An Introduction to Discrete Mathematics and Algorithms

Charles A. Cusack
cusack@hope.edu

David A. Santos

Version 1.0 (August 12, 2013)

mailto:cusack@hope.edu

Copyright(© 2013 Charles A. Cusack. Permission is granted to copyijlalisérand/or modify
this document under the terms of the GNU Free Documentaticense, Version 1.2 or any
later version published by the Free Software Foundatiotiy mo Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the licensgcisided in the section entitled
“GNU Free Documentation License”.

Copyright(© 2007 David Anthony SANTOS. Permission is granted to cogstritiute and/or
modify this document under the terms of the GNU Free Docuatimt License, Version 1.2
or any later version published by the Free Software Fouadatvith no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of therige is included in the section
entitled “GNU Free Documentation License”.

History

¢ An Introduction to Discrete Mathematics and Algorithmsl120Charles A. Cusack. This document
draws some content from each of the following.
— Discrete Mathematics Notes, 2008, David A. Santos.
— More Discrete Mathematics, 2007, David A. Santos.
— Number Theory for Mathematical Contests, 2007, David A.t8an
— Linear Algebra Notes, 2008, David A. Santos.
— Precalculus, An Honours Course, 2008, David Santos.

These documents were all available fromp://www.opensourcemath.org/books/santbst it ap-
pears that the site no longer exists.

http://www.opensourcemath.org/books/santos/

Contents

Preface Y,
1 Proof Methods 1
1.1 DirectProofs 1
1.2 Proof by Contradiction 5
1.3 Proof by contraposition 9
1.4 Other Proof Techniques 9
Exercises 10
Answers e 11
Homework 11
2 Programming Fundamentals and Algorithms 21
2.1 Algorithms 21
2.2 |1f-then-el seStatements. 24
23 Theforloop 25
24 Arrays 26
25 Thewhileloop 29
Exercises 30
ANSwers e 31
Homework 31

3 Propositional Logic, Sets, and Boolean Alge-
bra 41
3.1 Propositional Logic 41
3.1.1 Propositional Equivalence . . . 45
3.1.2 Predicates and Quantifiers . . .48
Exercises 50
Answers oo 50
32 Sets, 50
3.2.1 SetOperations 53

3.2.2 Partitions and Equivalence Rela-
tons. 57
Exercises 60
Answers Lo 61
3.3 BooleanAlgebras 62

3.3.1 Sum of Products and Products of
sums ... Lo 66
3.3.2 LogicPuzzles. 67
Exercises 69
Answers oo 69
Homework 69
4 Sequences and Summations 81
41 Sequences 81
Exercises 86
Answers oo 87
4.2 SumsandProducts 87
Exercises 91

Answers 92
Homework 93
Algorithm Analysis 101
5.1 Asymptotic Notation 101

5.1.1 TheNotations. 101

5.1.2 Proofs using the definitions . . .104

5.1.3 Proofs using limits 107
5.2 Analyzing Algorithms 110
5.3 Common Growth Rates 115

5.3.1 Comparing Growth Rates . . 117
Homework 119

Recursion, Recurrences, and Mathematical

Induction 131
6.1 Mathematical Induction 131
Exercises 139
Answers L. 139
6.2 Recursion 140
Exercises 144
Answers 0. 144
6.3 Recurrence Relations 144
6.3.1 Substitution Method 146
6.3.2 Iteration Method 148
6.3.3 MasterMethod 150
6.3.4 Linear Recurrence Relations . 151
Exercises 155
Answers 0., 155
6.4 Analyzing Recursive Algorithms157
6.4.1 The Average Complexity of
Quicksort 159
Homework 162
Counting 171

7.1 The Multiplication and Sum Rules . . .171
7.2 Pigeonhole Principle 174
7.3 Permutations and Combinations . . . 176
7.3.1 Permutations without Repetition77
7.3.2 Permutations with Repetitions 178
7.3.3 Combinations without Repetitiori80
7.3.4 Combinations with Repetitions .182

7.4 Binomial Theorem 184
7.5 Inclusion-Exclusion 186
Exercises 189
Answers Lo 191
Homework 193

iv

8 Graph Theory 201
8.1 SimpleGraphs 201
8.2 Graphic Sequences 205
8.3 Connectivity 205
8.4 Traversability 205
85 Planarity 207

Exercises 210
ANSWEIS v o e s e e e e e e 210
Homework 210
GNU Free Documentation License 221
Index 224

Preface

This book is an attempt to present some of the most imporiaatate mathematics concepts to computer
science students in the context of algorithms. | wrote itfee as a textbook for half of a course on discrete
mathematics and algorithms.

Much of the material is drawn from several open-source bdiykBavid Santos. Other material is
from handouts | have written and used over the years. | hatensively edited the material from both
sources, both for clarity and to emphasize the connectietwden the material and algorithms where
possible.

| should mention that | never met David Santos, who appareiéd in 2011. | stumbled upon his
books this summer (2013) when | was searching for a discrate@matics book to use in a new course.
When | discovered that | could adapt his material for my owe, usiecided to do so. Since clearly he
has no knowledge of this book, he bears no responsibilityafgr of the edited content. Any errors or
omissions are therefore my fault.

This is stillawork in progress, so | appreciate any feedlyackhave. Please send ittosack@hope.edu

Charles A. Cusack
August, 2013

mailto:cusack@hope.edu

Chapter 1

Proof Methods

In this chapter we will introduce you to the basics of mathecahproofs. Along the way we will review
some mathematical concepts/definitions you have probatagdy seen, and introduce you to some new
ones that we will find useful as we proceed.

1.1 Direct Proofs

A direct proofis one that follows from the definitions. Facts previousigrieed help many a time when
making a direct proof.

1 Definition Recall that
e aneven integers one of the form R, wherek is an integer.

e anodd integetis one of the form P+ 1 wherel is an integer.

2 Example Prove that

[0 the sum of two even integers is even,

0 the sum of two odd integers is even,

[0 the sum of an even integer and an odd integer is odd,
[the product of two odd integers is odd,
tl

the product of an even integer and an odd integer is even.

Solution: We argue from the definitions. We assume as known that the $tmoontegers
is an integer.

O If x andy are even integers, then= 2a andy = 2b for some integers. andb. Then
X+y=_2a+2b=2(a+Db). Sincea+bis an integer, Ra+b) is even.

O If x andy are odd, thex = 2c+ 1 andy = 2d + 1 for some integers andd. Then
X+y=2c+14+2d+1=2(c+d+1). Nowc+d+1isaninteger,so@+d+1)isan
even integer.

2 Chapter 1

O Let 2f be an even integer and 2 1 be an odd integer. Therf2-2g+1=2(f +g)+1.
Sincef +gis an integer, 2f +g) + 1 is an odd integer.

0 Let2 41 and 2Zn+ 1 be odd integers. Then
(21 4+1)(2m+1) = 4ml+ 2l +2m+1=2(2ml+ | +m) + 1.

Since Inl+1 +nis an integer, 2Zml+m+1)+ 1 is an odd integer.
[Let 2n be an even integer and led 2 1 be an odd integer. Then

(2n)(20+1) = 4no+2n= 2(2no+1).
Since 20+ 1 is an integer, 2no+ 1) is an even integer.

3 Definition Letb anda be integers witta £ 0. We say thab is divisible by aif there exists an integer
such thato = ac. If b is divisible bya, we also say thab is amultipleof a, a is afactor or divisor of b,
and thata divides b written asalb. If a does not dividé, we writeat b.

4 Example Since 6=2-3, 2

6, and 36. But 41 6 since we cannot write & 4- ¢ for any integerc.
5 Example Prove that the product of two even integers is divisible by 4.

Solution: Let 2h and X be even integers. Thef2h)(2k) = 4(hk). Sincehkis an integer,
4(hk) is divisible by 4.

D A common mistake when writing proofs is to make one or moatithassumptions without realizing
it. The problem with this is that it generally means you areproving what you set out to prove, but since
the proof seems to “work”, the mistake isn’'t obvious. Thetrexamples should illustrate what can go
wrong if you aren’t careful.

6 Example What is wrong with this proof that the sum of two even integemven?

Proof: Letx andy be even integers. Then= 2a for some integea andy = 2a for some
integera. Sox+y=2a+2a=2(a+a). Sincea+ais an integer, a+ a) is even, so the
sum of two even integers is even. U

Solution: The problem is that this is actually a proof that x is even ifx is even since
X = 2a=Yywas assumed.

Although this may not seem like a big deal since the statemsédnie, consider the next example.
7 Example What is wrong with the following proof that the sum of two evategers is divisible by 4?

Proof: Letxandy be to even integers. Then= 2a for some integea andy = 2a for some
integera. Sox+Yy = 2a+2a = 4a. Sinceais an integer, 4 is divisible by 4, so the sum of
two even integers is divisible by 4. U

Solution: Notice that 4 and 6 are even, butt4 = 10 is not divisible by 4. So clearly
the statement is incorrect. Therefore, there must be sangettrong with the proof. The
problem is the same as it was above—the proof assumey, even if that was not the intent
of the writer. So what was proven was thax ik even, thenx+ x is divisible by 4.

2

Direct Proofs 3

Let’s continue with some more examples of proper proofs.

8 Example Prove that ifnis an integer, then® — n is divisible by 6.

Proof: We haven® —n = (n—1)n(n+ 1), the product of three consecutive integers. Among
three consecutive integers there is at least an even onegxauwdy one of them which is
divisible by 3. Since 2 and 3 do not have common factors, @ld&the quantityn—1)n(n+

1), and san® — n s divisible by 6. O

9 Definition The symboV is theuniversal quantifierand it is read as “for all”, “for each”, “for every”,
etc. For instanceyx means “for allx”. When it precedes a statement, it means that the stateséuiei
for all values of x

As the name suggests, the “all” refers to everything inuh&erse of discourséor domain of dis-
course or simplydomair), which is simply the set of objects to which the current dgsion relates.

10 Example When you see the notatiorx > 0, it means “for allx, x is greater than or equal to 0.”
However, what is the domain? In this case, the most logicesipdities are the integers or real numbers.
Generally speaking, the context of its use should makedtrsidnat the universe is.

As long as we are introducing quantifiers, | suppose we shatrolduce the other one that is often used.

11 Definition The symboH is theexistential quantifierand it is read as “there exists”, “there is”, “for
some”, etc. Forinstanc8x means “For somg’. When it precedes a statement, it means that the statement
is true forat least one value of i the universe.

Notice that-V = 3 and—3 = V.

12 Example Use the fact that the square of any real number is non-negatierder to prove thérith-
metic Mean-Geometric Mean Inequalityx > 0,Vy > 0

<Y

Proof: Sincex andy are non-negative,/x and,/y are real numbers, sgx— ,/y is a real
number. Since the square of any real number is greater theguad to O we have

(VX—/¥)?>0.

Expanding (recall the FOIL method?) we get
X—2,/Xy+y > 0.
Subtracting 2/Xy from both sides and dividing by 2, we get
ey

yielding the result. O

4 Chapter 1

The previous example illustrates the creative part of mgifproofs. The proof started out considering
vX— /¥, which doesn't seem to be related to what we wanted to proueh@pefully after you read the
entire proof you see why it makes sense. If you are saying twsgif “I would never have thought of
starting with/x—,/y?,” or “How do you know where to start?,” | am afraid there aceeasy answers.
Writing proofs is as much of an art as it is a science. Therdhaee things that can help, though. First,
don’t be afraid toexperiment If you aren’t sure where to begin, try starting at the endinKtabout the
end goal and work backwards until you see a connection. Soregtvorking both backward and forward
can help. Try some algebra and see where it gets you. But iartiemake sure your proof goes from
beginning to end. In other words, the order that you figuréagshout should not necessarily dictate the
order they appear in your proof.

The second thing you can do isad example proofsAlthough there is some creativity necessary
in proof writing, it is important to follow the proper proofriting techniques. Although there are often
many ways to prove the same statement, there is often oneigeehthat works best for a given type of
problem. As you read more proofs, you will begin to have advethderstanding of the various techniques
used, know when a particular technique might be the bestehand become better at writing your own
proofs. If you see several proofs of similar problems, areptoofs look very similar, then when you
prove a similar problem, your proof should probably resentbbse proofs. This is one area where some
students struggle—they submit proofs that look nothing &ky of the examples they have seen, and they
are often incorrect. Perhaps it is because they are afratdhiby are plagiarizing if they mimic another
proof too closely. However, mimicking a proof is not the saaseplagiarizing a sentence. To be clear, by
‘mimic’, | don’t mean just copy exactly what you see. | meaattijiou should read and understand several
examples. Once you understand the technique used in thasgss, you should be able to see how to
use the same technique in your proof. For instance, in matheafxamples related to even numbers, you
may have noticed that they start with statement fikesume x is even. Then=x2a for some integer a”
So if you need to write a proof related to even numbers, whatdstatement might make sense to begin
your proof?

The third thing that can help @ractice This applies not only to writing proofs, but to learning ngan
topics. An analogy might help here. Learning is often likersp—you don’t learn how to play basketball
(or insert your favorite sport, video game, or other hoblat takes some skill) by reading books and/or
watching people play it. Those things can be helpful (andbimes cases necessary), but you will never
become a proficient basketball player unless you practi@etieing a sport involves running many drills
to work on the fundamentals and then applying the skills yauried to new situations. Learning many
topics is exactly the same. First you need to do lots of egescio practice the fundamental skills. Then
you can apply those skills to new situations. When you canhdd well, you know you have a good
understanding of the topic. So if you want to become bettevraing proofs, you need to write more
proofs.

Let's get back to some examples. But first another definition.

13 Definition The mod operator is defined as follows: f¢> 0, n > 0, amodn is the integral non-
negative remainder whemis divided byn. Observe that this remainder is one of theumbers

0 1 2, ..., n—1
Java, C, and C++ all use for mod (e.gint x = a % ninsteadofint x = a nod n).

14 Example Here are some example computations:

Proof by Contradiction 5

234 mod 100= 34 1961 mod 3%=0 6 mod 5=1
38 mod 15=8 1966 mod 3%&=5 11 mod 5=1
15 mod 38= 15 1mod5=1 16 mod 5=1

D Our definition of mod required that n> 0 and a> 0. However, it is possible to definenaodn
when a is negative. Unfortunately, there are two possiblgsaaf doing so based on how you define
the remainder when the dividend is negative. One possilde/anis negative and the other is positive.
However, they always differ by n, so computing one from theras easy.

15 Example Since—13= (—2)«5—3 and—13 = (—3) x5+ 2, we might consider the remainder of

13/5 as either-3 or 2. Thus,—13 mod 5= —3 and—13 mod 5= 2 both seem like reasonable answers.
Fortunately, the two possible answers differ by 5. In faot) gan always obtain the positive possibility by

addingn to the negative possibility.

D When using themod operator in computer programs in situations where the divid might be
negative, it is important to know which definition your pragrming language/compiler uselavareturns
a negative number when the dividend is negativeC |rthe answer depends on the compiler.

16 Example Show that for every integer, n> mod 4 is either 0 or 1.

Proof: Since every integer is either even (of the fork) 2r odd (of the form R+ 1) we
have two possibilities:

(2k)? = 4k

0 (modn),or
(2k4+1)2 = 4(K%>+k)+1 1

(modn).

Thus,n? has remainder 0 or 1 when divided by 4. O

17 Example Prove that the sum of two squares of integers leaves renraindeor 2 when divided by 4.

Proof: According to Examplé6, the squares of integers have remainder 0 or 1 when divided
by 4. Thus, when we add two squares, the possible remainders shvided by 4 are 0 (80),
1(0+1o0r1+40),and?2 (H1). O

1.2 Proof by Contradiction

In this section we will see examples ifoof by contradiction For this technique, when trying to prove
a premise, we assume that its negation is true and deduaajiatiible statements from this. This implies
that the original statement must be true.

18 Definition Given a statemery, thenegationof p, written—p, is the statement “ngt” or “it is not the
case thap.”

19 Example If pisthe statementX'<y”then—pis the statement “itis not the case tlkat y,” or “x > y".
20 Example Prove that 2003 is not the sum of two squares.

Proof: Assume that 2003 is the sum of two squares. In Exariplere showed that the
sum of two squares leaves a remainder of 0, 1, or 2 when digletl But 2003 leaves a
remainder of 3. This is a contradiction. So it must be the tage2003 is not the sum of two
squares. U

6 Chapter 1

D Here is the basic concept of contradiction proofs: You wargrbve that a statement p is true. You
“test the waters” by seeing what happens if migttrue. So you assume p is false and use proper proof
techniques to arrive at a contradiction. By “contradictiohmean something that cannot be possible
true. Since you proved something that is not true, and yod peeper proof techniques, then it must be
that your assumption was incorrect. Therefore the negabibypour assumption—which is the original
statement you wanted to prove—must be true.

For some students, the trickiest part of contradiction fsois what to contradict. Sometimes the
contradiction is the fact that p is true. At other times you\a at a statement that is clearly false (e.g.
0 > 1). Generally speaking, you should just try a few things (&lg.some algebra) and see where it
leads. With practice, this gets easier. In fact, with enopgdctice, this will become one of your favorite
techniques.

. . 1
21 Example Show, without using a calculator, that6y/35 < 10

1 1 . .
Proof: Assume that 6- /35> o7 Then 615> v/35. Multiplying both sides by 10 and

doing a little arithmetic, we get 58 10v/35. Squaring both sides we obtain 34813500,

L . 1
which is clearly nonsense. Thus it must be the case tha¥/85 < 10 O

22 Definition A permutatioris a function from a finite set to itself that reorders the adats of the set.

23 Example Let Sbe the sefa,b,c}. Then(a,b,c), (b,c,a) and(a,c,b) are permutations d. (a,a,c)
is not a permutation of because it repeatsand does not contaib. (b,d,a) is not permutations of
becausel is not inS, andc is missing.

D In many contexts, when a list of objects occursurly bracesthe order they are listed does not mat-
ter (e.g.{a,b,c} and{b,c,a} mean the same thing). On the other hand, when a list occurarengheses,
the orderdoesmatter (e.g.(a, b, c) and(b, c,a) do notmean the same thing).

24 Example Let (a,ap,...,ay) be an arbitrary permutation of the numberg,1..,n, wheren is an odd
number. Prove that the produe — 1)(az — 2) - - - (an — n) is even.

Proof: Assume that the product is odd. Then all of the differeragesk must be odd. Now
consider the surB= (a1 — 1) + (a2 —2) +--- + (an—N). Since thegy’s are a just a reordering
of 1,2,...,n, S= 0 (think about it for a minute if you need to, but convince ysmif of this
fact). ButSis the sum of an odd number of odd integers, so it must be odde®i is not odd,
we have a contradiction. Thus our initial assumption thaifehe a, — k are odd is wrong, so
one of them is even and hence the product is even. O

We will use facts about rational/irrational numbers to destmate some of the proof techniques. In
case, you have forgotten, here are the definitions.

25 Definition Recall that

e A rational numberis one that can be written ggq, wherep andq are integers, witlgy # 0.

1we will discuss sets more formally later. For now, just thafla set as a collection of objects of some sort.

6

Proof by Contradiction 7

e An irrational numberis a real number that is not rational.

26 Example Prove that/2 is irrational.

We present two slightly different proofs. In both, we willeuthe fact that any positive integer greater than
1 can be factored uniquely as the product of primes (up totther@f the factors).

a o .
Proof: (#1) Assume that/2 = b’ wherea andb are positive integers with # 0. We can

assume andb have no factors in common (since if they did, we could cartoett and use
the resulting numerator and denominatoraaandb). Multiplying by b and squaring both
sides yields B? = a°. Clearly 2 must be a factor @?. Since 2 is primea must have 2 as a
factor, and therefore? has 2 as a factor. Thenl# must also have®as a factor. But this
implies that 2 is a factor df?, and therefore a factor & This contradicts the fact thatand
b have no factors in common. Therefoy@ must be irrational. O

Proof: (#2) Assume that/2 = g, wherea andb are positive integers with=£ 0. This yields

2b? = a?. Now botha? andb? have an even number of prime factors (think about why this
is). So d? has an odd numbers of primes in its factorization afthas an even number of
primes in its factorization. This is a contradiction sinbeyt are the same number. Therefore
v/2 must be irrational. O

Now that you have seen a few more examples, let’s discussWigngontradiction proofs work. It
may not have occurred to you, but it turns out that if you statth a false assumption, then you can prove
thatanythingis true. It may not be obvious how (e.g. how would you prove #ileelephants are less than
1 foot tall given that 11 = 17?), but in theory it is possible. This is because statemaritse form “p
impliesq” are true ifp is false, regardless of whether or mpis true or false. More on this in the chapter
on logic.

On the other hand, ip is true, and p impliesq” is true, theng also has to be true (a rule callatbdus
ponen$. We won't prove this, but if you think about it for a few miragt, hopefully you'll see why it is
correct. Contradiction proofs exploit this rule.

In a contradiction proof, we want to prove thats true. We begin by assuming it is false—that is, we
assume-a is true. We use this fact to prove thgt—some false statement—is true. In other words, we
prove that the statement:-p impliesq” is true, whereq is some false statement. But-f is true, and
“=p impliesq’ is true, modus ponens tells us thlgahas to be true. So what’s wrong? We only have two
choices: eitherp is false or “-p impliesq’ is false. If we used proper proof techniques to establisi th
“—pimpliesq” is true, then that isn’t the problem. Therefore, the onlyastpossibility is that-p is false,
implying thatp must be true. And that is how/why contradiction proofs work.

Let's analyze the last proof we saw in light of this discuasibheonly assumption we made was that
V2 is rational Gp="+/2 is rational”). From this (and only this), we were able towshbata® has both an
even and an odd number of factogs{a? has an even and an odd number of factors”, and we showed that
“—pimpliesq’ is true). Thus, we know for certain thatf2 is rational, thera® has an even and an odd
number of factorg. This fact is indisputable since we proved it. If it is alsoatthaty/2 is rational, modus
ponens implies tha#? has an even and an odd number of factors. This is also indisfeLtBut we know
thata® cannot have both an even and odd number of factors. In othetswwe have a contradiction.
Therefore, something that has been said somewhere is wEggything we said is indisputable except

2We did not prove tha#? has an even and an odd number of factors. We provedfthé is rational, thena? has an even
and an odd number of factors. It is very important that youeusiénd the difference between these two statements.

7

8 Chapter 1

for one thing—that/2 is rational. That was never something we proved—we justraesd it. So it has to
be the case that this is false, which means thaimust be irrational.

