense. It complements the GNU General Public License, whichis a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. Werecommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Sucha notice grants a

world-wide, royalty-free license, unlimited in duration,to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “ Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “ Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall

subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if theDocument is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document maycontain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-CoverText
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “ Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for imagescomposed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitablefor input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDFproduced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works informats
which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “ Dedications”, “ Endorsements”, or “History ”.) To “Preserve the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.These Warranty Disclaimers are considered to be included byreference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have isvoid and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to

the Document are reproduced in all copies, and that you add noother conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of
the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a largeenough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
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If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than100, and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full title with all words of the title equally prominentand visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or statein or with each

Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Documentunder the conditions of sections 2 and 3 above, provided thatyou release the Modified Version under precisely this License, with the

Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version ifthe original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in theAddendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, newauthors, and publisher of the Modified Version as given on theTitle Page. If there is
no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section.You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in thesection all the substance and tone of each of the contributoracknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and containno material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’slicense notice. These titles must be distinct from any othersection titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version byvarious parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definitionof a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end ofthe list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by thisLicense give permission to use their names for publicity foror to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combinedwork in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License,and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name

but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
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You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents witha single copy that
is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, anddistribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volumeof a storage or distribution medium, is called an “aggregate” if the copyright

resulting from the compilation is not used to limit the legalrights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission

from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of thosenotices and disclaimers. In case
of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4)to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,

and will automatically terminate your rights under this License. However, parties who have received copies, or rights,from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option

of following the terms and conditions either of that specified version or of any later version that has been published (notas a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternativesto suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel underyour choice of free software license, such as the GNU GeneralPublic License,

to permit their use in free software.
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∀ (for all), 3, 48
O( f (x)) (Big-O), 101
Ω( f (x)) (Big-Omega),102
Θ( f (x)) (Big-Theta),103
ω( f (x)) (little-omega),104
o( f (x)) (little-o), 104�n

k

�
(binomial coefficient),180

≡ (congruence modulon), 58
∃ (there exists),3, 48
! (factorial),10
⌊⌋ (floor), 26
⌈⌉ (ceiling),26
| (divides),2
∧ (AND), 42
¬ (NOT), 42, 48
∨ (OR),42
⊕ (XOR), 42
→ (conditional),42
↔ (biconditional),42
= (logically equivalent),45
mod operator,4
% (modulus),4
|A| (set cardinality),50
∈ (element of set),50
6∈ (not element of set),50
Z (integers),51
Z+ (positive integers),51
Z− (negative integers),51
N (natural numbers),51
R (real numbers),51
C (complex numbers),51
∅ (empty set),51
{} (empty set),51
∩ (intersection),53

∪ (union),53
A (complement ofA), 54
\ (set-minus),53
× (Cartesian product),57
P(A) (power set),53
⊆ (subset),51
6⊆ (not a subset),51
⊂ (proper subset),51P

(summation),87Q
(product),87

algorithm,21
AND, 42
anti-symmetric relation,58
arithmetic progression,85
arithmetic sequence,85
array,26
assignment operator,21
asymptotic notation,101

base case (induction),132
base case (recursion),140
biconditional,42
Big-O, 101
Big-Omega,102
Big-Theta,103
binary search,145
binomial coefficient,180
Binomial Theorem,184
bipartite graph,202
boolean

operator,42
AND, 42
biconditional,42
conditional,42
conjunction,42
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disjunction,42
exclusive or,42
inclusive or,42
negation,28, 42
not,28
OR,42
XOR, 42

proposition,41
variable,28

Boolean algebra,62
boolean operator,42
bounded sequence,84

cardinality, set,50
Cartesian product,57
ceiling,26
characteristic equation,152, 154
choose,180
closed form (recurrence relation),145
combination,181
combinatorics,171
complement, set,54
complete bipartite graph,202
complete graph,201
complex numbers,51
component of a graph,205
composite number,29
compound proposition,42
conditional statement,42
congruence modulon, 58
conjunction,42
connected graph,205
constant growth rate,115
contingency,45
contradiction,45
contradiction proof,5
contraposition