To summarize, if you want to prove something is true usingraregliction proof, assume it is false,
get a contradiction (i.e. prove a false statement), anchdethat it must therefore be true.

Notice that whaty is doesn’t matter. In other words, given the assumptipnthe goal in a contradic-
tion proof is to establish thanyfalse statement is true. This is both a blessing and a cutseblEssing
is that any contradiction will do. The curse is that we doavé a clear goal in mind, so it can sometimes
be difficult to know what to do. As mentioned previously, thexcomes easier as you read and write more
proofs.

If this discussion has been a bit confusing, try re-readingrhe better you understand the theory
behind contradiction proofs, the better you will be at wagtthem. We will revisit some of these concepts
in the chapter on logic, so the more you understand from hieeebetter off you will be when you get
there.

0.K., enough theory. Let’s eat some ice cream and see somearamples!

27 Example Let a,b be real numbers and assume that for all numigers0O the following inequality
holds:
a<b+e.

Prove thaa < b.

Solution: Assume that > b. Subtractingo from both sides and dividing by 2, we obtain
%) > 0. Since the inequalita < b+ € holds for everye > 0 in particular it holds for
a—b

€= 5 This implies that

a—b
a<b+ — or a<hbh,
the last step requiring a little algebra. Thus starting il assumption that > b we reach

the incompatible conclusion that b. The original assumption must be wrong. We therefore
conclude thaa < b.

28 Example (Euclid) Show that there are infinitely many prime numbers.

Proof: We need to assume for this proof that any integer greaterllimeither a prime or a
product of primes. The following beautiful proof goes baskuclid.

Assume thaf p1, p2, ..., pn} is a list that exhausts all the primes. Consider the number

N=pip2---pn+1.

This is a positive integer, clearly greater than 1. Obsenma¢ none of the primes on the list
{p1,P2,...,pn} dividesN, since division by any of these primes leaves a remainder. of 1
SinceN is larger than any of the primes on this list, it is either argior divisible by a prime
outside this list. Thus we have shown that the assumptidrathefinite list of primes leads to
the existence of a prime outside this list. This implies thathumber of primes is infinité.]

29 Example If a,b,c are odd integers, prove thax’ + bx+ ¢ = 0 does not have a rational number solu-
tion.

3]ce cream not provided.

Proof by contraposition 9

Proof: Supposeg—J is a rational solution to the equation. We may assumeptzatdq have

no prime factors in common, so eitherandq are both odd, or one is odd and the other even.
Then
P*, (P
a<a> +b<a> +c=0 = ap’+bpg+cqf =0.
If both p andp were odd, themp? +bpg+ cc? is also odd and hencé 0. Similarly if one of

them is even and the other odd then eithgf+ bpgor bpg+ ccf is even anép? + bpg-+ cof
is odd. This contradiction proves that the equation canaweéa rational root. O

1.3 Proof by contraposition

Consider the statement “If it rains, then the ground will get.” It should be pretty easy to convince
yourself that this is essentially equivalent to the statarfiéthe ground is not wet, then it didn't rain.” By
this | simply mean that either both statements are true dr $tatements are false. This is the idea behind
the proof technique in this section.

30 Definition The contrapositiveof a statement of the form “ip, thenq” is the statement “ifp is not
true, therg is not true” or “if not p, then noty”

31 Theorem A statement is true if and only if its contrapositive is true.

D We will take a closer look at the relationship between stat@sof the form “if p then q”, including
the contrapositive, in the chapter on logic. For now it s&fdo convince yourself that the previous
theorem is true—or at least seems to be true.

32 Definition A proof by contrapositions a proof of a statement of the form “f, thenq” that proves
the equivalent statement “g is not true, them is not true.”

33 Example Prove that if i+ 2 is odd, them is odd.

Proof: We will instead prove that ifi is even (not odd), thenrbt 2 is even (not odd).
Since this is the contrapositive of the original statemat,oof of this will prove that that the
original statement is true.

Assumenis even. Then = 2afor some integea. Then :1+2=5(2a)+2=2(5a+1). Since
5a+1is aninteger, Ga-+1) is even. O

1.4 Other Proof Techniques

There are many other proof techniques. We conclude thistehapth a small sampling of the more
common and/or interesting ones. We will see a few other itapbtechniques later in the book.

34 Definition A trivial proof is a proof of a statement of the form ‘iff, thenq” that doesn’t use in the
proof.

35 Example Prove that ifx > 0, then(x+ 1)2 — 2x > »2.

9

10 Chapter 1

Proof: Itis easy to see that
(x+1)2—2x = (C4+2x+1)—2x
= xX+1
> X2
0
Notice that we never used the fact tlat O in the proof.

36 Definition A proof by counterexampls used to disprove a statement by giving an example of itgoein
false.

37 Example Prove or disprove that the product of two irrational numiéerrational.

Proof: We showed in Exampl26that+/2 is irrational. Buty/2x+/2 = 2, which is an integer
so it is clearly rational. Thus the product of 2 irrationahmher is not always irrational. [

38 Example Prove or disprove that “Everybody Loves Raymond” (or thaté¢Eybody Hates Chris”).

Proof: Since | don't really love Raymond (and | don’t hate Chrisk #tatement is clearly
false. O

39 Definition A proof by casebreaks up a statement into multiple cases and proves eadepagately.

40 Example Prove that ifx # 0 is a real number, thexf > 0.

Proof: If x# 0, then eithex > 0 orx < 0. If x> 0 (case 1), then we can multiply both sides
of x> 0 byx, giving x? > 0.

If x < 0 (case 2), then we can write y=-x, where- 0. Thenx? = (—y)? = (—1)2? =y* >0

by case 1 (sincg > 0). Thusx® > 0. In either case, we have shown tt> 0. O

41 Definition Recall that for a non-negative integetthe quantityn! (read "n factorial”) is defined as
follows. 0!'= 1 and ifn > O thenn! is the product of all the integers from 1 tanclusive:

n=1.2---n.
42 Example 3'=1-2-3=6,and5=1-2-3-4-5=120.

Exercises

43 Problem Prove that ifn > 4 is composite, then divides(n—1)!.

44 Problem Prove thatp, p+ 2, andp+ 4 are not all prime unless= 3.

45 Problem If xis an integer and 7 dividex3- 2 prove that 7 also divides ¥5— 11x — 14.

46 Problem Let sbe a positive integer. Prove that the closed intefs@s| contains a power of 2.

47 Problem Let p < g be twoconsecutivedd primes. Prove that+ q is a composite number, having at
least three, not necessarily distinct, prime factors.

48 Problem Prove, by arguing by contradiction, that there are no integé, c,d such that
X+ 22 + 2x4 2 = (X® + ax+ b) (X2 + cx+d).

49 Problem Use the fact that any odd number is of the forki8L or &+ 3 in order to give a direct proof
that the square of any odd number leaves remainder 1 upasiadiiby 8. Use this to prove that 2001 is
not the sum of three odd squares.

10

Answers 11

Answers

43 Eithernis a perfect square,= a2 in which case Z a < 2a < n— 1 and hence and 21 are among the numbers
{3,4,...,n—1} ornis not a perfect square, but still composite, wite- ab, 1 <a<b<n—1.

44 The statement is clearly false fpr= 2. If p > 3 and primepis odd. But then one of the three consecutive odd
numbersp, p+ 2, p+ 4, must be divisible by 3 and is different from 3 and hence rmimae.

45 We have %+ 2 = 7a, with a an integer. Furthermore, $5— 11x— 14 = (3x+2)(5x— 7) = 7a(5x— 7), whence
7 divides 152 — 11x— 14.

46 If sis itself a power of 2 then we are done. Assume thiatstrictly between two powers of 2/ 2 < s< 2,
Then2 =2.2"1<25< 2.2" =21 s0s< 2" < 2s < 2*+1 and so the intervdk, 25 contains 2, a power of 2.

47 Sincep andq are odd, we know thgb+ g is even, and s@ is an integer. Bup < qgives 2 < p+q< 2q

and sop < % < g, that is, the average gf andq lies between them. Singeandq are consecutive primes, any

number between them is composite, and so divisible by at tea@sprimes. Sap+q=2 (?) is divisible by

the prime 2 and by at least two other primes dividigré—q.

48 We have
X4+ 2%+ 2x+ 2

(X% + ax+b) (X + cx+d)
= x*+(a+¢)x+ (d+b+ac)x? + (ad+ bc)x+ bd.

Thus
bd=2, ad+bc=2, d+b+bc=2 a+c=2

Assumea, b,c,d are integers. Sincbd = 2, bd must be of opposite parity (one odd, the other even). But then
d + b must be odd, and sinak+ b+ bc= 2, bc must be odd, meaning that bdttandc are odd, whencd is even.
Thereforead is even, and sad+ bc= 2 is even plus odd, that is, odd: a contradiction since 2 ioddt

49 We have
(8k+1)? = 64k*>+ 16k +1=8(8k*+2) +1,

(8k+3)? = 64k* + 48K+ 9=8(8K* +6+1) + 1,

proving that in all cases the remainder is 1 upon division by 8

Now, a sum of three odd squares must leave remainder 3 up@indiby 8. Thus if 2001 were a sum of three
squares, it would leave remainde=3L + 1+ 1 upon division by 8. But 2001 leaves remainder 1 upon diuigip
8, a contradiction to the assumption that it is a sum of thqerues.

Homework

50 Problem Prove that the product of two odd integers is odd.
51 Problem Prove or disprove that i is irrational, then Ix s irrational.
52 Problem Prove that ifa andb are integers andbis even, then at least one @br b is even.

53 Problem Prove or disprove that there are 100 consecutive positiegéns that are not perfect squares.
(Recall: a number is a perfect square if it can be writtea?dfer some integea.)

11

12 Chapter 1

54 Problem Prove or disprove that it andy are rational, thew? is rational. (Don't over think it. This
one should be easy.)

55 Problem Mersenne primes are primes that are of the fofn-2, wherep is prime. Are all numbers
of this form prime? Give a proof/counterexample.

56 Problem Consider the equatiodf +y* = 625. Are there any integexsandy that satisfy this equation?
Prove it.

57 Problem Let n be a positive integer. We can more formally define congruemedulon by saying
thata=b (modn) if ndividesa— b. Use this formal definition to prove each of the following:

1. a=a (modn). (Reflexive property)
2. Ifa=b (modn), thenb=a (modn). (Symmetric property)

3. Provethatib="b (modn) andb = c (modn), thena=c (modn). (Transitive property)

58 Problem Prove or disprove tha = NP.*

4A successful solution to this will earn you arin the course.

12

Chapter 2

Programming Fundamentals and Algorithms

This chapter serves as a review of some of the programmingept® you should have picked up in
previous classes. It also includes several mathematidaititens that you may or may not be familiar
with. The emphasis is on presenting some basic algorithnasveesy to refresh your memory on basic
programming concepts. We will also practice our skills aivong things in this chapter by sometimes
proving that an algorithm does as specified. Finally, weudela section orecursion which you may
not be as familiar with as the other topics.

Algorithms are presented in one of two fornpseudocodéhe syntax of which is described as deemed
necessary) otoderesembling Java and C++.

2.1 Algorithms

An algorithmis a set of instructions that accomplishes a task in a finitewarnof time.

59 Example (Area of a Trapezoid) Write an algorithm that gives the area of a trapezoid witlgheh
and basea andb.

Solution: One possible solution is

Algorithm 2.1.1: AREATRAPEZOID(a,b, h)

return (hx(a+b)/2)

Notice that we use theeturn keyword to indicate what value should be passed to whoeks aa al-
gorithm. For instance, if someone ca#lsAREATRAPAZOID(a, b, h), thenx will be assigned the value
hx (a+b)/2 since this is what was returned by the algorithm. Those wiewkJava C, C++, or just
about any other programming language should already béigamith this concept.

60 Definition The symbok— is read “gets” and it is used to denassignmenof value.

61 Example The statement <— a+ b means “assign t& the value ofa plus the value ob.”

D Most modern programming languages usdor assignment. Other symbols used incluge =:,
<<, and dozens more.

21

22 Chapter 2

As it turns out, the most common symbol for assignmenits(perhaps the most confusing for someone
who is first learning to program. One of the most common asségrt statements isx x+ 1;. What this
meansis “assign to the x its current value plus one” However, witalooks like is the mathematical
statement “x is equal to % 17, which is false for every value of x. If this has tripped yquia the recent
past or still does, fear not. Eventually you will instinetiy interpret it correctly, probably forgetting you
were ever confused by it.

62 Example (Swapping variables) Write an algorithm that will interchange the values of twoiables,
x andy. That is, the contents ofbecomes that of and vice-versa.

Solution: We introduce a temporary variakilén order to store the contentsxin y without
erasing the contents gf

(Algorithm 2.1.2: SwaP(X,Y))
([t X comment: First storex in a temporary place
j x y comment: X now hasy’s original value
An t comment:y now hasx’s original value

N J

63 Example Prove that the algorithm in Examp&@ works correctly.

Proof: Assume the valuea andb are passed into Swap. Then at the beginning of the
algorithm,x = a andy = b. We need to prove that after the algorithm is finishee; b and

y = a. After the first line,x andy are unchanged artd= a since it was assigned the value
stored inx, which isa. After the second linex = b since is is assigned the value storeg,in
which isb. Currentlyx = b, y = b, andt = a. Finally, after the third liney = a since it is
assigned the value storedtinwhich isa. Sincex is still b, andy = a, the algorithm works
correctly. O

D The correctness of this algorithm, as well as some of ther @lgerithms in this chapter, is based
on the assumption that the variables @&ssed by referencather thanpassed by value

In C and C++, it is possible to pass by value or by reference.e ¥hor & you sometimes see in
argument lists is related to this. In Java, everything isqekby value and it is impossible to pass by
reference. However, because non-primitive variables waJare essentially reference variables (that is,
they store a reference to an object, not the object itsaifsdme ways they act as if they were passed
by reference. This is where things start to get complicatedbn’t want to get into the subtleties here,
especially since there are arguments about whether or restelare the best term to use, etc. Let me give
an analogy instead.

If | share a Google Doc with you, | am passing by reference. @fa have a reference to the same
document. If you change the document, | will see the charifgeshange the document, you will see the
changes. On the other hand, if | e-mail you a Word documenty passing by value. You have a copy of
the document | have. Essentially, | copied the curkattie (or contents) of the document and gave that

Inspired by a response on hitp://stackoverflow.com/qaest873419/whats-the-difference-between-passingefgrence-
vs-passing-by-value

22

Algorithms 23

to you. If you change the document, my document will rematchamged. If | change my document, your
document will remain unchanged. This sounds pretty sinijd@vever, it gets more complicated. In Java,
you can create a “primitive” Word document, but in a sense gan't create an “object” Word document.
Instead, a Google Doc is created and you are given accessgireference) to it. This is why in some
ways primitive and object variables seem to act differeintlJava.

O.K., I've already said too much. The bottom line is this: Bssumption being made in the various
swap algorithms is that when a variable is passed in, therdtlgm has direct access tihat variableand
not just a copy of it. Thus if changes are made to that variabtae algorithm, it is changing the variable
that was passed in. As it turns out, this subtlety does natemtatr most of the algorithms here.

64 Example (Incorrect swap) Why is following approach to implement swap incorrect?

Algorithm 2.1.3: SWAPWRONG(X, Y)

X<y
y<—X

Solution: To see why this doesn’t work, notice that if we passiandb, thenx = a and
y = b at the beginning. After the first lin&,= b andy = b. After the second lin& = b and
y =b. The problem is that the first line overwrites the value stonex, and we can’t recover
it.

65 Example (Swapping variables 2) Write an algorithm that will interchange the values of twoigbles
x andy without introducing a third variable

Solution: The idea is to use sums and differences to store the valussinfesthat initially
x=aandy=h.

(Algorithm 2.1.4: SwaP2(x,Y))
(X X+Yy comment:x=a+bandy=b.
'y<—x—y comment:y=a+b—-b=aandx=a-+b.
(X X=y comment:y=aandx=a+b—a=Dh.

- J

Notice thatthis will only work for numeric variablesand that it won't always work for real
numbers. We leave the details to the reader, but considdrmapaens ik = 10,000,000,000
andy = .00000000001, for instance. Also notice that the commentearcode essentially
provide a proof that the algorithm is correct.

66 Example It was mentioned that the comments in the algorithm from Eplar@5 provide a proof of
its correctness. What assumption is being made that miginicloerect?

Solution: It is assumed that the equations are exactly correct. Ftarins, after the first
line we are told thak = a+ b. However, depending on the data type and exact value, it may
be the case thatis notexactly a+ b, in which case the algorithm will fail.

23

24 Chapter 2

2.2 |1f-then-el se Statements

67 Definition Thelf-then-else control statement has the following syntax:

if expression
(statementA

then ¢:
(statementA
(statementB

elseq:
(statementB

and evaluates as follows. dkpression is true then alktatementA’s are executed. Otherwise alate-
mentB’s are executed.

68 Example (Maximum of 2 Numbers) Write an algorithm that will determine the maximum of two
numbers. Prove your algorithm is correct.

Solution: Here is a possible approach.

Algorithm 2.2.2: MAX(X,Y)

if x>y
then return (X)
else return (y)

If xis the maximum ok =y, thenx >y, so the algorithms returns the correct answer. ¥fis
the maximum ang # x, theny > x and the algorithm returng which is clearly also correct.

69 Example (Maximum of 3 Numbers) Write an algorithm that will determine the maximum of three
numbers. Prove that your algorithm is correct.

Solution: Here is a possible approach using the preceding function.

Algorithm 2.2.3: MAX3(X,Y, 2)

w = Max(x,y)
return (Max(w,z))

We will use a proof by cases. ¥is the maximum, themv =MAX(X,y) = X. S0 it returns
MAX (w,z) = X, which is correct. Ify is the maximum, the argument is the samez ig the
maximum, therw is eitherx ory, but in either case < z, so it returns M\x (w,z) = z.

70 Example (Compound Test) Write an algorithm that prints “Hello” if one enters a numibetween 4
and 6 (inclusive) and “Goodbye” otherwise. You are not aldvio use any boolean operators |dwed,
or, etc.

Solution: Here is a possible answer.

24

Thef or loop 25

(Algorithm 2.2.4: HELLOGOODBYE(X))
if x>=4
(if x<=6

then { then output (Hello.)
| else output(Goodbye)

else output(Goodbye)

NS

2.3 Thef or loop

71 Definition Thefor loop has either of the following syntaxés:

for indexVariable— lowerValueto upperValue
do statements

or

for indexVariable— upperValuedownto lowerValue
do statements

HerelowerValueandupperValuemust be non-negative integers withwerValue< upperValue In both
cases, the code in the loop is executed for every value fowarValueto upperValuein the first case in
that order, and in the second case in the reverse order.

72 Example (Factorial Integers) Write an algorithm that given an arbitrary non-negativegarn out-
putsn!.

Solution: Here is a possible answer.

(Algorithm 2.3.3: FACTORIAL (n) A

comment: Must input an integen > 0.

f+1
ifn=0
then return (f)
| {for i< 1ton
do f « fxi

Kreturn (f)

J

73 Example (Positive Integral Powers 1) Write an algorithm that will computg”, wherex is a given
real number and is a given positive integer.

Solution: We can approach this problem as we did the factorial funéti@xample72. Thus
one possible answer would be

2The syntax in C, C++, and Java is slightly different and makesor loop much more powerful than the one presented
here.

25

26 Chapter 2

(Algorithm 2.3.4: POwERL (X, n))

power<+— 1
fori«< 1ton

do power<+ xx power
return (power

N

2.4 Arrays

74 Definition An array is an aggregate of homogeneous types. [Ehgth of the arrays the number of
entries it has.

A 1l-dimensional array is akin to a mathematical vector. Tihd&is 1-dimensional array of lengtithen
X = (X[0],X[1],...,X[n—1]).

We will follow the convention of common languages like Ja@aand C++ by indexing the arrays from 0.
We will always declare the length of the array at the begigia code fragment by means of a comment.

A 2-dimensional array is akin to a mathematical matrix. Tifitysis a 2-dimensional array with 2 rows

and 3 columns then
Y[O][0] Y[0][1] YI[O][2]

Y= \vigo] v i)

75 Example (Maximum of n Numbers) Write an algorithm that determines the maximum element of a
1-dimensional array af elements.

Solution: We declare the first value of the array (the 0-th entry) to leerthximum (aentinel
valug. Then we successively compare it to other1 entries. If an entry is found to be larger
than it, that entry is declared the maximum.

(Algorithm 2.4.1: MAXENTRYINARRAY (n, X))

comment: X is an array of lengtim.

max<«— X|0]
fori<1lton—-1
do {if X[i] > max
then max= X|i]
return (max)

N J

76 Definition (Floor and Ceiling Functions) The floor of a real numbek, written x|, is the largest
integer that is less than or equalxoTheceiling of a real numbek, written [x], is the smallest integer
that is greater than or equalxo

77 Example [4.5| =4,[4.5]| =5, |7| =[7] =7. In general, ihis an integer, thefin| = [n] =n.

78 Theorem Letabe an integer andbe a real number. Them< x if and only ifa < |x|.

26

Arrays 27

Proof: If a< |x], thena < |x| <xis clear. On the other hand, assua€ x. Thenais an
integer that is less than or equalxoSince|x| is the largest integer that is less than or equal
tox, a<|[x]. O

The floor function is important because in many programmamguiages, including Java, C, and C++,
integer divisiontruncates That is, when you compute/’k for integern andk, the result is rounded down
to [n/k]. In light of this, the following Corollary is sometimes imftant to remember.

79 Corollary Leta, b, andc be integers. Thea <b/cif and only ifa < |b/c]|.
Proof: Sinceb/cis a real number, this is just a special case of Theof8m O

80 Example (Reversing an Array) An array (X[0],...X[n—1]) is given. Without introducing another
array, put its entries in reverse order. Prove that yourrdlgu is correct.

Solution: Observe that we want to exchange the first and last elementsabond and
second-to-last element, etc. That is, we want to exchXi@e~ X[n— 1], X[1] <> X[n— 2],
..., X[K] <> X[n—k—1]. But what value ok s correct? If we go all the way to— 1, the result
will be that every element is swapped and then swapped baeke svill accomplish nothing.
Hopefully you can see that if we swap elements wkhem—k— 1, we will swap each element
at most once. The “at most once” is because if the array hasémamber of elements, the
middle element occurs whdn=n—k— 1, but we can skip it since it doesn’t need to be
swapped with anything. Notice thlat n— k— 1 if and only if X < n—1. Sincek andn are
integers, this is equivalent t&kZ n—2. This is equivalent t& < | (n—2) /2] by Corollary79.
Thus, we need to swap the element$,0.., | (n—2)/2] with element;—1,n—2,....n—
1-|(n—2)/2] =n—|n/2], respectively. The following algorithm implements thi&d
using the swapping algorithm from examgi2

Algorithm 2.4.2: REVERSEARRAY (N, X)

comment: X is an array of lengtim.

fori«< 0to [(n—2)/2]
do Swag X[i],X[n—i—1])

Hopefully the previous example helps you realize that yoedn® be careful when working with
arrays. Formulas related to array indices change depemdinghether arrays are indexed starting at 0
or 1. In addition, formulas involving the number of elemeintsn array can be tricky, especially when
the formulas relate to partitioning the array into pieceg.(@nto two halves). These can both lead to
the so-called “off by one” error that is common in computeesce. The next example illustrates these
problems, and one way to deal with it.

81 Example Give a formula for the index of the middle element of an arrbgizen.

Solution: Clearly the answer should be somewhere closg/® Unfortunately, ifn is odd,
n/2 isn’t an integer. And clearly the answer won'’t be the samemihdexing starting at both
0 and 1. Maybe we should try a few concrete examples.

Let’s first assume indexing starts at 1nlf 9, the middle element is the 5th element, which
has index 5= [9/2]. If n= 10, the middle element is the 5th or 6th element. Let’s go with

27

28 Chapter 2

the 5th element. Then the index is510/2 = [10/2]. Thus the formulgn/2] should work.
You should plug in a few more values to convince yourself thestis correct.

Now let's assume indexing starts at 0. There are a a few dguivrmulas we can come up
with. For starters/n/2] — 1 should work since this is just 1 less than the answer abaonk, a
the indices are all shifted by one. But let’s come up with afola from scratch. Ih =9, the
index of the middle element is4 |9/2]. If n= 10, the index is 44 |10/2|. So|n/2] works
whenn is odd, but not whem is even. This one is not as obvious as it was when we started
indexing at 1. With a little thought, you may realize thé&at — 1) /2] works.

Now you should ask yourself: Is1/2] —1 = |[(n—1)/2] for all values ofn? If not, one of
our formulas is incorrect. You should convince yourselt thase are indeed equal.

82 Definition (Boolean Variable) A boolean variablas a variable that only accepts one of two possible
values:true or false

83 Definition (Not Operator) Thenot unary operator changes the status of a boolean variabletfrmm
to falseand vice-versa.

Thenot operator is essentially the same thing asrbgationwe discussed earlier. The difference is
context—we are applyingotto a boolean variable, whereas we applegationto a statement.

84 Example (The Locker-room Problem) A locker room contains lockers, numbered 1 throug Ini-
tially all doors are open. Person number 1 enters and cldsteeadoors. Person number 2 enters and
opens all the doors whose numbers are multiples of 2. Persmber 3 enters and toggles all doors that
are multiples of 3. That is, he closes them if they are operogeds them if they are closed. This process
continues, with persontoggling each door that is a multiple ofWrite an algorithm to determine which
lockers are closed when allpeople are done.

Solution: Here is one possible approach. We use a boolean aoaker of sizen+1 to
denote the lockers (we will ignofleocker [0]). The valuetrue will denote an open locker
and the valudalsewill denote a closed locker.

(Algorithm 2.4.3: LoCKERROOMPROBLEM(n, Locke))

comment: Lockeris an array of siz&a+ 1.
comment: Closing all lockers in the first for loop.

fori< 1ton
do Locketi] + false
comment: From open to closed and vice-versa in the second loop.

for j«< 2ton
(for k + jton
do { do if kmod j =0
(then Lockerk] = not Lockerk]
forl < 1ton
do {if Lockeil] = false
9 then output (Lockerl is closed)

J

3We will later see that those locker doors whose numbers arareg are the ones which are closed.

28

Thewhi | e loop 29

2.5 Thewhi |l e loop

85 Definition Thewhile loop has syntax:

while test
do {body of loop

The commands in the body of the loop will be executed as lorigeas evaluates to true.

86 Example (Different Elements in an Array) An arrayX satisfiesX[0] < X[1] < --- < X[n—1]. Write
an algorithm that finds the number of entries which are dbffier

Solution: Here is one possible approach.

(Algorithm 2.5.2: DIFFERENT(N, X))

comment: X is an array of lengtim.
i<0
different« 1
whilei#n—1
(i—i+1
do{ﬁqﬂ#xﬁ—ﬂ
 thendifferent« different+ 1
return (different)

N J

87 Definition Recall that a positive integgy > 1 is aprime if its only positive factors are 1 and. A
positive integerc > 1 which is not prime is said to tomposite*

88 Theorem Letn > 1 be a positive integer. Eitheris prime orn has a prime factog /n.

Proof: If nis prime there is nothing to prove. Assume that composite. Them can
be written as the product= ab with 1 < a < b, wherea andb are integers. If every prime
factor ofn were> /n, thena> /nandb > /n. But thenn=ab> /n\/n=n, which is a
contradiction. Thus must have a prime factet /n. O

89 Example To determine whether 103 is prime we proceed as follows. @bsiat|/103] = 10.

We now divide 103 by every primg 10. If one of these primes divides 103, then 103 is not a prime.
Otherwise, 103 is a prime. Notice that 103 mog 2, 103 mod 3= 1, 103 mod 5= 3, and 103 mod #

5. Since none of these remainders is 0, 103 is prime.

90 Example (Eratosthenes’ Primality Testing) Give an algorithm to determine whether a given positive
integernis prime.

Solution: We first deal with a few base casesnk 1, it is not prime, andih=2orn=3

it is prime. Then we determine if is even, in which case it is not prime. Finally, we loop
through all of the odd values, starting with 3 and going/fe, determining whether or not

is a multiple of any of them. If so, it is not prime. If we getdlugh all of this, them has no
factors less than or equal t{gn which means it must be prime. Here is the algorithm based
on this description.

4Thus 1 is neither prime nor composite.

29

30 Chapter 2
(Algorithm 2.5.3: ISPRIME(n))
if n=1output (nis a unit)
if n=2output (nis prime)
if n=3output (nis prime)
ifn>3
(if nmod 2=0
{ then output (nis even Its smallest factor is .2
(flag < true
] i+1
' while i < |/n| and flag= true
then 1 (ii+2
else{ do { if nmodi =0
. ; L then {flag« false
if flag= true
i then output (nis prime)
Y \ L else output(Not prime Smallest factor is.))
It should be noted that although this algorithm works, ita$ very practical for large values
of n. In fact, there is no known algorithm that can factor numigdtisiently on a “classical”
computer. The most commonly used public-key cryptosystetyson the assumption that
there is no efficient algorithm to factor a number. Howeugrou have a quantum computer,
you are in luck. Shor’s algorithm actualtganfactor numbers efficiently.
Exercises

91 Problem What will the following algorithm return fon = 5? You must trace the algorithm carefully,
outlining all your steps.

(Algorithm 2.5.4: MYSTERY(n)

X< 0
i1
whilen> 1
(if nxi> 4
i then X+ x+2n
do elsex «+ x+n
iN«n-2
«i+1
Kreturn (X)

~

J

92 Problem Assume that the division operatgracts as follows on the integers: if the division is not
even,a/b truncates the decimal part of the quotient (This is how itkgdn Java, C, C++, and many other
languages). For examplg 3= 2, 5/3 = 1. Write an algorithm that reverses the digits of a givengate

that exploits this fact. For example, if 123476 is the inghbg output should be 674321. Use only one

whi | e loop, one mod operation, one multiplication by 10 and onésdin by 10.

30

Algorithms 31

93 Problem Write an algorithm that reads an arrayroitegers and finds the second smallest entry.

Answers
91 In the first turn around the loom,= 5,i = 1, nxi > 4 and thusx = 10. Now n= 3, i = 2, and we go a second
turn around the loop. Sinaexi > 4,x=10+2%3 = 16. Finally,n= 1,i = 3, and the loop stops. Henge= 16 is

returned.

92 Here is a possible approach.

(Algorithm 2.5.5: REVERSEN))
comment: nis a positive integer.
x<+<0
while n# 0

I(comment:x accumulates truncated digit.
| X < x*10+nmod 10
1 comment: We now truncate a digit of the input.

in +~n/10
Kreturn (x)

93 Here is one possible approach.

(Algorithm 2.5.6: SECONDSMALLEST (n, X))

comment: X is an array of lengtim.

seconck— x[0]
minimum <+ second
fori<-Oton—1
(if minimum= second
(if X[i] < minimum
then ¢ then minimum <« X[i]
elsesecond— X|i]
(if X[i] < minimum
do !
i second— minimum
! th -)
else {mlnlmum<— X[i]

; olse if X[i] > minimumand X[i] < second
then second— X]i]

Homework

D When a problem asks for an algorithm, always assume it i;ygdkir the most efficient algorithm
you can find.

31

32 Chapter 2

94 Problem Implement the swap operation for integers without usingdditeonal variable and without
using addition or subtraction. (Hint: bit operations)

95 Problem Prove or disprove that the following method correctly cotesuithe maximum of two inte-
gersx andy, assuming that thei ni mummethod correctly computes the minimumwoéandy .

i nt maxi mum(int x, int y) {
int mMmn = mnimmXx,y);
int max = x +y - mn;
return nmax;

}

96 Problem Give a recursive algorithm that computés You can assuma > 0.

97 Problem Although different programming languages and compilerghnieturn different answers to
the computatiom modb whena < 0, they always return a value betweefb — 1) andb— 1. Given that
fact, give an algorithm that will always return an answemiasn 0 and — 1, regardless of whether or not
ais negative. (Note: Generally speakirmgmodb # —a modb. In other words, multiplying by-1 will
notwork.)

98 Problem Repeat the previous problem, but do not use any conditidatdraents.

99 Problem What will the following algorithm return fon = 3?

(Algorithm 2.5.7: MYSTERY(n))
X<« 0
whilen>0
ifor i< 1ton
do for j«iton
i do { do {x<ij+x
(n<n-1
Kreturn (X))

100 Problem Give an algorithm that will round a real numberto the closest integer (round up at .5).
Here’s the trick, though: You caonly usef | oor (y),cei | i ng(y), basic arithmetic (+, -, *, /) and/or
numbers. Yowcannotuse if statements or anything else!

101 Problem Assuming integer division truncates, write an algorithrattvill computen/m, but will
roundthe result instead of truncating it. For instancé4 Should return 1, but/4 should return 2 instead
of 1.

102 Problem Repeat the previous problem, but do not use any conditidgatdraents, double, floats, or
the mod operator. In other words, do it using only integethanetic.

103 Problem Assume you have a functigandonin) that returns a random integer between 0 ardL.
Write an algorithm that returns a random number betwaeeandb, wherea andb are integers. You may
only callrandom(n) once and you may not use conditional statements.

32

Algorithms 33

104 Problem Assume you have a functiondony) that returns a positive random number. Write an
algorithm that returns a random number betwaemdb, wherea andb are integers. You may only call
randomny() once and you may not use conditional statements.

105 Problem The following method is a simplified version of a method thagimh be used to implement
a hash table or in a cryptographic system. Assume that foparteular use the number returned by this
function has to have the opposite parity (even/odd) of thharpater. For instancbash_i t (4) returns
49 which has the opposite parity of 4, so it works for 4. Pravdigprove that this function always returns
a value of opposite parity of the parameter.

int hash_it(int x) {
return X*X+6*x+9;
}

106 Problem Give an algorithm that computes all of the primes that are than or equal tm. For
simplicity, you can just print all of the prime numbers uprtoYour algorithm should be as efficient as
possible. One approach is to incorporate an array into ti@rigthm from Example&O0.

107 Problem Prove or disprove that the following method computes thelaibs value ofk. For simplic-
ity, assume that all of the calculations are performed welfgrt precision. Alsosqrt (x) computes
V/X. Finally, you may use the fact thatx2 = x whenx > 0 if it will help.

doubl e absol ut eVal ue(doubl e x) {
doubl e square = x*Xx;
doubl e answer = sqgrt(square);
return answer;

}

108 Problem Prove or disprove that the following method computes thelaibs value ofk. For simplic-
ity, assume that all of the calculations are performed wétgxt precision. Alsosqrt (x) computes
V/X. Finally, you may use the fact thag/x)? = x whenx > 0 if it will help.

doubl e absol ut eVal ue(doubl e x) {
doubl e root = sqgrt(x);
doubl e answer = root=*root;
return answer;

}

109 Problem ProblemslO7and 108both assumed that “all of the calculations are performel pétrfect
precision”. Is that a realistic assumption? Give an exaropbn input for which the each algorithm will
work properly. Then give an example of an input for which ealgorithm will not work properly. You
can implement and run the algorithms to do some testing ifwish.

110 Problem The following method is supposed to do some computations pasitive nhumber that
result in getting the original number back. Prove or disprthat this method always returns teeact
value that was passed in. (Note: Unlike in the previous @misl, here we will assume that although a
doubl e stores a real number as accurately as possible, it uses didgdaamount of space. Thus a
doubl e is unable to store the exact value of any irrational numbénsiead stores an approximation.
Also,sqrt (x) computes/X. You may assume that2 is irrational if you find this fact helpful.)

33

34

Chapter 2

doubl e ret urnThePar anet er Unnodi fi ed(doubl e x) {
double a = sqrt(x);
double b = ax*a;
return b;

34

Chapter 3

Propositional Logic, Sets, and Boolean Algebra

In this chapter we take a look at propositional logic and.gBtsthe surface they seem quite different, so
placing them in the same chapter may seem odd. However, thiersen Boolean algebra will make it
clear that sets and logic actually have a lot more in comman $fou might think. When discussing sets
we will take a brief look at relations and equivalence relasi, with particular emphasis on an important
equivalence relation for many computer science applinatio

3.1 Propositional Logic

111 Definition A boolean propositior{or simply propositior) is a statement which is eithetrue or
false. We call this theruth valueof the proposition.

Whether the statement adviouslytrue or false does not enter in the definition. One only need¢sibw
that its certainty can be established.

112 Example The following are boolean propositions and their valuekngwn:
O 72 =49. (true)
0 5> 6. (false)
If pis aprime themp is odd. (false)
There exists infinitely many primes which are the sum of a sgaad 1. (unknown)
There is a God. (unknown)
There is a dog. {rue)

| am the Pope. false)

O O o o o O

Every prime that leaves remainder 1 when divided by 4 is tie atwo squares. ffue)
[0 Every even integer greater than 6 is the sum of two distinotgs. (unknown)

113 Example The following are not boolean propositions, since it is isgble to assign arue or
false value to them.

41

42 Chapter 3

[0 Whenever | shampoo my camel.
[J Sit on a potato pan, Otis!
O y<+X

0 This sentence is false.

114 Definition A boolean operators used to combine one or more boolean propositions to forewa n
one. A proposition formed in this way is calledcampound propositian For convenience, we call
the propositions used to form a compound propositianablesfor reasons that should become evident
shortly. We will consider the following boolean operatarshese notes. The evaluation rules for each are
given in Table3.1 For each, assumgandq are propositions.

[0 The negation(or NOT) of p, denoted by-p is the proposition “it is not the case thpt. —p is
true whenp is false, and vice-versa. Other notations inclgle- p, and !p (many programming
languages use this one).

O Theconjunction(or AND) of pandg, denoted bypAq, is the proposition) andqg”. The conjunction
of p andq s true whenp andq are both true and false otherwise.

[0 Thedisjunction(or OR) of p andq, denoted bypV q, is the proposition f or g". The disjunction
of pandqis false when botlp andq are false and true otherwise. Put another wap,iff true,q is
true, or both are true, the disjunction is true.

[0 Theexclusive oor XOR of p andqg, denoted byp & q, is the proposition f is true orq is true, but
not both”. The exclusive or gb andq is true when exactly one gf or g is true.

[0 The conditional statemer(or implieg involving p andq, denoted byp — q, is the proposition “if
p, thenq”. It is false whenp is true andq is false, and true otherwise. In the statemegnt g, we
call p thepremise(or hypothesi®r antecedentandq the conclusion(or consequenqge

[0 Thebiconditional statemernvolving p andqg, denoted byp < q, is the proposition p if and only
if g". Itis true whenp andg have the same truth value, and false otherwise.

P gq|(—p (pAQ) (pva) peg (p—q (pP+Q)
T T F T T F T T
T F| F F T T F F
F T| T F T T T F
F F| T F F F T T

Table 3.1: Evaluation Rules

Some of these definitions should be familiar to you. When yauried about Boolean expressions in
your programming courses, you probably saw at |8&HD, ORandNOT. The notation is probably differ-
ent, though. In Java, C, and CH+js used for NOT&&is used for AND, and | is used for OR. Although
propositional logic and Boolean expressions have a lotimmnon (more on that in Sectidh3), there are
some subtle differences between them, especially as ingolgad in many programming languages. We
will see more on this later.

42

Propositional Logic 43

D Notice thatV is aninclusive of meaning that it is true if both are true, whereasis anexclusive
or, meaning it is false if both are true. The difference betweeamd @ is complicated by the fact that in
English, the word “or” to can mean either of these dependimgcontext. For instance, if your mother
tells you “you can have cake or ice cream” she is likely using éxclusive or, whereas a prerequisite of
“Math 110 or demonstrated competency with algebra” cledrgs the inclusive or in mind.

The conditionaloperator is by far the one that is the most difficult to get adiaron for at least
two reasons. First, the conditional statementspg is not saying anything about p or q by themselves.
It is only saying that if p is true, then q has to also be trueddesn’t say anything about the case that
p is not true. This brings us to the second reason. Should F be true or false? Although it seems
counterintuitive to some, it should be true. Again:p is telling us about the value of g when p is true
(i.e., if p is true, the gnust betrue). What does it tell us if p is false? Nothing. As strangetamight
seem, when p is false, the whole statement is true regarofele truth value of q.

If in the end you are still confused, you can simply fall baoklee formal definition: p— q is false
when pis true and q is false, and is true otherwise. In othendgjaf interpreting p— q as the English
sentence “p implies q” is more harmful than helpful in undargling the concept, don't worry about why
it doesn’t make sense and just remember the definition.

115 Example Consider the propositions:
e a: | will eat my socks.
e b:lItis snowing.
e c: |l will gojogging.
The sentences below are represented by means of logicatopser
O (bVv—b) — c: Whether or not it is snowing, | will go jogging.
0 b— —c: Ifitis snowing, | will not go jogging.
O b— (aA—c): Ifitis snowing, | will eat my socks, but | will not go jogging

0 a<« ¢ When | eat my socks | go jogging, and when | go jogging | eat ogks.

The operators were listed in order of precedence, with toeption thaty and® are swapped.Also,
- has right-to-left associativity, all other operatorsdighave left-to-right associativity. It is important to
know the precedence rules for the boolean operators (oasit e able to look it up) so you can properly
interpret complex boolean expressions. However, | gelygregfer to always use enough parentheses to
make it immediately clear, especially when | am writing code

116 Example According to the precedence ruless — aV b should be interpreted g¢s:a) — (aVv b).

117 Example According to the precedence rul@s) —b — ¢ should be interpreted ga A —b) — c.

LIn mathematics, one tries to define things so they make semsediately. Sometimes this is not possible (if the concept i
very complicated and/or it just doesn't relate to somettiiad is familiar). Sometimes a term or concept is defined lydmrt
because of prior use the definition sticks. Sometimes it hakefect sense to some people and not to others, probalgg bas
on each person’s background. | think this last possibiligyrbe to blame in this case.

2Why aren’t they presented in the other order? Because it smakee sense to defit@R before defining<OR

43

44 Chapter 3

118 Example According to the precedence rules) bV c should be interpreted da A b) \ ¢, which is
not the same thing asA (b c). To convince yourself of this, consider the case wheaF, b =F, and
c=T.

119 Example According to the associativity rulea,— b — ¢ should be interpreted da — b) — c.

It is important to note thata — b) — c anda — (b — ¢) arenot equivalent. It is probably worth your
effort to convince yourself of this by finding an assignmefrttath values fora, b, andc such that the two
proposition have different truth values.

120 Example Write a code fragment that determines whether or not thregbeus can be the lengths of
the sides of a triangle.

Solution: Let a, b, andc be the numbers. First we must haae- 0, b > 0, andc > 0.
Also, the sum of any two of them must be larger than the thirdroter to form a triangle.
More specifically, we need+b > ¢, b+ c > a, andc+a > b. This leads to the following
algorithm.

Algorithm 3.1.1: ISITATRIANGLE(a,b,C)

ifa>0andb>0andc>0anda+b>candb+c>aandc+a>
then return (true)
else return (false)

121 Definition A truth tableis a table that shows the truth value of a compound propoditioall possi-
ble combinations of truth assignments to the variablesarptioposition. If there are variables, the truth
table will have 2 rows.

122 Example Construct the truth table of the propositiarw —b A c.

Solution: Since there are three variables, the truth table will hase 8 rows. Notice that
by the precedence rules, the given proposition is equivébeny (—b A c), sinceA has higher
precedence than. The truth table is in Tablg.2

—-b aVv(

J

o

>
N2

TN+
MTA4TnHHoc
MAT =47 —7-o
4 —4TTmA—<4TT
J
O
TS
(@]
M4 —--

Table 3.2: Examplel22

44

Propositional Logic 45

D Notice that there are several columns in the truth tabledesihe columns for the variables and the
column for the proposition we are concerned with. These aedper” or “intermediate” columns (those
are not official definitions). Their purpose is simply to hefpcompute the final column more easily and
without (hopefully) making any mistakes.

As long as all possible values of the variables are included,order of the rows of a truth table
does not matter. However, by convention one of two ordeiggsually used. Since there is an interesting
connection to the binary representation of numbers, wedisltuss it further.

123 Example (Ordering the rows of a Truth Table) Notice that the values of the variables can be thought
of as the index of the row. So if a proposition involves twoiabales, the values in the first two columns
are used as a sort of index. We can order the rows by assigmamhber to each row based on the values
in these columns. The order used here essentially compuiadex as follows: For the “index” columns,
think of each T as a 0 and each F as a 1. Now treat the numbenssa tolumns as binary numbers and
order the rows appropriately. For instance, if there aredlvariables, we can think of it as shown in the
Table3.3

index

o T e e e B [)
MMM T Tddo
PORPORORO
~NOoO U DNWNERO

L B B e B e B 1 R |)

P RPPPOOOO
PP OOFrR,PFR OO

Table 3.3: Ordering the rows (Exampl&23)

The other common ordering does the same thing, but maps Trid E & O.