proof by,9
contrapositive,9
counterexample

proof by,10
CPU time,110
cycle,202

decreasing sequence,84
degree of a vertex,201
DeMorgan’s Law

for Boolean algebras,64
for propositions,46
for quantifiers,48
for sets,55

Dirac’s Theorem,206
direct proof,1
disjoint, set,54
disjunction,42
divides,2
divisor,2

element, of a set,50
empty set,51
equivalence class,59
equivalence relation,58
equivalent

logically, 45
Eulerian graph,205
exclusive or,42
existential quantifier,3, 48
exists,3, 48
exponential growth rate,117

face,207
factor,2
factorial,10, 25, 140
Fibonacci numbers,83, 138, 143, 144, 147, 154
first order recurrence,152
floor, 26
for all, 3, 48
for loop,25
forest,205

geometric progression,85
geometric sequence,85
geometric series,87
graph

planar,207
simple,201

Hamilitonian cycle,206
Hamiltonian cycle,206
Hamiltonian graph,206
homogeneous recurrence relation,151
hypercube,202

if-then-else statement,24
inclusion-exclusion
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three sets,188
two sets,186

inclusive or,42
increasing sequence,83
induction,131
inductive case (recursion),140
inductive hypothesis,132
integers,51
intersection, set,53
irrational number,6
iteration method,148

l’Hopital’s Rule,108
linear growth rate,116
linear recurrence relation,151
little-O, 104
little-omega,104
logarithmic growth rate,116
logically equivalent,45
loop,201

for, 25
while, 29

Master Method,150
mathematical induction,131
maximum

array element,26
of three numbers,24
of two numbers,24

mergesort,157
mod,4
modus ponens,7, 132
monotonic sequence,84
multigraph,201
multiple,2

natural numbers,51
negation,5, 42

quantifiers,48
negation operator,28
negative integers,51
non-recursive term (recurrence relation),145
nonhomogeneous recurrence relation,151
not,5
not operator,28
null set,51

operator

boolean,seeboolean, operator,42
negation,28
not,28

OR,42
outside face,207

partial order,58
partition,57
Pascal’s Identity,185
Pascal’s Triangle,185, 186
path,202
permutation,6, 177
pigeonhole principle,174
planar graph,207
polynomial growth rate,117
positive integers,51
power set,53
precedence, logical operators,43
predicate,48
primality testing,29
prime number,29
product of sums,66
product rule,171
proof

by cases,10
by contradiction,5
by counterexample,10
contrapositive,9
direct,1
induction,131
trivial, 9

proper subset,51
proposition,41

compound,42
propositional function,48
pseudograph,201

quadratic growth rate,116
quantifier

existential,3, 48
universal,3

quantifiers,48
quicksort,159

rational number,6
real numbers,51
recurrence relation,144

solving,145
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recurrence relations
solving

iteration method,148
linear,151
Master method,150
substitution method,146

recursion,140
recursive,140
recursive term (recurrence relation),145
reflexive relation,58
relation,57

anti-symmetric,58
equivalence,58
reflexive,58
symmetric,58
transitive,58

reverse, an array,27

second order recurrence,154
sequence,81
set,50

cardinality,50
complement,54
containment proof,55
difference,53
disjoint,54
empty,51
intersection,53
mutually exclusive,54
operations,53
partition,57
power,53
relation,57
size,50
union,53
universe,54

solid
Platonic,209

spanning tree,205
strictly decreasing sequence,84
strictly increasing sequence,83
strong induction,133
subgraph,203
subset,51

proper,51
substitution method,146
sum of products,66
sum rule,171
swapping,22
symmetric relation,58

tautology,45
tour,205

Euler,205
Towers of Hanoi,158
trail, 202, 205

Eulerian,205
transitive relation,58
tree,205
trivial proof, 9
truth table,44
truth value,41

unbounded sequence,84
union, set,53
universal quantifier,3, 48
universal set,54
universe,54

Venn diagram,53
vertex,201

walk, 202
wall-clock time,110
weak induction,133
while loop,29

XOR, 42
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