There is also a way of thinking about this recursively. Tlsatgiven an ordering for a table witin
variables, we can compute an ordering for a table withl variables. It works as follows: Make two
copies of the columns corresponding to the variables, appgra T to the beginning of the first copy, and
an F to the beginning of the second copy.

124 Definition A compound proposition that is always true is calledatology One that is always false
is acontradiction Finally, one that is neither of these is calledantingency

3.1.1 Propositional Equivalence

125 Definition We want to define what it means for two propositions teqaivalenfor logically equiv-
alen)). Here are three equivalent definitions:

[0 Propositiong andq are equivalent if they have the same truth table.
[0 Propositiong andq are equivalent if the propositign< q is a tautology.

[0 Propositionsp andq are equivalent if they have the same truth value for all ass&nts of truth
values to the variables.

45

46 Chapter 3

Whenp andq are equivalent, we writp = g. One alternative notation for this 5= q.

D p = g ishota compound proposition. Rather it is a statement about thkeiomship between two
propositions.

There are many logical equivalences igentitieg that come in handy when working with compound
propositions. Many of them (e.g. commutative laws, assweidaws, distributive laws) will resemble the
arithmetic laws you learned in grade school. Others are @digrent. We will give just a few examples
here. We will see many more in Secti8r8Bwhen we discuss the relationship between propositionat log

and Boolean algebras.

126 Theorem (Double Negation) —(—a) = a.

Proof: Table3.4 shows the truth table foa and—(—a). Since the entries for both and
—(—a) are the same for every row|—-a) = a. O
a|-a —(-a
T| F T
FI T F

Table 3.4: Theoreml126.

127 Theorem (De Morgan's Laws) —(aVvb)=-aA—-band-(aAb)=-aVv-b.

Proof: We can prove both of these by showing that in each case, baifegsion have
the same truth table. TabB5 proves that-(aV b) = -aA —b, and Table3.6 proves that
—(anb) =—-aV-b. (Notice that the gray columns, which correspond to the esgions of

interest, are the same in each case.) O
a bj|avb =(avb) -a -b —-aA-b a b|anb —=(aAb) -a -b —-av-b
T T| T F F F F T T| T F F F F
T F| T F F T F T F| F T F T T
F T| T F T F F F T| F T T F T
F F F T T T T F F F T T T T

Table 3.5: =(aVvb) =-aA-b.

Table 3.6: ~(aAb) = —aV —b.

Although truth tables can be used to prove that two propmsstiare equivalent, it is not enough to
just give a truth table. You should also include a statemkat‘since p andg have the same truth table,

p=q’
128 Example Simplify —=(AV —B).

Solution: Using DeMorgan’s Law and double negatiof(Av —B) = =AA—(—=B) = -AAB.
129 Example Simplify the following code as much as possible.

it (a.size()<=0)) {

}

'(a==nul | ||
a.clear();

46

Propositional Logic 47

Solution: First, notice that by DeMorgan’s Law,(a==nul | || a.size()<=0)
is equivalent tal (a==nul |) && ! (a.size()<=0). Simplifying a bit more, we get
al =nul | && a. si ze() >0. Thus, the code becomes:

if (al=null && a.size()>0) {
a.clear();

}

This may not look much simpler, but it is much easier to unideic.

Identities involving— and® are important in the context of programming since theseaipes are
not always present in a programming language. In these ,ctis®e is a need to express a compound
proposition in terms of the operators that are present.

130 Example Expressp@® qusing onlyv, A, and/or—.

Solution: Notice that if p is true theng must be false, which we represent @ —q.
Similarly if g is true, p must be false and we must hav@ A g. In either of these cases, and
only these cases, the expression is true. Thus, we have that

pPeg=(pA—Q)V(—pAQ).

D There is an important difference between the logical opersaas discussed here and how they are
implemented in programming languages such as Java, C, and Qtis something that is sometimes
calledshort circuiting You are probably familiar with the concept even if you hévesard it called that
before. It exploits theomination laws:

FAqQ=F

Tvg=T
Let’'s see an example.

131 Example Consider the statemenmntf (x>=0 && a[x]!=0). The first domination law implies
that whenx < 0, the expression in the if statement will evaluate to faksgardless of the truth value
of a[x] ! =0. Therefore, many languages will simply not evaluate th@sdgart of the expression—
they will short circuit The same thing happens for statementsilik¢ x<0 || x>a. | engt h) when
x >= 0, for instance.

There are at least two benefits of this. First, it is more effitsince sometimes less code needs to be
executed. Second, it allows the checking of one conditidarbechecking a second condition that might
cause a crash. You have probably used it in statement likettbee to make sure you don’t index outside
the bounds of an array. Another use is to avoid attemptingtess methods or fields when a variable
refersto null (e.gi f (a! =nul | && a. si ze() >0)).

But this has at least two consequences that can cause stditlerps if you aren't careful. First, al-
though the AND and OR operators a@mmutativée.g. p\V g andqV p are equivalent), that is not always
the case for Boolean expressions in these languages. famaesthe statement (x>=0 && a[x] ! =0)
is not equivalentta f (a[x] ! =0 && x>=0) since the second one will cause a crash4f 0. Second,
if the second part of the expression is code that you expdichwiays be executed, you may spend a long
time tracking down the bug that this creates.

a7

48 Chapter 3

3.1.2 Predicates and Quantifiers

132 Definition A predicateor propositional functions a statement containing one or more variables,
whose truth or falsity depends on the value(s) assignecktoahable(s).

Recall that the symbdl is theuniversal quantifierand it is read as “for all”, “for each”, or “for every”;
and the symbof is theexistential quantifierand it is read as “there exists”, “there is”, or “for some”.

133 Example LetP(x)="x < 0”. ThenP(x) is a propositional function, andxP(x) means “all values of
x are negative.” If the domain I8, VxP(x) is false. However, if the domain is negative integers, itugt

134 Example LetP(x)="x < 0”. Then—¥xP(x) means “it is not the case that all valuesaire negative.”
Put more simply, it means “some valuexaf positive”, which we can write asx—P(Xx).

What we saw in the last example actually holds for any prdjmosil function.
135 Theorem (DeMorgan’s Laws for quantifiers) If P(x) is a propositional function, then

—VxP(x) = 3x-P(x), and
—3IXP(X) = VXx—P(X).

Proof: We will prove the first statement. The proof of the other isngmilar. Notice that
—VXP(x) is true if and only if¥xP(x) is false. VxP(x) is false if and only if there is at least
onex for which P(x) is false. This is true if and only if:P(x) is true for somex. But this is
exactly the same thing ax—P(x), proving the result. O

136 Example If you want to determine whether or not something (e62gx)) is true for all values in a
domain (e.g., you want to determine the truth valu&x®(x)), one method is to simply loop through all
of the values and test whether or iRik) is true. If it is false for any value, you know the answer iséal
If you test them all and none of them were false, you know itugt Here is how you might determine if
VYxP(x) is true or false for the domaifD,1,2,...,99}:

bool ean i sTrueForAll () {
for(int i=0;i<100;i++) {
if(C 'P(i)) {

return fal se;
}

}

return true;

}

Notice the negation in the code—this can trip you up if youndreareful. The following two methods
implement this idea for two predicatd¥(x) andQ(x), again for the domaif0, 1,2, ...,99}.

48

Propositional Logic 49

bool ean i sTrueForAll 2() { bool ean i sTrueFor Al l 3() {
for(int i=0;i<100;i++) { bool ean result = true;
if('P(i) && Qi)) for(int i=0;i<100;i++) {
return fal se; if('P(i)))
} result = fal se;
return true; }
} i f(result==true)

return true;
for(int i=0;i<100;i++) {
frQi)))
return fal se;

}

return true;

}

O What isi sTrueFor Al | 2 determining? Notice that if botR(i) andQ(i) are false for the same
value ofi, it returns false, and otherwise it returns true. Put anoftfag, it returns true if for every
value ofi, eitherP(i) or Q(i) is true. Thusj sTrueFor Al | 2 is determining the truth value of

vi(P(i) v Q(i))-

00 What isi sTrueFor Al | 3 determining? First notice that ®(i) is true for every value of,
resul t will be true at the end of the first loop, $&Tr ueFor Al | 3 will return true without
even considerin®. However, ifP(i) is false for any value af, then it will go onto the second loop.
The second loop will return false @(i) is false for any value of. But if Q(i) is true for all values
of i, the method returns true. So, how do we put this all togetitera simple answer? Notice that
the only time it returns true is if eithd?(i) is always true or ifQ(i) is always true. In other words,
i sTrueFor Al | 3 is determining the truth value &P (i) v ViQ(i).

O Now the million dollar questiod:Arei sTrueFor Al | 2 andi sTr ueFor Al | 3 determining the
same thing? At first glance, it looks like they might be. Butmesd to dig deeper, and we need to
prove one way or the other. To prove it, we would need to shawttiese expressions evaluate to
the same truth value, regardless of wRanNdQ are. To disprove it, we just need to findPaand a
Q for which these expressions have different truth valueg.|d&is first talk it through to see if we
can figure out which way we should go with it.

Vi(P(i) v Q(i)) is saying that for every value of eitherP(i) or Q(i) has to be trueviP(i) v ViQ(i)

is saying that eitheP(i) has to be true for every or thatQ(i) has to be true for every These
sound similar, but not exactly the same, so we cannot be sirdryparticular, we cannot jump to
the conclusion that they are not equivalent because weidedagach with different words. There
are many ways of wording the same concept.

At this point we either need to try to tweak the wording so thatcan see that they are really saying
the same thing, or we need to try to convince ourselves theytat et’s try the latter. What iP(i)

is always true an€)(i) is always false? Then both statements are true. But thahdoresessarily
mean it is always true, so that doesn’t help. Let’s consider. tWhat if we can find & and aQ
such that for any given value gfwe can ensure that eithB(i) or Q(i) is true, but also that there is
some valug such thaP(j) is false and some valdesuch thaQ(k) is false? Thervi(P(i) v Q(i))
would be true, butiP(i) v ViQ(i) false, so this would work. But in order to be certain, we have t

3There is no million dollars for answering this questions |tist an expression.

49

50 Chapter 3

know that such # andQ exist* What if we letP(i) ="i is even”,Q(i) ="i is odd”, and the universe
beN. ThenViP(i) = ViQ(i) = false, soViP(i) vViQ(i) = false, butVi(P(i) vQ(i)) = true .

Exercises
137 Problem Construct the truth table fqp — q) A Q.

138 Problem By means of a truth table, decide whetlipr\ q) V (—=p) = pV (—p). That is, you want to
compare the outputs dpA Q) vV (—p) andpV (—p).

139 Problem Explain whether the following assertion is true and negateithout using the negation
symbol-:
YneN3ImeN (n>3— (n+7)? > 49+ m)

Answers
137
P alp—q (pP—~aAq
FF| T F
F T T T
T F| F F
T T T T

138 The desired truth table is

P q|pAg —p pv-p (pAQ)V(—p)
F F| F T T T
F T F T T T
T F| F F T F
T T T F T T

139 The assertion is true. We have
(N+7)2> 49+ m n 4 14n > m.

Hence, takingn= n?+ 14n— 1 for instance (or any smaller number), will make the assefiiue.

3.2 Sets

140 Definition By a setwe will understand any well-defined collection of objectshe$e objects are
called theelement®f the set. Ifa belongs to the se&, then we writea € A, read ‘a is an element oA”

If a does not belong to the sAt we writea ¢ A, read ‘a is not an element oA.” Generally speaking,
repeated elements in a set or ignored.

141 Definition The number of elements in a $&talso known as the theardinality of A, will be denoted
by card(A) or |A]. If the setA has infinitely many elements, we wri@| = oo,

4Consider this: If | can find an even number that is prime buiois2) then there would be at least 2 even primes. That's
great. Unfortunately, | can’t find such a number.

50

Sets 51

142 Example LetD ={0,1,2,3,4,5,6,7,8,9} be the set of the ten decimal digits. Thea B but 11¢ D.
Also, |D| = 10.

Notice that the elements in a set are listed between curlyera¥You should do the same when you
specify the elements of a set.

143 Example The prime numbers less than 10 are 2, 3, 5, and 7. If you aredaskkst the prime
numbers less than 10, an appropriate answer would &&.27. However, if you are asked for the set of
prime numbers less than 10, the answeias3,5,7}.

144 Example The sets{1,2,3} and{1,1,1,2 2 3} actually represent the same set since repeated values
are essentially ignored. The cardinality of both sets is 3.

D We will normally denote sets by capital letters, saB/S N, etc. Elements will be denoted by
lowercase letters, say, b, w,r, etc.

145 Definition The following notation is pretty standard, and we will fallat in this book.

N={0,1,2,3,...} the set ofhatural numbers
Z={...—2,-10,1,2,...} the setointegers

7zt ={1,23,...} the set ofpositive integers
7Z-={-1-2,-3,...} the set olhegative integers
R thereal numbers

C thecomplex numbers
o=A{} theempty seor null set

D There is no universal agreement of the definitiotNofAlthough here it is defined §9,1,2,3,.. .},
it is sometimes defined &= Z". | prefer the definition given here because then we have dinatfor
the positive integers*) as well as the non-negative integel$)(

146 Example Notice thatN| = |Z| = |R| = . But this may be a bit misleading. Do all of these sets have
the same number of elements? Believe it or not, it turns aitNhandZ do, but thatR has many more
elements than both of these. If it seems strange to talk atdoether or not two infinite sets have the same
number of elements, don’t worry too much about it. We propalmn’t bring it up again.

147 Example Let S be the set of the squares of integers. We can express this sétat we callset
builder notation In this case we can write it &= {n?|n € Z} (or S= {n?: n< Z}). We read the : ofas
“such that”. ThusSis the set containing “numbers of the forfisuch than is an integer”.

148 Definition If every elementirAis also inB, we say thah is asubsebf B and we write this as C B.
If AC B and there is some e B such thatx ¢ A, then we say A is @roper subsebf B, denoting it by
ACB.
If there is somex € A such thak ¢ B, thenA is not a subset d8, which we write asA Z B.

D Some authors use to mean subset without necessarily implying it is a propésstt

149 Example Let S={1,2,...,20}, that is, the set of integers between 1 and 20, inclusive.H et
{2,4,6,...,20}, the set of all even integers between 2 and 20, inclusiveicBldhatE C S LetP =
{2,3,5,7,11,13 17,19}, the set of primes less than 20. THex S.

51

52 Chapter 3

The following theorem can be used to prove that two sets aredme.

150 Theorem Two setsA andB are equal if and only iA C BandB C A.

151 Example LetS= {n?[n<c Z}. ThenA = {1,4,9,16} C S. We can also write thah C Sin this case
since 25, for instance, is abut not inA. Also notice that althougBC S S¢ S.

152 Example The set
S= {RoxanJacquelinSeanFatimahWakeelahAshley, RubenLeslie Madeline Karina}
is the set of students in a particular section of Maths 016s &t can be split into two subsets: the set
F = {RoxanJacquelinFatimahWakeelahAshley, Madeline Karina}
of females in the class, and the set
M = {SeanRubenLeslie}
of males in the class. Thus we have_ SandM C S Notice that it isnot truethatF C M or thatM C F.
153 Example Find all the subsets dfa, b, c}.

Solution: They are

= g

{a}
{b}
{c}
{a b}
{b,c}
= {a,c}
= {ab,c}

PLLYLLY YL

Notice that there are 8 subsets. Also notice that®. As we will see shortly, that is not a coincidence.

Also notice that we wrot& = @, and notS; = {@}. Itturns outthats # {@}. & is the empty set—that
is, the set that has no elemen{g:} is the set containing the empty set. Th{ig} is a set containing one
element.

154 Example Find all the subsets dfa,b,c,d}.

Solution: We will use the result of examplEs3. A subset of{a,b,c,d} either containgl
or it does not. Since the subsets{af b, c} do not contaird, we simply list all the subsets of
{a,b,c} and then to each one of them we atidThis gives

= o S = {d}

= {a} So = {ad}
= {b} Siu = {bd}
= {C} S = {C7d}

= {av b} Sz = {a7 bvd}
= {b,C} Sy = {b,C,d}
= {ac} Ss = {ac,d}
= {ab,c} S = {ab,cd}

PLYPLPLLYLPLY

52

Sets 53

155 Definition Thepower sebf a set is the set of all subsets of a set. The power set ofaisatenoted
by P(A).

156 Example If A={a,b,c}, examplel53impliesthatP(A) = {2, {a}, {b},{c},{a b},{b,c},{a c},{a b,c}}.
Notice that the solution is a set, the elements of which ae séts.

An incorrect answewould be{@,a b, c, {a,b},{b,c},{a,c},{a b,c}}. Thisis incorrect becauseis
not the same thing @} (the set containing).

157 Theorem Let A be a set witm elements. ThefP(A)| = 2".

Proof: We use inductiohand the idea of exampl&54. Clearly if [A| =1, Ahas 2 =2
subsetsw andA itself.

Assume every set with— 1 elements has'2! subsets. Lef\ be a set witm elements. Choose
somex € A. Every subset oA either containx or it doesn’t. Those that do not contairmare
subsets oA\ {x}. SinceA\ {x} hasn—1 elements, the induction hypothesis implies that
it has 21 subsets. Every subset that does contagorresponds to one of the subsets of
A\ {x} with the elemenk added. That is, for each sub&f A\ {x}, SU{x} is a subset of

A containingx. Clearly there are™®! such new subsets. Since this accounts for all subsets of
A, Ahas atotal of 21 +2"1 = 2" subsets. O

3.2.1 Set Operations

We can obtains new sets by performing various operationstogr gets. In this section we discuss the
most common set operations. When discussing $tsn diagramsare often used as a pictorial repre-
sentation of the relationships between sets. We provide deagrams to help visualize the various set
operations.

158 Definition Theunionof two setsA andB is the set contain-
ing elements from eithek or B. More formally,

AUB
AUB= {x:xe Aorxe B}.
: N . . . : A B
Notice that in this case thar is aninclusive or That is,x can be
in A, or it can be inB, or it can be in both.
159 Definition The intersectionof two setsA andB is the set
containing elements that are in bdilandB. More formally, ANB
ANB= {x:xeAandx € B}. A B
160 Definition The difference of setsA set-minus Bis the set
containing elements fror that are not irB. More formally, AR
A\B={x:xe€ Aandx ¢ B}.
A B

The set difference oA andB is sometimes denoted l#y— B.

SWe will cover induction more fully and formally later. Butrsie this use of induction is pretty intuitive, especiallyight
of Examplel54 it serves as a useful foreshadowing of things to come.

53

54 Chapter 3

161 Example LetA={1,2,3,4,5,6}, andB= {1,3,5,7,9}. Then
AUB={1,2,3,4,56,7,9}, ANB={135}, A\B={246), B\A={7,9}.

162 Definition Two setsA andB aredisjoint or mutually exclusivéf ANB = @. That is, they have no
elements in common.

163 Definition Let A C U. Thecomplemenbf A with respect to
U is just the set differendg \ A. More formally,

prd

A={xeU:xgA}=U\A

Other common notations for set complement inclddandA'.

Often the set U, which is called thumiverseor universal setis implied and we just us& to denote
the complement. Generally speaking, we will follow thisvemtion here. Futher, when talking about
several sets, we will assume they have the same universallsst otherwise specified.

164 Example LetU = {0,1,2,3,4,5,6,7,8,9} be the universal set of the decimal digits and Aet
{0,2,4,6,8} C U be the set of even digits. Thén= {1,3,5,7,9} is the set of odd digits.

Observe that

ANA = @, and
AUA = U.

The various intersecting regions for two and three sets easebn in figure8.1and3.2

Figure 3.1: Venn diagram for two sets. Figure 3.2: Venn diagram for three sets.

165 Example It should not be too difficult to convince yourself that B= AN B. This is an example of
what we call aset identity

There are many common set identities. Instead of boring yituaMong list of them, for now we just
presenDe Morgan’s Law$ We will see more of them in Sectidh3.

6That name sounds familiar. Haven't we seen this before?

54

Sets 55

166 Theorem De Morgan’s Laws state that for séisandB,

(AUB) =ANB, and (3.1)

(ANB) =AUB. (3.2)

Proof: We will prove the first one. As you might imagine, the proof bétother is very
similar. We will use Theorer50.

Let x € (AUB). Thenx ¢ AUB (by definition of complement). Thus¢ AAX ¢ B (by
definition of union), that isx € AA x € B (by definition of complement). This is the same as

x € ANB (by definition of union). Notice that was an arbitrary element frodAUB), and

we showed that € ANB. Therefore, every element {A\U B) is also inANB. In other words,

(AUB) C ANB.
Now, letx € ANB. Thenx € AAx € B. This means that ¢ AAX ¢ B or what is the same

X ¢ AUB. But this last statement asserts that (AUB). HenceANB C (AUB).
Since we have shown that the two sets contain each otherateegqual by Theoretb0. [

This proof is what is called aet containment proafince we showed set containment both ways. The
technique is pretty straightforward: Theord®Otells us that ifX CY andY C X, thenX =Y. Thus, to
proveX =Y, we just need to show that C Y andY C X. But how do we show that one set is a subset
of another? This is easy: To show thatC Y, we show that every element frokis also inY. In other
words, we assume thate X and use definitions and logic to show thxat Y. Assuming we do not use
any special properties of other than the fact that € X, thenx is an arbitrary element frorX, so this

ws thaX C Y.

Be careful. To prove that X Y, you generally need to prove two thingsCXy and YC X. Do not
forget to do both. On the other hand, if you are asked to prbaeX C Y, you do not need to (and should
not) show that YC X.

Sometimes we can do a set containment proof in one step éhstéao. This only works if every step
of the proof is reversible. We illustrate this idea next. (@&¢he< means “if and only if”. Although it
looks a lot like it, it is not the logical biconditional op¢oa

167 Example Prove thatA\ (BUC) = (A\B)N(A\C).

Proof: We have

xe A\ (BUC) xe AANXE (BVC)

(xeA) A ((x¢B) A (x¢C))
(xeA N x¢€B) A (xXeA A x¢gC)
(xe A\B) A (xeA\C)

xe (A\B)N(A\C)

rTTe

U

168 Example In Java, thelr eeSet class is one implementation ofsatthat has several methods with
perhaps unfamiliar names, but they do what should be fantilings. Let’s discuss a few of thefrL.et A
andB beTr eeSet s.

’The method signatures and documentation have been modiiedliie official definition so we can focus on the point at
hand.

55

56 Chapter 3

1. The method et ai nAl | (Tr eeSet ot her) “retains only the elements in this TreeSet that are
contained in theot her TreeSet. In other words, removes from this TreeSet all @léments that
are not contained irot her .” It is not too difficult to see thaA. r et ai nAl | (B) is computing
ANB&

2. The methodbool ean cont ai nsAl | (TreeSet ot her) “returns true if this set contains all
of the elements aft her (and false otherwis€) It should be evident thah. cont ai nsAl | (B)
returns true iffB C A.

3. Even without documentation, it seems likely thasi ze() is determiningA|.

4. ltis also seems likely th&. i sEnpt y() is determining ifA = 0.

Sometimes you need to find the cardinality of the union of sE\a®ts. This is easy of the sets do not
intersect. If they do intersect, more care is heeded to maileerso elements are missed or counted more
than once. In the following examples we will use Venn diaggdmhelp us do this correctfyLater, we
will learn about a more powerful tool to do thisrelusion-exclusion

169 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also knownlth&éoth smoke and
chew. How many among the 40 neither smoke nor chew?

Solution: We fill up the Venn diagram in figur& 3as follows. Since cardEmokeChew =

10, we put a 10 in the intersection. Then we put a2 = 18 in the part thaSmokedoes

not overlapChewand a 16- 10 = 6 in the part ofChewthat does not overlaBmoke We
have accounted for 18018-+ 6 = 34 people that are in at least one of the sets. The remaining
40— 34 = 6 are outside these sets.

C
; ’ 3
Smoke Chew
Figure 3.3: Example482 Figure 3.4: Examplel70.

170 Example In a group of 30 people, 8 speak English, 12 speak Spanish @isgpelak French. It is
known that 5 speak English and Spanish, 5 Spanish and Frandl, English and French. The number
of people speaking all three languages is 3. How many do ra@tksgny of these languages?

8Technically it is doing more than that. It is storing the feguA. So it is like it is doingA = AN B, where= here means
assignment, not equals.

9Actually, both of the examples count the number of elemeotamthe union. But since this is just the number of elements
in the universe minus the number in the union, the technigtiee same.

56

Sets 57

Solution: Let A be the set of all English speakeBthe set of Spanish speakers d@hthe
set of French speakers in our group. We fill-up the Venn diragrafigure 3.4 successively.
In the intersection of all three we put 3. In the region comnm®i and B which is not
filled up we put 5- 2 = 3. In the region common t8 andC which is not already filled up
we put 5—-3 = 2. In the region common tB andC which is not already filled up, we put
7—3=4. In the remaining part oA we put 8—2—3—2 =1, in the remaining part oB we
put 12— 4 —3—2 = 3, and in the remaining part @ we put 10-2—3—4 = 1. Each of the
mutually disjoint regions comprise a total of12+3+4+ 142+ 3 = 16 persons. Those
outside these three sets are ther-3G = 14.

171 Definition The Cartesian producof setsA andB is the setA x B = {(a,b)|ac AAb € B}. In other
words, it is the set of all ordered pairs of elements frandB.

172 Definition If Ais a set, the®? = A x A, andA" = A x A1,

173 Example If A={1,2,3}andB={a,b},thenAxB={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}. Also,
B2 ={(a,a),(a,b),(b,a),(b,b)}.

3.2.2 Partitions and Equivalence Relations

174 Definition LetS+# @ be a set. Apartition of Sis a collection of non-empty, pairwise disjoint subsets
of Swhose union iss.

175 Example DefineE = {2k: ke Z} andO = {2k+ 1 :k € Z}. ClearlyE is the set of even integers and
O is the set of odd integers. Sinen O = @ andEUO = Z, {E, O} is a partition ofZ.

176 Example Let3Z = {3k:kec Z},3Z+1={3k+1:kc Z}, and ¥ +2 = {3k+2:ke Z}.19 Since
(32)U((3Z+1)U(3Z+2)=7Zand
(3Z)N(3Z+1) =@, (3Z)N(3Z+2)=2,(3Z+1)N(3Z+2)= o,
{3Z,3Z+ 1,3Z+ 2} is a partition ofZ.

177 Example Letl=R\Q (the set of irrational numbers). Observe tRat QUI andQNI = &. Thus,
the real numbers can be partitioned into the rational ardiamal numbers, which shouldn’t really be a
surprise.

Recall that when a list of number is given between parenth@sg. (1,2, 3)), it typically denotes an
ordered list. That is, the order that the element are listatlars. So, for instancél, 2) and(2,1) are not
the same thing.

178 Definition Let A, B be sets. Aelation Ris a subset of the Cartesian prodéct B. If (x,y) € R, we
say thaix is related to y and write is axRy An alternative notation ia ~ b.

10The notation in this example may seem a bid odd at first. Howanesupposed to interpret Z3+ 17?2 Is this 3 times the
setZ plus 1? What does it mean to do algebra with sets and numbevefi't get into all of the technical details, but here is
a short answer. You can think of Z3+ 1" as just a name. Sure, it may seem like an odd name, but whiywamame a set
whatever we want? Some people name their BmsBlake Cusack 2.8nd get away with it. You can also think ofZ3t+ 1" as
describing how to create the set—by taking every elemem f£omultiplying it by 3, and then adding 1. Thus, you can think
of “3Z+ 1" as being both an algebraic expression and a name.

57

58 Chapter 3

179 Definition Let A be a set an®R be a relation oA x A. ThenRis said to be

o reflexiveif ¥x € A, xRx
(or (x,X) € R).

e symmetric if Yx,y € A, XRy— yRX
(or (x,y) e R— (y,x) € R

e anti-symmetric if Vx,y € A, (XRy) and (yRXY — x=y
(or (x,y) € Rand (y,x) e R— x=Y).

e transitive if VX, y,z€ A, (xRy) and (YR2 — (xR2
(or (x,y) € Rand (y,z) € R— (x,2) € R).

A relationR which is reflexive, symmetric and transitive is calledesuivalence relatioon A. A relation
R which is reflexive, anti-symmetric and transitive is calégolartial orderonA.

180 Example Let S={All Human Beingg, and define the the relatidvi by (a,b) € M if ahas the same
(biological) mothet! asb. Show thaM is an equivalence relation.

Proof: Sincea has the same mother as(a,a) € M, soM is reflexive. Ifa has the same
mother ad, thenb clearly has the same mother asThus,(a,b) € M implies (b,a) € M,
soM is symmetric. Finally, ifa has the same mother Bsandb has the same mother as
then clearlya has the same mother asln other words(a, b) € M and(b,c) € M implies that
(a,c) € M, soM is transitive. Thereforeyl is reflexive, symmetric, and transitive, so it is an
equivalence relation. O

181 Example Let X be a collection of sets. L& to be the relation such thatis related taB if A C B.
ThenRis a partial order oX. We leave it to the reader to prove this. You need to showRhateflexive,
anti-symmetric, and transitive.

182 Definition For integers, b, andn, wheren > 0, we say thaé is congruent to b moduloihand only
if a— b= knfor some integek (that is,n dividesa— b). We write itasa=b (modn). If a—b # knfor
any integek, thena is not congruent t® modulon, written asa # b (mod n).

The proof of the following is left as an exercise.
183 Theorem a=b (modn) iff*? amodn = b modn.

184 Example Notice that 21-6=15=3-5, s0 21=6 (mod 5).
185 Example Since, 1961(mod 37 = 0+# 4 = 1966 (mod 37, we know that 196% 1966 (mod 37).

186 Example Let n be a positive integer. TheR= {(a,b) : a=b (modn)} is a relation on the set of
integers. Show tha is an equivalence relation.

11The important assumption we are making is that each persoexsatly one mother.
12itf is shorthand foif and only if .

58

Sets 59

Proof: We need to show tha is reflexive, symmetric, and transitive.
Reflexive'Sincea—a = 0n,a=a (modn), soRis reflexive.

Symmetric:If a=b (modn), thena— b = kn for some integek. Sob—a = (—k)n, and
since—k is an integerb = a (modn). Thus,Ris symmetric.

Transitive: If a=b (modn) andb = ¢ (modn), thena— b = kn for some integek and
b— c=Infor some integet. Thus

a—c=(a—b)+(b—c)=kn+In=(k+I)n,
and sinc&k + | is an integera= ¢ (modn), andR is therefore transitive. O

187 Example LetRbe the relation on the set of ordered pairs of positive integech that(a, b), (c,d)) €
Rif and only if ad = bc. Show thaiR is an equivalence relation.

Proof: We need to show th& is reflexive, symmetric, and transitive.
Reflexive:Sinceab = bafor all positive integers((a,b), (a,b)) € Rfor all (a,b). ThusR s
reflexive.

Symmetric:Notice that ifad = bc, thencb = dafor all positive integers, b, ¢, andd. Thus
((a,b),(c,d)) € Rimplies that((c,d), (a,b)) € R, soRis symmetric.

Transitive: Assume that((a,b),(c,d) : 1) € Rand ((c,d),(e,f)) € R Thenad = bc and
cf =de Solving the second fot, we getc = de/f, and plugging it into the first we get
ad = b(de/f). Multiplying both sides byf, and canceling thd on both sides yieldaf = be
Thus((a,b), (e f)) € R ThusRis transitive. O

188 Definition Let R be an equivalence relation on a §tThen theequivalence class of ia the subset
of Scontaining all of the elements that are related.té/ore formally,

[a] = {xe S: xRa}.

189 Example The equivalence class of 3 modulo §36= {8k+3:k € Z}. Notice thaf11] = {8k+11:
ke Z} ={8k+3:keZ} =[3]. Infact, [3] = [8] + 3] for all integerd.

190 Example Notice that if our relation is congruence modulo 4, then

0 = {4k:kezZ]},
[1] = {4k+1:keZ},
2] = {4k+2:keZ}, and
3 = {4k+3:keZ}.

Thus, it isn’t too difficult to notice thaZ = [1] U [2] U [3] U [4]. In other words, the equivalence classes
{[1],[2],[3],[4]} form a partition ofZ. As we will see next, this is not a coincidence.

191 Lemma LetRbe an equivalence relation on a SefThen two equivalence classes are either identical
or disjoint.

59

60

Chapter 3

Proof: Letabe S and assuméan[b] # @. We need to show thaa] = [b]. First, let
x € [a]N[b] (which exists sincéa] N [b] # @). ThenxRaandxRh so by symmetraRxand by
transitivityaRh

Now lety € [a]. ThenyRa Since we just showed thaRh thenyRbby transitivity. Thus
y € [b]. Thereforga) C [b.

A symmetric argument proves thil C [a]. Therefore[a] = [b]. O

192 Theorem LetS+# @ be a set. Every equivalence relation®imduces a partition osand vice-verse.

Proof: By Lemmal9l], if Ris an equivalence relation @then
S=UJlal;
acsS
and[a] N [b] = @ if ais not related td. This proves the first half of the theorem.

Conversely, let
S=US, SN =2 if a #p,
a

be a partition ofS. We define the relatioR on S by lettingaRbif and only if they belong to
the sames,. Since theS, are mutually disjoint, it is clear th& is an equivalence relation on
Sand that fora € &, we havela] = S;. O

Exercises

193 Problem Prove by means of set inclusion (or set containment)#atB) N"C = (ANC)uU (BNC).

194 Problem A survey of a group’s viewing habits over the last year rez@ahe following information:

O

O 0O 0o 0o O

O

28% watched gymnastics

29% watched baseball

19% watched soccer

14% watched gymnastics and baseball
12% watched baseball and soccer
10% watched gymnastics and soccer

8% watched all three sports.

Calculate the percentage of the group that watched nonedlfitbe sports during the last year.

195 Problem In a group of 100 camels, 46 eat wheat, 57 eat barley, and &gher. How many camels
eat both wheat and barley?

196 Problem At Medieval Highthere are forty students. Amongst them, fourteen like Mathtecs,
sixteen like theology, and eleven like alchemy. It is alsown that seven like Mathematics and theology,
eight like theology and alchemy and five like Mathematics alotiemy. All three subjects are favoured
by four students. How many students like neither Mathersatior theology, nor alchemy?

197 Problem How many integersinthe sél,2,...,200} are neither divisible by 3 nor 7 but are divisible
by 11.

60

Sets 61

Answers

193 We have,
xe (AUB)NC xe (AUB)AxeC
(xe AvxeB)AxeC
(xe AAxeC)V(xeBAxeC)
(xe ANC)Vv (xe BNC)

V(
xe (ANC)U(BNC),

rTTTe

which establishes the equality.
194 52%

195 Let A be the set of camels eating wheat, &Agits number, and be the set of camels eating barley, aBglits
number. Then

90=100—-10= |AUB| = |A| +|B| — |JANB| = 46+ 57— |ANB| = 103— |ANB|,
whencelANB| = 13.
196 15

197 10

61

62 Chapter 3

3.3 Boolean Algebras

Now we address a topic that seems quite different from thetdpms we have just covered. As we shall
see shortly, however, they are actually very much related.

198 Definition A Boolean algebraonsists of a seX with at least two different elements 0 (the additive
identity) and 1 (the multiplicative identity), two binarperationst (addition) and (multiplication), and
a unary operation (calledmplementationsatisfying the following axioms for alA, B,C € X.

1. A+ B =B+ A (commutativity of addition)
2. A-B = B-A(commutativity of multiplication)
3. A+ (B+C) = (A+B) +C (associativity of addition)
4. A-(B-C) = (A-B)-C (associativity of multiplication)
5. A-(B+C)=A-B+A.C (distributive law)
6. A+ (B-C)=(A+B)- (A+C) (distributive law)
7. A+ 0= A (additive identity)
8. A-1= A (multiplicative identity)
9. A+A=1 (unit property)
10. A-A= 0 (zero property)

D Sometimes the product B is written as AB, with the operatepmitted. In this case, itis understood
that the operator between A and B is multiplication. Thisashing new—you omik when multiplying
number all of the time.

Notice that the definition of a Boolean algebra requirestiraelements 0 and 1 be in the ¥etbut it
says nothing about other possible elements. This meanX thaty or may not have additional elements.
The following properties of the 0 and 1 elements of a Booldgalaa are immediate.

199 Theorem 0=1 andl1=0.

-

roof: Since 0 is the additive identity) = 0+ 0. But by axiom9, 0+ 0= 1 and thus
0=0+0=1. Similarly, since 1 is the multiplicative identit§,= 1-1. But by axiom10,
1.-1=0andthuss=1-1=0. O

The operations of complementation, addition and multgtian act on 0 and 1 as shown in taBl&. You
might notice that this table resembles the truth table weeslier. We will see why in the next example.

200 Example Ifweregard0=F,1=T, + =V, -= A, and = —, then the logic operations ov¢F, T}
constitute a boolean algebra.

201 Example If we regard 0= @, 1=U (the universal seth- = U, - =N, and =, then the set operations
over the subsets &f constitute a boolean algebra.

62

Boolean Algebras 63

Why do we care about the connection between logic, sets,@riddn algebras? Because any property
that we know about a Boolean algebra can be applied to logicsats. Table3.8 gives some of the
important laws and identities of Boolean algebras, inelgdi translation of some of them into logic and
sets. Filling in the remainder of the table is left as an eserc

The first 10 laws are the axioms from the definition of a Boolalgebra. The remaining laws can be
proven using the axioms. The next several examples givedpaéseveral of these, as well as a few other
laws.

202 Theorem (Idempotent Laws) A+A=AandAA=A
Proof: We have

A=A+0=A+A-A=(A+A)(A+A) = (A+A)(1)=A+A

Similarly
A=Al=AA+A) =AA+A-A=AA+0=AA
O
203 Theorem (Domination Laws) A+1=1andA-0=0.
Proof: We have
A+1=A+(A+A =(A+A +A=A+A=1
Also,
A-0=AA-A =(AAA=AA=0.
O
204 Theorem (Uniqueness of the Complement) If AB=0 andA+ B =1thenB=A.
Proof: We have
B=Bl1=B(A+A)=BA+BA=0+BA=BA
Also,
A=Al1=A(A+B)=A-A+AB=AB.
Thus
B=BA=AB=A
O
A B|A A+B AB
0 0|1 0 0
0 1|1 1 0
1 00 1 0
1 1|0 1 1

Table 3.7: Evaluation Rules

63

64 Chapter 3

205 Theorem (Involution Law) A=A
Proof: By axioms9 and10, we have the identities
1=A+A and A-A=0.
By uniqueness of the complement we must have A. O

206 Theorem (De Morgan's Laws) A+B=A-BandA-B=

>

+B.
Proof: Observe that
(A+B)+A-B=(A+B+A)(A+B+B)=(B+1)(A+1) =1,

and
(A+B)A-B=AA-B+BA-B=0+0=0.

ThusA- B is the complement oA+ B and so we must have- B = A+ B.

To obtain the other De Morgan Law pétinstead ofA andB instead ofB in the law just
derived and use the involution law:

A+B=A.-B=AB

Taking complements once again we have

A+B=AB—A+B=AB
U
Law | Boolean Algebra | Logic | Sets |
commutativity | A+B=B+A
AB=BA PAG=(QAP
associativity | A+(B+C)=(A+B)+C | pv(qVr)=(pvag)Vvr
A(BC) = (AB)C
distributive A(B+C)=AB+AC AN(BUC) = (ANB)U(ANC)
A+ (BC)= (A+B)(A+C)
identity A+0=A
Al=A
unit property |A+A=1 pv-p=T
zero property | AA=0 ANA=0o
domination A+1=1 pvT =T
A0=0
idempotent A+A=A
AA=A ANA=A

double negation A=A
DeMorgaris A+B=AB

Table 3.8: Some of the most important laws of Boolean algebras. A tadiosl into the language of logic and sets
is given for a few of them. The rest are left as an exercise.

64

Boolean Algebras 65

207 Theorem AB+AB = A.

Proof: Factoring
AB+AB=A(B+B)=A(1) =A

208 Example Simplify the following code as much as possible.

if ((x>0 && x<y) || (x>0 && x>=y)) {
X=Y;
}

Solution: Let p="x>0"andq="x<Yy". Then the conditional above can be expressed as
(pAQ)V (pA—Q). Applying TheorenR07, this is justp. Therefore the code simplifies to:

if (x>0) {
X=Y;
}

209 Theorem A(A+B)=ABandA+AB=A+B.

Proof: Multiplying
A(A+B) =AA+AB=0+AB=AB.

Using the distributive law,

A+AB= (A+A)(A+B)=1(A+B)=A+B.

U
210 Theorem (Absorption Laws) A-+AB=AandA(A+B)=A.
Proof: Factoring and using the domination laws:
A+AB=A(1+B)=Al=A
Expanding and using the identity just derived:
A(A+B)=AA+AB=A+AB=A
U

65

66 Chapter 3

3.3.1 Sum of Products and Products of Sums

Given a truth table in some boolean variables, we would likiéntd a function whose output is that of the
table. This can be done by either findinguam of product§SOP) or goroduct of sum¢POS) for the table.

To find a sum of products from a truth table:

O identify the rows having output 1.

O for each such row, write the variable if the variable input & write the complement of the variable
if the variable input is 0, then multiply the variables fongia term.

0 add all such terms.
To find a product of sums from a truth table:
O identify the rows having output O.

O for each such row, write the variable if the variable inpud & write the complement of the variable
if the variable input is 1, then add the variables formingasu

O multiply all such sums.

211 Example Find a SOP and a POS fdr

RFRRPRPROOOO>
PP OORFRPEFFOOW
RORrROROPFR OO
HHOOOHOH‘N

Solution: The outputZ) is 1 on the rows with (iA=0,B = 0,C = 0, so we form the term
(A)(B)(C), (i) A=0,B=1,C=0, so we form the termBC, (iii) A=1,B=1,C=0, sowe
form the termABC, and (iv)A =B = C = 1, giving the termABC. The required SOP is

Z=(A)(B)(C)+ABC+ABC + ABC.
The output Z) is 0 on the rows with (A= 0,B = 0,C = 1, so we form the termA + B +-C,
(i) A=0,B=1,C =1, so we form the termA+B+C, (iii) A=1,B=0,C =0, so we form
the termA+B+C, and (iv)JA=1,B=0,C = 1, giving the termA+ B+C. The required POS
is
Z=(A+B+C)(A+B+C)(A+B+C)(A+B+C).

Using the axioms of a boolean algebra and the aforementithveedems we may simplify a given boolean
expression, or transform a SOP into a POS or vice-versa.

212 Example Convert the following POS to a SOP:
(A+BC)(A+BD).

66

Boolean Algebras 67

Solution: _ _ _ o
(A+BC)(A+BD) = AA+ABD+ABC+BCBD
A+ABD+ ABC+BCD
= A+BCD.

213 Example Convert the following SOP to a POS:

AB+CD.

Solution:

AB+CD = (AB+C)(AB+D)
= (A+C)(B+C)(A+D)(B+D).

214 Example Write WXY+W XZ+Y +Z as a sum of two products.

Solution: We have

WXY+WXZ+YFZ = WX(Y+2)+Y+Z

= WX+Y+Z
= WX+Y-Z

where we have used the fact tieB+ B = A+ B and the De Morgan laws.

Although we will not do much else with sum of products or produof sums, they are important in
several areas of computer science, ranging from practiodl@ms like circuit minimization to theoretical
problems like the theory of NP-completeness.

3.3.2 Logic Puzzles
The boolean algebra identities from the preceding sectiay imelp to solve some logic puzzles.

215 Example Brown, Johns and Landau are charged with bank robbery. Téeethescaped in a car that
was waiting for them. At the inquest Brown stated that thenorals had escaped in a blue Buick; Johns
stated that it had been a black Chevrolet, and Landau sdii ktizal been a Ford Granada and by no means
blue. It turned out that wishing to confuse the Court, eaahairthem only indicated correctly either the
make of the car or only its colour. What colour was the car dndhat make?

Solution: Consider the sentences

the car is blue

the car is a Buick

the car is black

the car is a Chevrolet

the car is a Ford Granada

mooOw>

Since each of the criminals gave one correct statement, iBsstatement implies th&+ B
is true. Similarly, Johns’s statement impl{@s-D is true, and Landau’s statement implies that
A-+E is true. It now follows that

(A+B)-(C+D)-(A+E)

67

68 Chapter 3

is true. Upon multiplying this out, we obtain
(A-C-A)+(A-C-E)+(A-D-A+(A-D-E)+(B-C-A)+(B-C-E)+(B-D-A)+(B-D-E).

Notice that(A-C-A) is clearly false sincé& andA cannot both be true. SimilarlyA-C-E)
if false since the car can’t be both blue and black. We caneasguilarly that all of the terms
are false except the fifth. Thigs C- Ais true, and so the criminals escaped in a black Buick.

216 Example Margie, Mimi, April, and Rachel ran a race. Asked how they madt, they replied:
Margie: “April won; Mimi was second.”

Mimi: “April was second and Rachel was third.”

April: “Rachel was last; Margie was second.”

If each of the girls made one and only one true statement, wdrothe race?
Solution: Consider the sentences

April was first

April was second
Mimi was second
Margie was second
Rachel was third
Rachel was last

TmMmoO®@>
nn

Since each of the girls gave one true statement we have that

1

(A+C)(B+E)(F+D)
Multiplying this out
ABF+ABD+AEF+AED+CBF+CBD+CEF+CED=1.

Now, AB = EF = BC = CD = 0 so the only surviving term i&ED and so April was first,
Margie was second, Rachel was third, and Mimi was last.

217 Example Having returned home, Maigret rang his office on quai degWes.
“Maigret here . Any news?”

“Yes Chief. The inspectors have reported. Torrence thihks if Francois was drunk, then either
Etienne is the murderer or Francois is lying. Justin is efdpinion that either Etienne is the murderer or
Francois was not drunk and the murder occurred after midnigspector Lucas asked me to tell you that
if the murder had occurred after midnight, then either Eteeis the murderer or Francois is lying. Then
there was aring from”

“That’s all, thanks. That’s enough!” The commissar repthite receiver. He knew that when Francois
was sober he never lied. Now everything was clear to him. ,Ruitth proof, the murderer.

Solution: Represent the following sentences as:

68

Logic, Sets, and Boolean Algebra

Francois was drunk,

Etienne is the murderer,

Francois is telling a lie,

the murder took place after midnight.

o0 w>
oo

We then have
A— (B+C), B+AD, D— (B+C).

Using the identity
X =Y =X+Y,

we see that the output of the product of the following sergemoust be 1:
(A+B+C)(B+AD)(D+B+C).
After multiplying the above product and simplifying, we alst
B+ CAD.

So, either Etienne is the murderer, or the following eventsiaed simultaneously: Frangois
lied, Francois was not drunk and the murder took place afidnight. But Maigret knows
thatAC = 0, thus it follows thaB = 1, i.e., Etienne is the murderer.

Exercises

218 Problem Obtain a sum of products for the truth table

ABC|Z
0 0 0|1
0 0 1|1
0 1 0|1
01 1|1
1 0 0]0
1 0 11]0
1 1 0|0
11 11/0
Answers
218
A-B-C+A-B-.C+A.-B-C+A-B-C
Homework

219 Problem Make a copy of Tabl&.8and fill in the missing entries.
220 Problem Give 2 different proofs that pVv q) A —=p] — q s a tautology.

221 Problem Give 2 different proofs thaip A (p — q)] — qis a tautology.

69

70 Chapter 3

222 Problem Prove thaip <> gand(pAQq) Vv (—=pA—q) are logically equivalent without using truth tables.
223 Problem Use a set containment proof to prove thaAiéndB are sets, theA— B = AUB.

224 Problem Prove that ifA, B andC are sets, the(ANBNC) C (ANB) using a set containment proof.
225 Problem Draw a Venn diagram showingn (BUC), whereA, B, andC are sets.

226 Problem Rusty has 20 marbles of different colours: black, blue, graad yellow. Seventeen of the
marbles are not green, five are black, and 12 are not yellow. tHany blue marbles does he have?

227 Problem LetAandBbeTr eeSet s (See Exampl&68).

1. The methoc&ddAl | (TreeSet ot her) adds all of the elements ot her to this set if they're
not already presentWhat is the result oA. addAl | (B) (in terms ofA andB and set operators)?

2. The method enoveAl | (TreeSet ot her) removes from this set all of its elements that are
contained inot her . What is the result oA. r enoveAl | (B) (in terms ofA andB and set opera-
tors)?

3. Write A. cont ai ns(x) using set notation.

228 Problem

Consider the relatioR = {(1,2),(1,3),(3,5),(2,2),(5,5),(5,3),(2,1),(3,1) } on the se{1,2,3,4,5}. Is
Rreflexive? symmetric? antisymmetric? transitive? an eajaice relation?

229 Problem Let X be the set of all people, and define the following.
R; = {(a,b) € X?|ais taller thanb}

R: = {(a,b) € X?|ais at least as tall as}

Rz = {(a,b) € X?|aandb are the same height

Rs = {(a,b) € X?|aandb have the same last narje

Rs = {(a,b) € X?|aandb have last names that start with the same Igtter
Which of these is are equivalence relations? Prove it.

230 Problem Define three different equivalence relations on the setl Ghakhows. For each, give exam-
ples of the equivalence classes, including one represanfatm each. Prove that each is an equivalence
relation.

231 Problem LetA={1,2,...,n}. LetRbe the relation ofP(A) (the power set o) such that, b P(A)
are related iffa] = |b|. Prove thaR is an equivalence relation. What are the equivalence dad$&

232 Problem The classRel ati on is a partial implementation of a relation on a #etlt has a list of
El ement objects.

e An El enent stores an ordered pair from. El enent has methodget Fron() andget To()
(using the language of the directed graph representati®@u).if an El enent is storing(a,b),
get Fron() returnsa andget To() returnsb. The constructoEl enent (Obj ect a, Obj ect
b) creates an elemef&,b).

70

Logic, Sets, and Boolean Algebra 71

e TheRel at i on class has methods like eRel at ed(Obj ect a, Obj ect b),get El enents(),
andget Uni verse().

e Methods in theRel at i on class can uséor (El enent e : get El ements()) to iterate over
elements of the relation.

e Similarly, the loopf or (Obj ect a : get Uni verse()) iterates over the elements Af
Given all of this, implement the following methods in tRel at i on class:
1. i sRefl exive()
2. isSymetric()
3. isAnti Symetric()
233 Problem Draw a table to represent the following Boolean expressions
a. Xx+y
b. xy+ (xy) +z
c. (X+2)y
234 Problem Find the sum-of-products expansion for each of the Boolgpressions from Proble233
235 Problem Find the product-of-sums expansion for each of the Bool&pressions from Proble233

236 Problem Expressx+y+ z using only the Boolean operatorand .

237 Problem TheNAND of p andq, denoted byp|q, is the proposition “not botlp andq”. The NAND
of p andq is false wherp andq are both true and true otherwise.

a. Draw a truth table foNAND
b. Expresx|y usingV, A, and/or- (you may not need all of them).
c. Expresxyusing only NAND.

d. Expresx+y using only NAND.

238 Problem TheNORof p andq, denoted byp | g, is the proposition “neithep nor g’. The NOR of
p andq is true whenp andq are both false and false otherwise. Express each of thevioiipusing only
the NOR operator.

a. Draw a truth table foNOR
b. Expresx /] yusingV, A, and/or— (you may not need all of them).
c. Expresxy using only NOR.

d. Expresx+y using only NOR.

71

72 Chapter 3

239 Problem Show that the NAND operatof)(is functionally complete given the fact thit } (that is,
the AND and NEGATION operators) is universally completeinfH All you need to do is show how to
implement each of AND and NEGATION using NAND.)

240 Problem A set of logical operators iinctionally completéf any possible operator can be imple-
mented using only operators from that set. It turns out fhat\} is functionally complete. So i§—,V}.
To show that a set if functionally complete, all one needsddsdshow how to implement all of the
operators from another functionally complete set. Givés th

a. Show thaf |} is functionally complete.

b. Show that{|} is functionally complete.

241 Problem You need to settle an argument between your boss (who candiineand your professor
(who can fail you). They are trying to decide who to invite lhe troung Accountants Volleyball League.
They want to invite freshmen who are studying accountingarecat least 6 feet tall. They have a list of
all students.

a. Your boss says they should make a list of all freshment aflsll accounting majors, and a list of
everyone at least 6 feet tall. They should then combine #tg (removing duplicates) and invite
those on the combined list. Is he correct? Explain. If he isaoorect, describe in the simplest
possible terms who ends up on his guest list.

b. Your professor says they should make a list of everyone iwinot a freshman, a list of everyone
who does not do accounting, and a list of everyone who is uédeet tall. They should make a
fourth list that contains everyone who is on all three of therdists. Finally, they should remove
from the original list everyone on this fourth list, and itevthe remaining students. Is he correct?
Explain. If he is not correct, describe in the simplest gosdierms who ends up on his guest list.

c. Give a simple description of how the guest list should leaiad.

242 Problem Explain whether the following assertion is true and negateithout using the negation
symbol-:
YneNImeN (n® > 4n— 2" > 2™ 4 10)

243 Problem Prove Theoremi83 (Note: Thisis an if and only if proof, so you need to provelbetys.)

244 Problem You are helping a friend debug the code below. He tells yowe“@bde in the if statement
never executes. | have tried it fa=2, x=4, and everx=- 1, and it never gets to the code inside the if
statement.”

i f((x%2==0 && x<0) || !'(x%®==0 || x<0)) {
/1 Do sonet hi ng.
}

1. Is he correct that the code inside the if statement doesxemtute for his chosen values? Justify
your answetr.

2. Under what conditions, if any, will the code in the if statnt execute? Be specific and complete.

72

Logic, Sets, and Boolean Algebra 73

245 Problem Simplify the following code as much as possible.

if (x>0) {
if(x<y || x>0) {
X=Y;
}
}

246 Problem Simplify the following code as much as possible:

i f(x<=0 && x>0) {
doSonet hi ng() ;

} else {
doAnot her Thi ng() ;

}
247 Problem Consider the following code.

bool ean not Bot hZero(int x, int y) {
if(!'(x==0 && y==0)) {
return true;
} else {
return fal se;
}
}

bool ean unknownl(int x, int y) {
if(x!'=0 && y!=0) {
return true;
} else {
return fal se;

}
}

bool ean unknown2(int x, int y) {
if(x!'=0]| y!'=0) {
return true;
} else {
return fal se;

}

Is eitherunknown1 orunknown2 (or both) equivalent tmot Bot hZer 0? Prove it.

248 Problem

Simplify the following code as much as possible. (It can bemified into a single if statement that is
about as complex as the original outer if statement).

if (('x.size()<=0 && x.get(0)!=11) || x.size()>0) {
if ('(x.get(0)==11 && (x.size()>13 || x.size()<13))
&% (x.size()>0 || x.size()==13)) {
/1 Do a few things.

73

74 Chapter 3

249 Problem The following method returns true if and only if none of théras of the array are 0O:

bool ean noZeroEl enments(int[] a, int n) {
for(int i=0;i<n;i++) {
if(a[i] == 0)
return fal se;

}

return true;

The two methods below implement this idea for two arrays. uAssl i st 1 andl i st 2 have the
same size for both of these methods.

bool ean unknownl(int[] listl, int[] list2, int n) {
for(int i=0;i<n);i++) {
if(listl[i]==0 && list2[i]==0)
return fal se;

}

return true;

}

bool ean unknown2(int[] listl, int[] list2, int n) {
i f(noZeroEl ements(listl, n)) {
return true;
} else if(noZeroEl enents(list2, n) {
return true;
} else {
return fal se;

}

1. What isunknown1 determining? (Give answer in termslafst 1 andl i st 2.)
2. What isunknown2 determining? (Give answer in termslafst 1 andl i st 2.)

3. Prove or disprove thainknownl andunknown2 are determining the same thing.

74

Chapter I

Sequences and Summations

4.1 Sequences

250 Definition A sequencef real numbers is a function whose domain is the set of naturabers and
whose output is a subset of the real numbers. We usually dens¢quence by one of the notations

ag,ay,ay, . ..
or
{an}::mo
or
{an}.

The last notation is just a shorthand for the second notation

D Sometimes we may not start abr0. In that case we may write

am,a+n+1,am+2,---,

or
{an}nsn ;

where m is a non-negative integer. Most sequences we willdgawill start with m=0or m= 1.
We will be mostly interested in two types of sequences. Tis fype are sequences that have an
explicit formula for theim-th term. They are said to osed form

251 Example Leta,=1-— 2—1”,n =0,1,.... Then{an}% is a sequence for which we have an explicit
formula for then-th term. The first five terms are

a = 1__10 = 07
_ 4.3 _ 1
aa = 1-5 = 3,
_ 4.3 _ 3
@ = 1-% = 7
I
a3 == 1—? = g,

If you can’t work out the last step of each of these, you nedafigsh up on your algebra skills.

81

82 Chapter 4

The second type of sequence are defined recursively. Theddh, term is based on previous term(s).
We call theseecurrence relations

252 Example Let
1
Xo=1 Xy= <1+r—]>xn1, n=1212,....

Then{x.} %5 is a sequence recursively defined. The texms,, ...,xs are

xu = (1+7)% = 2
Xo = (1+:—2L)X1 = 3
X3 = (1+3)% = 4
Xg = (1+%)X3 = 57
X5 = (1+%)X4 = 6.

Notice that in the previous example, we gave an explicit defim of Xo. This is called arinitial
condition Every recurrence relation needs one or more initial comast Without them, we have an
abstract definition of a sequence, but cannot compute angyaince there is no “starting point.”

When we find an explicit formula (or closed formula) for a neence relation, we say we haselved
the recurrence relation.

253 Example It seems relatively clear that = n+ 1 is a solution forx, from Example252

It is important to be careful about jumping to conclusions tpiickly when solving recurrence rela-
tions! Although it turns out that in the previous examptg= n+ 1 is the correct closed form (we will
prove it shortly), just because it works for the first 6 ternogsl not necessarily imply that the pattern
continues.

254 Example Define{an} by a(0) =1,a(1) =2, and

a(n) = {1+2\/§

x a(n— 1)J +a(n—2)

forn> 2. Let's try to figure out a closed form fa(n). Then we can see that
a = [H8xal)|+a0) = [5x2+1 = 4
ag = [M5xa@2)]+al) = | x4|+2 = 8
a = [Hxa@)|+a2) = [H5x8|+2 = 16

()]

You should verify these with a calculator. At this point ieses relatively clear that, = 2". However,
as = |15 xa(4)| +a(3) = |15/ x 16/ + 8 =33

so the solution that seems “obvious” turns out to not be cbrid/e won't give the actual solution since
the point of this example is to demonstrate that just becaysstern holds for the first several terms of a
sequence, it does not guarantee that it holds for the whgleesee.

1These comments apply to other problems that involve seepagtarn and finding an explicit formula.

82

Sequences 83

Generally speaking, you need poovethat the closed form is correct. One way to do this is to plug
it back into the recursive definition. It usually works besptug it into the right hand side and use your
algebra prowess to simplify it to the left hand side (whicfust x,, or whatever the sequence is called).

255 Example Prove thak, = n+ 1 is a solution to the recurrence relation given by

1
Xo=1 Xy= <1+ﬁ>xn_1, n=1212,....

Proof: If x,=n-+1forn> 0, then
1 1
1+=)%X-1 = [(1+-=
<+n>xn ! <+n>n

n+1
= Xn

SOX, = N+ 1 is a solution to the recurrence relation. O

A more complete discussion of solving recurrences appadtéiaptes.

256 Example TheFibonacci numberare a sequence of numbers that is of interest in various matfie
ical and computing applications. They are defined usingahevfing recurrence relatiof:

) if n=0
fn:{ 1 if n=1
(fatfrz ifn>1

The first few are:

fo = 0

f = 1

f = f1+fp=1+0=1
fs = fo+f1=1+1=2
fs = f3+fH,=2+1=3
fs = f4+f3=3+2=5
fe = fs+f,=5+3=8
f; = fg+f5=8+5=13

257 Definition A sequencdan}, %, is said to be’
e increasingif ay <ap 1 VneN

e strictly increasingf ay < a1 VvneN

2In the remainder of the book, when you sikeyou should assume it refers to tkeh Fibonacci number unless otherwise
specified.
3Some people call these sequenees-decreasingncreasing non-increasinganddecreasingrespectively.

83

84 Chapter 4

e decreasindf a, > ap 1 VNN
e strictly decreasindf a, > a1 VneN

A sequence is calleghonotonidf is any of these.

258 Example Recall that0=1, 1!=1,2!=1.-2=2,3I=1-2-3 = 6, etc. Prove that the sequence
Xhn=n,n=0,12,...is strictly increasing fon > 1.

Proof: Forn> 1 we have
Xp=hn'=n(n—1)! = nX,_1 > Xn_1,

sincen > 1. This proves that the sequence is strictly increasing. O

1 . . .
259 Example Prove that the sequengg= 2+ on’ n=0,1,2,...is strictly decreasing.

1 1
ot = (245m1) - (24 5)
1 1
n+l on
2 1 2

Proof: We have

- o+l
< 0.

Thus,Xh11 — Xy < 0, SOXh11 < Xn, I.€., the sequence is strictly decreasing. O

2
n
260 Example Prove that the sequengg=

,n=12 ...is strictly increasing.

2
. . n“+1 1
Proof: First notice thatT+ =n+ o Now,

1 1
ot = (b og) = (ne)
B 17
= Mhaiih
T
B n(n+1)

> 0,

the last step since/h(n+ 1) < 1 whenn > 1. Thereforexn 1 — Xy > 0, SOXn11 > Xy, i.€., the
sequence is strictly increasing. O

261 Definition A sequenceXs}, %, is said to beboundedf eventually the absolute value of every term
is less than or equal to a certain positive constant. Theeseguthat is not bounded is calledbounded

Proving that a sequence is unbounded involves showing thadrfy arbitrarily large positive real
number, we can always find a term whose absolute value isegriain this real number.

262 Example Prove that the sequengg=n!,n=0,1,2,...is unbounded.

84

Sequences 85

Proof: LetM > 2 be alarge real number. ThefM| —1)! > 1. Therefore{x,} is unbounded
since
X = [M]! = [M]([M]=1)! > [M] > M.

O
n+1 .
263 Example Prove that the sequeneg = o n=12,...,is bounded.
Proof: Notice that ifn > 1, then ¥n < 1. Therefore
= il — 1+} S 27
n n
Soay, is bounded. O

264 Definition A geometric progressiois a sequence of the form
a, ar,ar?, ar’, ar®,...,

wherea (theinitial term) andr (thecommon ratip are real numbers. That is, a geometric progression is a
sequences in which every term is produced from the preceadiedy multiplying it by a fixed number.

Notice that then-th term isar"~L. If a= 0 then every term is 0. l&r # 0, we can find by dividing
any term by the previous term.

265 Example Find the 35-th term of the geometric progression
1,8

Solution: The common ratio is-2+ -+ = —2/2. Hence the 35-th term %(—2\/?)34 =

% — 11258999068426242.

Si

266 Example The fourth term of a geometric progression is 24 and its gbmenm is 192Find its second
term.

Solution: We are given thaar3 = 24 andar® = 192 for somea andr. Clearly,ar # 0, and

so we find
ar® 5 192

ad | T 22~

whencer = 2. Now,a(2)2 = 24, giving a= 3. The second term is thus = 6.

8,

267 Definition An arithmetic progressiois a sequence of the form
a, a+d,a+2d, a+3d, a+4d,...,

wherea (theinitial term) andr (thecommon differengeare real numbers. That is, an arithmetic progres-
sion is a sequences in which every term is produced from #eepiing one by adding a fixed number.

85

86 Chapter 4

268 Example If sy =3n—7, then{s,} is an arithmetic progression with= —7 andd = 3 (assuming we
begin withsp).

D Notice that geometric progressions are essentially a digcversion of an exponential function and
arithmetic progressions are a discrete version of a linaamdtion. One consequence of this is that a
sequence cannot be both of these unless is is the sequenee. a for some a.

269 Example Consider the sequence710,13,16,19,22 Assuming the pattern continues, is this a
geometric progression? Is it an arithmetic progression?

Solution: It is easy to see that each term is 3 more than the previous fEns, this is an
arithmetic progression with = 4 andd = 3. Clearly it is therefore not geometric.

Exercises

270 Problem Find the first five terms of the following sequences.
1. X =14(-2)",n=0,1,2,...
2. % =1+(-3)"n=0,1,2,...
3. Xy=n+1n=0,1,2,...

1

4 Xpg— ——
A

n=2234,...

1 n
5. X — <1+ﬁ> n=12. .

271 Problem Decide whether the following sequences are eventually noomoor non-monotonic. De-
termine whether they are bounded or unbounded.
1. Xx,=n,n=0,1,2,...

2. X% =(-1)"n,n=0,1,2,...

3. Xp=—,n=0,12 ...

n
4. xn=—,n=0,1,2,...
n n+17) ==y &
5 X =n°—n,n=0,12,...

6. Xy =(—1)",n=0,1,2,...

8. xn=1+—-,n=0,1,2,...

272 Problem Find the 17-th term of the geometric sequence
2 2 2
— 217 316 3

273 Problem The 6-th term of a geometric progression is 20 and the 103R0s Find the absolute value
of its third term.

86

Sums and Products 87

Answers

270 (1) 2, -1, 5,7, 17; (2) 2, ¥2, 5/4, 7/8, 17/16; (3) 2, 2, 3, 7, 25; (4) 13, 1/5, 1/25, 1/119, 1721; (5) 2,
9/4, 64/27, 625256, 77763125

271 (1) Strictly increasing, unbounded (2) non-monotonic, aurided (3) strictly decreasing, bounded (4) strictly
increasing, bounded (5) strictly increasing, unbound@d)gn-monotonic, bounded, (7) strictly increasing, badd
(8) strictly decreasing, bounded

2
272 — -
3

273 One is given thaar® = 20 andar® = 320. Hencear?| = 3

4.2 Sums and Products
There is often a need to add or multiply terms from a sequéeHoe following notation is very helpful.

274 Definition Let{an} be a sequence. Then forklm < n, we define

n

> &=am+ami1+--+an.

k=m

n
IT a = amamy1---an.

k=m

We will often write these as

> & and I a

m<k<n m<k<n

As with sequences, we are often interested in obtainiloged formgor a sum or product. There are
many techniques to do so. We will present just a few.
Perhaps the simplest cases are when we have a sum/prodaetfofin

(a2—a1)+(as—az) ++--+ (8 —an-1) = an—au,

and
% % & _ &

a & a1 &
in which case we say that the sum or the prodiet¢scopes The trick can be to recognize when a
sum/product telescopes.
In the following example we develop a formula for a geometgdes by doing a little algebra so we
can use the telescoping idea.

1— Xn+1

275 Theorem (Finite Geometric Series) Letx# 1. Then) XK= 14+X+X 44X = T

0<k<n

87

88 Chapter 4

Proof: First, letS= Y xX Then

0<k<n
xS=x Y XK= 3 Xl Y K
0<k<n 0<k<n 1<k<n+1
So
xS-S = Y K- Y X
1<k<n+1 0<k<n
(X1 +X2+ .o+ Xn+Xn1) — (Xo+ X0+ ..+ Xn)
XI’H-l _XO — Xl’H-l -1
. 1 o n+l_1 .
So we haves(x— 1) = X"+ — 1, soS= %, —=, sincex # 0. O

PuttingN = n+ 1 in the above formula, we are provided with the followingtéaization, which is
useful in certain situations.

XN —1=(x=1)N1 N2 ...y x+1). (4.1)
For example,
¥—1=(xx—-1)(x+1), X-1=x-1)(C+x+1),and x*-1=(x—1)(+x*+x+1).

D More important than remembering themulaabove is remembering tmeethodof how this formula
was obtained. As you work with sums more, you will start tosseee of the tricks that come in handy
often. There may be “one ring to rule them all”, but there ig wme technique that always works when
finding closed forms for sums.

We just saw a technique that multiplies a sumxpgubtracts, and then does some algebra. The next
example is just a special case of this o 2.

276 Example Find the sum
y iy S, N, S, NN L)

Solution: We could just use the formula we computed above, but thatadvbalboring.
Instead, let’s let

S=204+28 422428 4. 42"
Then B=214+224+234... 4 2"1 Notice these have most of the same terms, ex8épis
20 and BShas 1. Therefore,

S=2S-S = 2t + 22 + 22 4+ ... 4 2 4 2nY

—(20 + 28+ 22 4+ 2B + .+ 2
_ 2n+1_20

We have already implicitly used the following fact.

277 Theorem If X, is a sequence ardlis a real number, then

n n
dax=ay X
k=m k=m

88

Sums and Products 89

Proof: This follows immediately from the distributive law. O
This and Theorer275imply that whenr # 1,
n_, a—arkt!
dart=—-—.
0 1-—r
Nevertheless, we will prove it from scratch.
n a—arktl
278 Theorem If r # 1, then) ark=2_%
o 1—r
Proof: LetS=a+ar+ar’+---+ar". ThenrS=ar+ar’+---+ar"t1. Hence
S-rS = atartar’+---+a"—ar—ar®—...—ar"t!
= a—ar"
From this we deduce that
S=——,
1-—r
that is,
N a—ar™i
dart=——-—
s 1-—r
O

Notice that if|r| < 1 thenr" gets closer to O the largergets. More formally, ifir| < 1, limpor" = 0.

This implies that ifir| < 1,

atar+arkt =0
1-r

In other words, the infinite sum of all of the terms in a geometequence ia/(1—r) if |r| < 1.

279 Example A fly starts at the origin and goes 1 unit upg,2Llunit right, 1/4 unit down, /8 unit left,
1/16 unit up, etc.ad infinitum.In what coordinates does it end up?

Solution: Its x coordinate is

1 1 1 5 2
___+__... 1 —
2 8 32 - 5
Its y coordinate is
11 1 4
416 1-73 5

Therefore, the fly ends up ig,).

Another trick to simplify sums involves adding the terms isuan twice, typically in a different order,
and then dividing the result by two. This is known as Gausskir

89

90 Chapter 4

n(n+1)

280 Corollary > k= >

1<k<n
Proof: If

S=1+2+3+---+n
then
S=n+(n-1)+---4+1
Adding these two quantities,

S = 1 + 2 4+ -~ 4+ n
S = n + (=1 + - + 1
2S = (n+1) + (n+1) + --- + (n+1)
= n(n+1),
. L 1
since there ara summands. This giveS= n(n;—) , as was to be proved. O

Here are a few more useful summations that come up often.eTdrervarious ways of proving each
of these. For now, we will provide the results without prodfe will return to some of them in the section
on Induction since that is perhaps the easiest way to provs wfgthem.

5 2 n(n+1)(2n+1)
1<k<n 6
n?(n+1)>2
2T e
> 1 _ 1.1 1 1 n-1
oo (k=1k — 1.272.37 3.4 (n—1)-n_ n

The following infinite sums are sometimes useful.
281 Theorem The following expansions hold:
1 (o]

T = X =14 x+ 3+, X <1
- n=0
l o0
= Yt =14 x4+ 4H3 4+, X <1
(1—X)2 n=0
. 00 (_1)nx2n+1 X3 X5 0 X2n+l
sinx = X4 ()" —— 4., XxeR
nZ::o(Z”H)! sts T gt X€
00 (_1)nX2n X2 X4 0 X2n
COSX = —=1-——4+——---+ (-1 XeR
n;) (2n)! TR S TR
© X" XX X3 X"
e = nz_:oazl‘i‘x“f—z‘i‘g—f—‘“—f—a-i—“', xeR
00 (_1)n+1xn X2 X3 0 1Xn
log(1 = T - ()™M 1
0g1+x) = 2 X—mtg =t (D)o X<
X" = 3 =1 poxr WDy TOZDEZ2 TNt e g,
—o\n 2! n!

90

Sums and Products 91

Exercises

282 Problem Find the sum of the following geometric series.

1.
14+3+324+334...4-3%,
2. Ify+#1,
1+y+y?+y3 4y
3. Ify#1 o 100
1-y+y? =y 4y =yt =y 4yt
4. 1fy#1,

T+Y?+y Yo+ yi 0
283 Problem Find the sum of all the integers from 1 to 1000 inclusive, arace not multiples of 3 or 5.
284 Problem Find the sum of all integers between 1 and 100 that leave reteaR upon division by 6.
285 Problem Find a closed formula for
Dn=1-24+3—4+4---+(-1)"'n
286 Problem Find a closed form fop; <<, 3.

287 Problem Letn > 1. Find a closed form fof o<x<n () (—1)%.

288 Problem Find a closed form foF>; <<y (§) 3%

289 Problem Evaluate the double sub; i<, >1<k<n 1.
290 Problem Evaluate the double sub; i<, > 1<k<i 1.

291 Problem Evaluate the double sulij<, > 1<k<i K.

292 Problem Evaluate the double sul ;i< >-1<k<n IK.

293 Problem Factor
L+X+X+- -+ x50

as a polynomial with integer coefficients.
294 Problem Obtain a closed formula for <y <p k- Kl. Hint: (k+1)! = (k+1)k!.

295 Problem A colony of amoebdsis put in a glass at 2 : 00 PM. One second later each amoebaslivid
in two. The next second, the present generation divides énaiyain, etc.. After one minute, the glass is
full. When was the glass half-full?

4Why are amoebas bad mathematicians? Because they dividgtiply

91

92 Chapter 4

Answers

282 (1) &5 = 358948993845926294385124, (2).", (3) 12, (4) 1;};‘2”

283 We compute the sum of all integers from 1 to 1000 and weed eusuim of the multiples of 3 and the sum of
the multiples of 5, but put back the multiples of 15, which vesrdncounted twice. Put

An=1+2+3+-+n,

B=3+6+9+---+999= 3Azz3,
C=5+10+15+---+ 1000= 5A200,
D =15+ 30+ 45+ ---4+990= 15As6.
The desired sum is

A1000—B—C+D = Ajoo0— 3A333— SA200+ 1566
= 500500-3-55611-5-20100+ 15-2211
= 266332

284 We want the sum of the integers of the formi62,r = 0,1,...,16. But this is

16 16 16
B ~ .16(17) B
> (6r+2)=63 r+) 2=6—1"+2(17) =850
r=0 r=0 r=0
(2n+1)(—1)™1 41

285
4

286 Use the same method as in theor2i: put

S=3+3%+... 43"

Then
3S=3%4+33 ... 43"+ 3L
Subtracting,
35—S=(F+F+... 4343 (3432 4... 43N =3"1_3
3n+1_3
The answer isT.

287 By the binomial theorem, & (1—1)" = "o, (7) (- D).

288 By the binomial theorem,= (1+3)" = 3"y <, (E) 3%, and sOY; jn (E) K_gn_ 1.

289 We have
ooy 1=> n=n
1<i<n 1<k<n 1<i<n
290 We have (A
. n(n+
l = =
DEEEE
<i<n 1<k<i 1<i<n
291 We have

Sequences and Summations 93

: . n?(n+ 1)
k = k)| =—"~ .

293 PutS=1+Xx+X2+---+x89. Then

292 We have

S—xS= (1+x+x24 - 480 — (x+ 2 +x3+ - x84 8N =18,

orS(1—x) =1—x3% Hence

xel_1
Tt x+x 4 580 = =
x—1
Therefore
X-1 -1 -1 ¥-1 -1
x—1 x7—-1 x¥¥-1 x3—-1 x-—1°
Thus

T4x4+X% 4+ = 0 + 1) (B + 1) 8+ 3+ 1) (@ +x+1).
294 From the hintk-k! = (k+1)! — k! and we get the telescoping sum

S kekl= 3 (k1) —K = (20— 1)+ (31— 21) + (41— 3) +--- (N+ 1)l —nl) = (n+ 1) — 11,

1<k<n 1<k<n

295 At 2:00:59 PM (the second just before 2 : 01 PM.)

Homework

296 Problem Find at least thredifferentsequences that begin with 1, 3, 7 whose terms are generated by
a simple formula or rule. By different, | mean none of the segues can have exactly the same terms. In
other words, your answer cannot simply be three differeryiswa generate the same sequence.

297 Problem Letq(n) =2q(n—1)+2n+5, andq(0) = 0. Computeg(1), q(2), q(3) andq(4).
298 Problem Compute each of the following:
40
1.) k
k=5
22

2. Y (2t -2))

i=5

5

i=1

299 Problem Here is a standard interview question for prospective cdergarogrammers: You are given
a list of 1,000 001 positive integers from the sél,2,...,1,000000}. In your list, every member of
{1,2,...,1,000,000} is listed once, except fo; which is listed twice. How do you find whatis without
doing a 1000 000 step search?

93

94 Chapter 4

300 Problem Find a closed formula for
Th= 12—22—|—32—42_|_...+(_1)nfln2.

301 Problem Show that
14345+ ---+2n—1=n

302 Problem Show that
K 1 n?+n

n
kZ::lk4+k2+1:§'n2+n+1'

303 Problem Legend says that the inventor of the game of chess, Sissadign Bsked the King Shirham
of India to place a grain of wheat on the first square of the sieard, 2 on the second square, 4 on the
third square, 8 on the fourth square, etc..

1. How many grains of wheat are to be put on the last (64-thusfu
2. How many grains, total, are needed in order to satisfy taedy inventor?

3. Given that 15 grains of wheat weigh approximately one grahat is the approximate weight, in
kg, of the wheat needed?

4. Given that the annual production of wheat is 350 millionrtes, how many years, approximately,
are needed in order to satisfy the inventor (assume thatuptiah of wheat stays constant)?

304 Problem Consider the following function:

int ferzle(int n) {
i f(n<=0) {
return 3;
} else {
return ferzle(n-1) + 2;

}

1. Determine what er zI e(n) returnsfom=0,1,2,3,4.

2. Re-writef er zI e without using recursion.

305 Problem It is easy to see that we can definkerecursively by defining Ok 1, and ifn > 0, n! =
n-(n—1)!. Does the following method correctly comput® If not, state what is wrong with it and fix it.

int factorial (int n) {
return n » factorial (n-1);
}

}

306 Problem A students turned in the code below (which does as its namgests). | gave them a
‘C’ on the assignment because although it works, it is vesffioient. Write the ‘A" version of the
method (in other words, a more efficient version). You carlgafissume thah > 1. Then compute
sunmfFr omOneToN(30) .

94

Sequences and Summations 95

i nt sunFromOneToN(int n) {
int sum= 0;
for(int i=1;i<=n;i++) {
sum = sum + i ;

}

return sum

}

307 Problem A students turned in the code below (which does as its namgests). | gave them a
‘C’ on the assignment because although it works, it is vesfficent. Write the ‘A’ version of the
method (in other words, a more efficient version). You caelgadssume that,m > 1. Then compute
sumnmfFr omMIoN(10, 50) .

int sunfFromMIoN(int m int n) {

int sum = O;

for(int i=1;i<=n;i++) {
sum = sum + i;

}

for(int i=1;i<mi++) {
sum = sum - i;

}

return sum

95

96

Chapter 4

This page intentionally left blank.

96

Chapter 5

Algorithm Analysis

In this chapter we take a look at the analysis of algorithnefoE we dive into that topic, we discuss one
of the most important tools used in analyzing algorithessmptotic notationWe end the chapter with a
discussion of the growth rates of several common functions.

5.1 Asymptotic Notation

Asymptotic notatiors used to express and compare the growth rate of functiormiricase, the functions

will represent the running time of algorithms. Since themiag time of an algorithms is always nonneg-
ative, and since it simplifies the definitions somewhat, wiedeifine the asymptotic notations in terms of
nonnegative functions. We will focus on the most commonpdusotations in the analysis of algorithms.

5.1.1 The Notations
308 Definition (Big-O) Let f be a nonnegative function.

We say thatf (n) is Big-O of g(n), written
as f(n) = O(g(n)), iff there are positive
constantg andng such that

f(n) <cg(n) for all n > no.
f(n)
If f(n) = 0O(g(n)), f(n) grows no faster
than g(n). In other words,g(n) is an
asymptotic upper boundor just upper
bound on f(n).

f(n) = O(g(n))

D The “="in f (n) = O(g(n)) should be read and thought of as “is”, not “equals”. An altative
notation is to write fn) € O(g(n)) instead of fn) = O(g(n)) . Since Gg(n)) is actually the set of all
functions that grow no faster thar{ig), the set notation is actually in some sense more correct.“Fhe
notation is used because it comes in handy when doing alg&bracan essentially think of these as being
two different notations for the same thing. Similar stateteare true for the other asymptotic notations.

309 Example Prove than?+n= O(nd%).

101

102 Chapter 5

Solution: Here, we havef (n) = n? 4 n, andg(n) = n® Notice that ifn > 1, n < n® and
n? < nd. Therefore,
nP+n<nt+nd=2n
Thus,
n+n<2nforalln>1

Thus, we have shown that 4+ n = O(n®) by definition of Big-O, withng = 1, andc = 2.

D Notice that if a and b are real numbers with<ab, then # < n® whenever n> 1. This fact is used
often in these types of proofs.

Sometimes the easiest way to prove th@t) = O(g(n)) is to takec to be the sum of the positive coef-
ficients of f (n), although this trick doesn't always work. We can usuallyagnthe negative coefficients,
however: We leave it to the reader to figure out why.

310 Example To prove 57 — 3n420= O(n?), we pickc = 5+20=25. Then ifn > ng = 1,
5n% —3n+20 < 5n® + 20 < 5n? 4-20n? = 25n?.
Therefore, B2 — 3n+20= O(n?).

Things are not always so easy. How would you show tR&2)'°9" +log?n+n* is O(2")? Or that
n?> = O(n? — 13n+23)? In general, we simply (or in some cases with much effort) fialdiesc andng
that work. This gets easier with practice.

The values of the constants used in the proofs do not needthe liest possible. So, for instance, if
you can show that (h) < 345g(n) for all n > 712 then f(n) = O(g(n)). It doesn’t matter whether or not
it is actually true that fn) < 3g(n) for alln > 5.

Let’s move on to the other two notations.

311 Definition (Big-Omega) Let f andg be a nonnegative function.

We say thatf (n) is Big-Omegaof g(n),
written as f(n) = Q(g(n)), iff there are
positive constants andng such that

cg(n) < f(n) foralln>ng

If f(n)=Q(g(n)), f(n) grows no slower
than g(n). In other words,g(n) is an
asymptotic lower boundor just lower
bound on f(n).

no
312 Example Prove than®+4n? = Q(n?).
Proof: Here, we have (n) = n®+4n?, andg(n) = n?. Itis not too hard to see thatif> 1,
n? <nd<n®+4n?

Therefore,
n’<n®+4n®foralln>1

son34-4n? = Q(n?) by definition of BigQ, with ng = 1, andc = 1. O

1By “ignore”, | do not literally mean ignore. | mean you canigadeal with them in an inequality like in the next example.

102

Asymptotic Notation 103

Proving that af (n) = Q(g(n)) often requires more thought than proving tfién) = O(g(n)). Quite
often, we have to pick < 1. A good strategy is to pick a value othat you think will work, and determine
which value ofng is needed. Being able to do some algebra helps. We can soasetimplify by ignoring
the slower growing terms off(n) with positive coefficients.

313 Definition (Big-Theta) Let f andg be a nonnegative function.

We say thatf(n) is Big-Thetaof g(n),
written as f(n) = ©(g(n)), iff there are
positive constants;, ¢, andng such that

c1g(n) < f(n) <cpg(n) foralln>ng

If f(n)=0©(g(n)), f(n)grows at the same
rate asg(n). In other words,g(n) is an
asymptotically tight boundor just tight
bound on f(n).

314 Example Prove that?45n+ 7 = O(n?)

Proof: Whenn> 1,
N°+5n+7<n?+5n+7n? < 1372

Whenn > 0,
n><n?+5n+7
Thus,
n><n’+5n+7<13n’foralln>1,
son? +5n+ 7 = ©(n?) by definition of Big®, with ng = 1,¢; = 1, andc, = 13. d

Using the definition of Big-Theta can be inconvenient siridaviolves a double inequality. Luckily,
the following theorem provides us with an easier approach.

315 Theorem If f andg are nonnegative function, thefrin) = ©(g(n)) if and only if f(n) = O(g(n))
andf(n)=Q(g(n)).

Proof: The result follows almost immediately from the definitionge leave the details to
the reader. O

This theorem implies that no new strategies are necessaBider heta proofs since they can be split
into two proofs—a Big-O proof and a Big-Omega proof.
The following is just a small sampling of the properties thastations have.

316 Theorem The following properties hold.

e Transitivity:

2Again, not literally ignore, but easily deal with with an ineality.

103

104 Chapter 5

€ O(g(n)) andg(n) € O(h(n)) — f(n) € O(h(n))
€ ©(g(n)) andg(n) € ©(h(n)) — f(n) € O(h(n))
eQ e Q

(9(n)) andg(n) € Q(h(n)) = f(n) € Q(h(n))
e Scaling: If f(n) € O(g(n)) then for anyk > 0O, f(n) € O(kg(n)). (Also holds for the other two).

e Sums: Iffy(n) € O(g1(n)) and fa(n) € O(gz2(n)) then(fy+ f2)(n) € O(maxgi(n),gz2(n))). (Also
holds for the other two).

e Symmetry (sort of):f (n) = O(g(n)) iff g(n) =Q(f(n)).

How do you use asymptotic notation to express the fact tha} grows slower thamg(n)? Saying
f(n) = O(g(n)) doesn’t work, because we only know thigin) doesn’t grow faster thag(n). It might
grow slower, but it also might grow at the same rate. With tb&ation we have, the best way to express
this idea is thaff (n) = O(g(n)) and f(n) # ©(g(n)). But that is awkward. Let’s define a notation for this
instead.

317 Definition Let f andg be nonnegative functions, withbeing eventually non-zero. We say tHan)
is little-o of g(n), written f(n) = o(g(n)) iff

If f(n)=o0(g(n)), f(n) grows asymptotically slower thag{n).

Little-omega (o) can be defined similarly, but where the limitois

5.1.2 Proofs using the definitions

The following example is annotated with comments about dodrique that is used in many of these
proofs. We use the following terminology in our explanati@y lower order termwe mean a term that
grows slower, anfligher ordermeans a term that grows faster. Td@minating terms the term that grows
the fastest. For instance, XA+ 7x° — 4, thex? term is a lower order term thae, andx? is the dominating
term. We will discuss common growth rates, including howrlate to each other, in Sectié3,

318 Example Find a tight bound orf (x) = x& + 7x” — 10x® — 2x* + 3x% — 17.

Solution: We will prove thatf (x) = ©(x8). First, we will prove an upper bound fdKx). It
is clear that whex > 0,

L7 — 10 — 2 + 3% — 17 < X8 + 7x" + 3%2.

e We can upper bound any function by removing the lower ordengevith negative co-
efficients, as long asx 0.

Next, it is not hard to see that wher> 1,

X+ 7 + 3 <X+ 78+ 38 =118

104

Asymptotic Notation 105

e We can upper bound any function by replacing lower order tethat have positive
coefficients by the dominating term with the same coeffei¢ttre, we must make sure
that the dominating term is larger than the given term for\alues of x larger than
some thresholdgx and we must make note of the threshold value x

Thus, we have
f(X) =X+ 7% —10C -2+ 3 —17< 11E for all x > 1,
and we have proved thétx) = O(x8).
Now, we will get a lower bound fof (x). It is not hard to see that whet> 0,
X 7xT — 10 — 2¢* + 3% — 17> X — 10 — 2x* — 17.

e We can lower bound any function by removing the lower ordensewith positive coef-
ficients, as long as x 0.

Next, we can see that whern> 1,
X100 — 2 —17>x8 —10x" —2x" — 17" = x® — 29x".

e We can lower bound any function by replacing lower order temith negative coeffi-
cients by a sub-dominating term with the same coefficieBiss(b-dominating, | mean
one which dominates all but the dominating term.) Here, wstrmake sure that the
sub-dominating term is larger than the given term for allued of x larger than some
threshold ¥, and we must make note of the threshold valuéaking a wise choice for
which sub-dominating term to use is crucial in finishing tinegs.

Next, we need to find a value> 0 such that® — 29’ > 8. Doing a little algebra, we
see that this is equivalent td — ¢)x® > 29x’. Whenx > 1, we can divide by’ and obtain
(1—c)x > 29. Solving forc we obtain

c<1-2
X

If x> 58, thenc = 1/2 suffices. We have just shown thakif 58, then
1
f(x) =x8+7x" —10C —2* + 3% — 17> éx8.

Thus, f(x) = Q(x®). Since we have shown th&fx) = Q(x) and thatf (x) = O(x®), we have
shown thatf (x) = O(x).

319 Example Show thatn? +3n = ©(n?)
Proof: Notice thatifn>1,

1, 1, 2 [o
—n“+3n< =n“+3n°= =n
2 + -2 + 27

so%n2 +3n=0(n?). Also, whenn > 0,

1, 1,
—n“<=n“+3n
2 — 2 +sn,

1 . 1
so§n2+3n = Q(n?). Since3n?+3n=0(n?) and3n?+3n=Q(n?), §n2+3n =0(n?) O

105

106 Chapter 5

320 Example Show thatnlogn—2n-+13) = Q(nlogn)
Proof: We need to show that there exist positive constaatisdng such that
0 <cnlogn < nlogn—2n+ 13 for alln > ng.
Sincenlogn—2n < nlogn—2n+ 13, we will instead show that
cnlogn < nlogn—2n,
which is equivalent to

c<1- i, whenn > 1.
logn

If n> 8, then 2 (logn) < 2/3, and pickingc = 1/3 suffices. Thus i€ = 1/3 andng = 8, then
for all n > ng, we have

0 <cnlogn<nlogn—2n<nlogn—2n+13.
Thus(nlogn—2n+13) = Q(nlogn). O
321 Example Show thatin? — 3n = ©(n?)

Proof: We need to find positive constarts c,, andng such that

1
0< ¢ < =n®—3n < cn? for all n > ng

Dividing by n?, we get
con < 1 3 <
=H=2" ="

Notice thatc; < 1 — 32 holds forn > 10 andc; = 1/5. Also, 3 — 2 < ¢, holds forn > 10 and

c; = 1. Thus, ifc; =1/5, ¢, = 1, andng = 10, then for alln > no,

1
0<cn?< énz —3n< cn?foralln>ng.
Thus we have shown thgh? — 3n = ©(n?). O

322 Example Show thain! = O(n")

Proof: Notice thatwhem>1,0<n!'=1-2-3---n<n-n---n=n". Thereforen! = O(n")
(Hereng=1,andc=1.) O

323 Example Show that(1/2)'°9" = O(,/n), where log means log
Proof: Itis not too hard to see that
(\/é)logn — nlogv2 _ nlogzl/2 _ r]%Iogz _ n% — /N

Thus it is clear thaty/2)°9" = O(/n). O

106

Asymptotic Notation 107

Proving properties of the asymptotic notations is actuatlymore difficult than the rest of the proofs
we have seen.

324 Example Prove that iff (x) = O(g(x)), andg(x) = O(f(x)), thenf(x) = ©(g(x)).
Proof: If f(x) = O(g(x)), then there are positive constangsandn; such that
0< f(n) <cpg(n) foralln>ng
Similarly, if g(x) = O(f(x)), then there are positive constanjsandng such that
0<g(n) <cj f(n)forall n>ng.

We can divide this by to obtain

0< C,ig(n) < f(n) for alln > ng.
1

Settingc; = 1/¢} andng = max(ng, ng), we have
0 <c19(n) < f(n) < cpg(n) for all n > ng.
Thus, f(X) = ©(g(X)). O
325 Example Let f(x) = O(g(x)) andg(x) = O(h(x)). Show thatf (x) = O(h(x)).

Proof: If f(x) = O(g(x)), then there are positive constanisandnj such that

0< f(n) <cyg(n) forall n > ng,
and ifg(x) = O(h(x)), then there are positive constanfsandng such that

0 < g(n) < czh(n) forall n> ng.
Setng = max(ny, ng) andcz = ¢ Cz. Then

0< f(n) <c19(n) < crc2h(n) =cgh(n) for all n > ng.

Thusf(x) = O(h(x)). O

5.1.3 Proofs using limits

So far we have used the definitions in all of our proofs. Thietahg theorem provides another technique
that is often much easier, assuming you understand and ar®table with limits.

326 Theorem Let f(n) andg(n) be functions such that

Then
1. If A=0, thenf(n) = O(g(n)), andf(n) # ©(g(n)). That is,f(n) = o(g(n)).

107

108 Chapter 5

2. If A= oo, thenf(n) = Q(g(n)), andf(n) # ©(g(n)). That is,f(n) = w(g(n)).
3. If A# 0O is finite, thenf(n) = ©(g(n)).

Notice that if the above limit does not exist, then you prdbaieed to resort to using the definitions.
Luckily, in the analysis of algorithms the above approachksanost of the time.

Now is probably a good time to recall a very useful theorenctimputing limits, called’Hopital's
Rule.

327 Theorem ('Hopital's Rule) Let f(x) andg(x) be differentiable functions. If linf(x) = lim g(x) =0
or lim f(x) =)!mg(x) = oo, then

Now let’s see a bunch of examples.

328 Example Find a tight bound orf (x) = x8 + 7x” — 10x> — 2x* + 3x? — 17 using Theorer826,

Solution: We guess (or know, if we read the solution to Exan@ilé) that f(x) = O(x8).
To prove this, notice that

I — 100 — 2+ 32— 17 o8 X108 ¢ 3¢ 17
u g = IMeT e " 8 ® T8
X—=0 X X—ro0 ¥ X X X X X
. 7 10 2 3 17
= lim1l+--——2_—-Z i

T TR TR TR T
=)!mol+0—0—0+0—021

Thus, f(x) = ©(x®) by the Theorem.
329 Example Find a tight bound orf (x) = x* — 233 + 122 + 15x— 21.

Solution: We will give solutions using both the definitions and Theor&?6 so you can
compare the techniques.

Solution #1

It is clear that wherx > 1,

X233 122 15— 21 < XA+ 122 + 15x < X* 4+ 12¢* + 15¢* = 28¢*.

Also,
X*—23C +12% +15x—21> x4 —23¢ - 21> x4 — 233 - 213 =Xt — 443 > %x“,

whenever 1
é><4244x3<:>x288.

Thus
1
Ex4 <x*— 2334+ 126+ 15x— 21 < 28x*, for all x > 88.

We have shown thatt(x) = x* — 23x3 4 12x + 15x— 21 = O(x*).

108

Asymptotic Notation 109

Solution #2
From Solution #1 we already know thétx) = O(x*). We verify this by noticing that

#0233 12 15x 21

limx*— 233 +12¢ +15x—21 = |im = — ~o _ =
KX 3+ 15 L I I B R
_ pmp.23,12 15 21
T T et T E
= |lim1-0+0+0-0=1
X—0
330 Example Show that logk = O(Xx).

Proof:

Therefore, log = O(X). O
331 Example Show that logn! = O(nlogn)

Proof: In the previous problem, we showed that wheh 1, n! < n". Notice thatn! > 1,
so taking logs of both sides, we obtainkdogn! < logn" = nlogn for all n > 1. Therefore
logn! = O(nlogn). (Here,np =1, andc=1.) O

332 Example Find a good upper bound arlog(n®+ 1) +n?logn.

Solution: Another example we will do in two ways.
Solution #1:
Ifn>1,

log(n?+1) < log(n?+ n?) = log(2n?) = (log2+logn?) < (logn+ 2logn) = 3logn
Thus whem > 1,
0 < nlog(n®+ 1) +n?logn < n3logn+n?logn < 3n?logn+n?logn < 4n%logn.
Thus,nlog(n? + 1) +n?logn = O(n?logn).

Solution #2:

i nlog(n+1)+n’logn i nlog(n?+ 1)
X500 nZlogn X nzlogg

. log(n“+1

X—y00 nlogn

n

_ 2.1 .
= 1+ Iim S ke o S I'Hopital
x> 1.logn+n-1 ("Hopital

= 1+ lim 2n

B X500 (n2+1)(logg+ 1)

= 1+ lim I'Hopital
x> 2n(logn+1) + (2 +1) - £ (FHopital)

= 1+0=1.

Thereforenlog(n?+ 1) +n?logn. = ©(n?logn).

109

110 Chapter 5

The last example illustrates an important point: If askegrove thatf(n) = O(g(n)), Theorem315
implies that provingf (n) = ©(g(n)) suffices.

333 Example Show that 2= O(3¥).
2% 2\ %
Proof: This is easy to see since Iigﬁr = |lim (—) = |limO.
X—00 3X X

Proof #2:
If x> 1, then clearly(3/2)* > 1, so

X X
2X§2X<g> _ (2X3> _ 3

Summary

It is important to remember that a Big-O bound is onlywper boungdand that it may or may not be

a tight bound So if f(n) = O(n?), it is possible thatf (n) = 3n? + 4, or f(n) = logn, but f(n) # n3.
Conversely, a Big-Omega bound is onlyoaver bound Thus, if f(n) = Q(nlogn), it might be the case
that f (n) = 2", but we know thaff (n) # 3n. Unlike the other bounds, a Big-Theta bound is precise.fSo, i
f(n) = ©(n?), then we know thaf has a quadratic growth rate. It might be tfi&h) = 3n?, 2n® — 43n—4,

or evenn?+ nlogn. But we are certain that the fastest growing ternf @ c n? for some constant.

334 Example If f(n) = O(n?) andg(n) = O(n%), can we say thag(n) grows faster? No. Because the
bounds given are not tight, it is possible ttgh) = n®> andg(n) = n, so thatf (n) grows faster, or vice-
versa.

5.2 Analyzing Algorithms

In this chapter we are dealing with a seemingly simple qoasGiven an algorithm, how good is itsay
“seemingly” simple because unless we define what we mean dyd'g we cannot answer the question.
Do we mean how elegant it is? How easy it is to understand? Hew i¢is to update if/when necessary?
Whether or not it can be generalized?

Although all of these may be important questions, in alionianalysis we are usually more interested
in the following two questionsHow long does the algorithm take to run, and how much spacs doe
the algorithm require.In fact, we follow the tradition of most books and restrict @iscussion to just
the first question. This is usually reasonable since the amoiumemory used by most algorithms is
reasonable enough to not matter. There are times, howewen analyzing the space required by an
algorithm is important. For instance, when the data isydathe (e.g. the graph that represents friendship
on Facebook) or when you are implementingpace-time-tradeoélgorithms.

Although we have simplified the question, we still need to lerarspecific. What do we mean by
“time™? Do we mean how long it takes in real time (calledll-clock timg? Or the actual amount of time
our processor used (call&PU timg? Or thenumber of instructionfor number of operatiorjexecuted?

Because the running time of an algorithm is greatly affed¢tedhe characteristics of the computer
system (e.g. processor speed, number of processors, aofaneimory, file-system type, etc.), it does not
provide a comparable measure, regardless of whether yooRiggime or wall-clock time. For instance,
if I have an algorithm that takes 1 second and you have anitigothat takes 1 minute, is mine better?

110

Analyzing Algorithms 111

It depends. If I ran mine on a supercomputer and you ran yauesTRS-80 Model 4 (which came out in
1983), it is very possible your algorithm is better. Walbak time has the added problem that the other
programs running on the computer can greatly influence itth8same algorithm might take 5 seconds
to run one time and 60 seconds to run another time.

This leaves us with the number of instructions. However, tilehave a problem. What is meant by
“instruction”? When you write a program in a language suchias or C++, it is not executed exactly as
you wrote it—it is compiled into some sort of machine langaiaghe process of compiling does not gen-
erally involve a one-to-one mapping of instructions, sortog Java instructions versus C++ instructions
wouldn’t necessarily be fair. On the other hand, we cernyaild not want to look at the machine code in
order to count instructions—machine code is ugly. Furtivbien analyzing an algorithm, should we even
take into account the exact implementation in a partic@aguage, or should we analyze the algorithm
apart from implementation?

O.K., that's enough of the complications. Let's get to thétdm line. When analyzing algorithms,
we generally want to ignore what sort of machine it will runand what language it will be implemented
in. We also generally do not want to kn@xactlyhow many instructions it will take. Instead, we want to
know therate of growthof the number of instructions. This is sometimes calledasymptotic running
timeof an algorithm. In other words, as the size of the input iases, how does that affect the number of
instructions executed? We will typically use the notatimni the previous section to specify the running
time of an algorithm. We will call this theomplexityof the algorithm.

Given an algorithm, theize of the inpuis exactly what it sounds like—the amount of space required
to specify the input. For instance, if an algorithm operatesan array of size, we generally say the input
is of sizen. For a graph, it is usually the number of vertices or the nurobeertices and edges. When
the input is a single number, it surprisingly gets a lot masmplicated for reasons | do not want to get
into right now. We usually don’t need to worry about this case

Algorithm analysis involves determining the size of theupm, and then finding a function based on
n that tells us how long the algorithm will take if the input issizen. By “how long”, we of course mean
how many operations.

335 Example (Sequential Search) Given an array oh elements, often one needs to determine if a given
numberval is in the array. One way to do this is with teequential searchlgorithm that simply looks
through all of the elements in the array until it finds it orgleeas the end. The most common version
of this algorithm returns the index of the element,—t if the element it not in the array. Here is one
implementation.

int sequential Search(int a[],int val) {
for(int i=0;i<a.size();i++) {
if(a[i]==val) {
return i;

}
}

return -1;

}

How many operations doegquent i al Sear ch take to search an array of sin@

Solution: As mentioned above, we consideas the size of the input. Assignimng- O takes
one instruction. Each iteration through the for look incessi, compares with a.siz€),
and compareas][i] with val. Don't forget that accessingfi] and callinga. si ze() each take
(at least) one instruction. Finally, it takes an instruetio return the value. If theal is in

111

112 Chapter 5

the array at positiok, the algorithm will take 2 5k = ©(k) operations, the 2 coming from
the assignmernit=0 and the return statement. V&l is not in the array, the algorithm takes
2+ 5n = O(n) instructions.

This last example should bring up a few questions. Did we mgsinstructions? Did we miss any
possible outcomes that would give us a different answer? ek@gtly should we specify our analysis?

Let’s deal with the possible outcomes question first. Gdlyespeaking, when we analyze an algo-
rithm we want to know what happens in one of three cases: Téiechse, the average case or the worst
case.

As the name suggests, when performinigest casanalysis, we are trying to determine the smallest
possible number of instructions an algorithm will take. itglly, this is the least useful type of analysis.
If you have experienced a situation when someone said samgeike “it will only take an hour (or a day)
to fix your MP3 player,” and it actually took 3 hours (or daygu will understand why.

Similarly, theworst casenalysis considers what is the largest number of instraostiobat will execute.
This is probably the most common analysis, and typicallyrtioest useful. When you pay Amazon for
guaranteed 2-day delivery, you are paying for them to gueeaa worst-case delivery time. However,
this analogy actually breaks down quickly. When you do a woase analysis, you know the algorithm
will nevertake longer than what your analysis specified, but occaljoaa Amazon delivery is lost or
delayed.

The average casés a little more complicated, both to define and to computee fitst problem is
determining what “average” means for a particular input/andlgorithm. For instance, what does an
“average” array of values look like? The second problem a$ éven with a good definition, computing
the average case complexity is usually much more difficidntthe other two. It also must be used
appropriately. If you know what the average number of irdtams for an algorithm is, you need to
remember that sometimes it might take less time and someitmeaght take more time.

336 Example Continuing thesequent i al Sear ch example, notice that our analysis above reveals that
the best-case performance is=™(1) operations (if the element sought is the first one in the quaay
the worst-case performance is-5n = 0(n) operations (if the element is not in the array). If we assume
that the element we are searching for is equally likely tomendoere in the array or not in the array, then
the average-case performance should be aroun8l(8/2) = ©(n) operations.

Notice that the average and worst case complexities areattine.s This actually makes sense. We
estimate that the average case takes about half as long asitiecase. But no matter how largeayets,
it is still just half as long. That is, the rate of growth of theaning times is the same.

Now onto another important question: How do we know we cadiateof the operations? As it turns
out, we don't actually care. This is good because determithie exact number is very difficult, if not
impossible. Recall that we said we wanted to know the raterofvth of an algorithm, not the exact
number of instructions. As long as we count all of the “impatt ones, we will get the correct rate of
growth. But what are the “important” ones? The teabystract operations sometimes used to describe
the operations that we will count. Typically you choose oyetof operation or a set of operations that
you know will be performed the most often and consider thestha the abstract operation(s).

337 Example The analysis ofequent i al Sear chis much easier than | made it out to be earlier. Notice
that the comparisona(i] ==val) is executed as often as any other instruction. In the bess ttais
executed once, so the best cas®{4). In the worst case it is executed= O(n) times. With the same
assumptions as above, we expect the average to be aut ©(n). Notice that we obtained the same
answers here as we did above.

112

Analyzing Algorithms 113

It is important to make sure that you choose the operationsytb count carefully so your analysis is
not incorrect. In addition, you need to look at every instircin the algorithm to determine whether or
not it can be accomplished in constant time. If not, you neezbtint it correctly.

338 Example Analyze the following algorithm that find the maximum valmeain array.

int max(int a[],int n) {
int max = int.MN_VAL
for (int i=0; i<n; i++)
max = Maxi mun({mex, af[i]);
return max;

}

Solution: We focus on the assignment (=) inside the loop and ignorettier anstructions.
This should be fine since assignment occurs at least as cftenyaother instruction. We are
assuming that finding the maximum of two numbeMsxi num) takes constant time, which is
reasonable. It isn’t too difficult to see that the assignmvahitoccur n times for an array of
sizen since the code goes through a loop wita O,...,n— 1. Thus, the complexity afax

is ©(n). Notice that for this algorithm the best, worst, and averageall exactly the same.

339 Example Find the complexity of Insertion Sort.

void insertion(int a[]) {
for (int i=1;i<a.size();i++) {
int v=al[i];
int j=i;
while (j >0 && a[j] > v) {
a[j+1] = a[j];
J--
}

a[j]=v;
}

Solution: Let n= asizd€). We will use the comparison in the while loop as our abstract
operation because it occurs at least as often as any othextigpe In fact, we can just count
the number of times the while loop executes since each timeitutes, it only does a constant
amount of work! Notice that the while loop goes frofn=i downtoj = 1 unlesa[j] > v

at some point.

In the worst case the while loop execuidsnes (becauseli] is always less than or equal to
V). The for loop changes the valueidirom 0 ton— 1. A first guess at the complexity would
ben-i. But this doesn’'t make sense. What?sThe complexity has to be expressed in terms
of n.

3When an algorithm has no conditional statements, or at heas¢ that can cause the algorithm to end earlier, the best,
average, and worst case complexities will usually be thessarsay usually because there is always the possibility ogiadv
algorithm that | haven’t thought of that could be an exceptio

“Here | am analyzing the algorithm slightly differently. tead of focusing on an abstract operation, | am countingfall o
the operations, but when there are 4 or 7 or 42, | will justkiohit as being a constant number—Ilike 1. But be careful! If
something takes more than constant time, but you say it akestant time, you will get the answer.

113

114

Chapter 5

Instead we need to realize that sinée changing each time through the for loop, we need to
sum the worst case of the while loopids changing. In other words, the complexity is

n—1

Y i=(n—1)n/2=0(n?).

i=1
This happens, by the way, if the elements in the array begieverse order.

In the best case, the while loop only executes once each tinoegh the for loop. This
happens if the array is already sorted. In this case, the lexityis ©(n).

340 Example Analyze the following algorithm.

for (int i=1; i<=a.size(); i++) {
for (int j=1; j<=a.size(); j++) {
doubl e V=A[i]*A[j];
}
}

Solution: Letn = a.sizd). Clearly the assignment£A[i]+A[j]) occurs the most often.
The inner loop always executen times, each time doing one assignment. The outer loop
executes times, and each time it executes, it executes the inner [Blogrefore the total time
isn-n=0©(n?). This is the best, worst, and average case complexity sioiteny about the
input can change what the algorithm does.

Sometimes people mistakingly think the algorithm takesn operations. It is very impor-
tant to carefully think through the analysis so you multipyd as appropriate for the given
circumstance. In this case, you can think of it bema because each time the outer loop
executes it takestime, and that happemstimes, so you get+n+-- -+ noperations (where
there aren terms in the sum), which is just: n.

It is important to be careful not to jump to conclusions whealgzing algorithms. For instance, a
double-nested for-loop should always t@®n?) to execute, right? This is wrong for many reasons. For
instance, consider the next example.

341 Example Analyze the following algorithm.

i nt k=50;
for (i =0; i <n; i ++)
for (j =0; j <k; j ++)

ali][j] =bliT[i] = x;

Solution: The line in the inner for loop takes constant time (let’s datl). The inner loop
executes& =50 times, each time doirgoperations. Thus the inner loop does &0perations,
which is still just a constant. The outer loop executdsnes, each time executing the inner
loop, which takes 50c operations. Thus, the whole algorithm takes & = ©(n) time.

SAlwaysanalyze from the inside out. The more practice you get, theeritavill be obvious that this is the only way that
will consistently work.

114

Common Growth Rates 115

We end this section with a comment that perhaps too few pebpl& about. Theoryand practice
don’t always agree. Since asymptotic notation ignoresthestantstwo algorithms that have the same
complexity are not, in practice, equally good. For instaritene takes 4n? operations and the other
10,000 n? operations, clearly the first will be preferred even thouwgytare bott®(n?) algorithms.

Further, consider this (real-life) situation: You want toltiply two matrices. The standard algorithm
to multiply matrices has complexi®(n®). Strassen’s algorithm for matrix multiplication has a cdenxp
ity of about®©(n?®). Clearly, Strassen’s algorithm is better asymptoticaiiyother words, if your matrices
are large enough, Strassen’s algorithm is certainly thiebetoice. However, it turns out thatrf= 50,
the standard algorithm performs befter.

Analyzing recursive algorithms can be a little more compl&¥e will consider such algorithms in
Chapter6, where we develop the necessary tools.

5.3 Common Growth Rates

In order for us to compare the efficiency of algorithms, wedieeknow the growth rates of some common
functions and how they compare to one another. We will bridifguss each of the following complexity
classes. For each,is a constant.

e Constant©(k), for exampled(1)

Linear: ©(n)

Logarithmic:©(logyn)

nlogn: ©(nlog,n)

Quadratic:0(n?)

Polynomial:0(n¥)
e Exponential:©(k")

342 Definition (Constant) An algorithm with running time®(k) for some constank is said to have
constantcomplexity. Note that this does not necessarily mean theaathorithm takes exactly the same
amount of time for all inputs, but doesmean that there is some numb€isuch that it always takes no
more tharK operations.

343 Example The following algorithms have constant complexity.
int Partial _Sum(int Al],int n) {

int Fifth Elenent(int A[],int n) { i nt sune0;
return Al 4]; for(int i=0;i<42;i++)
} sumEsumAli] ;

return sum

}

5There is debate about the “crossover point.” This is the tpaiinvhich the more efficient algorithm is worth using. For
smaller inputs, the overhead associated with the clevewfahe algorithm isn’t worth the extra time it takes. Fogkrinputs,
the extra overhead is far outweighed by the benefits of therigthgn. For Strassen’s algorithm, this point may be somewhe
between 75 and 100, but don't quote me on that.

115

116 Chapter 5

344 Definition (Linear) Algorithms with running time of9(n) are said to havénear complexity. Asn
increases, the run time increases in proportion withinear algorithms access each of theinputs at
most some constant number of times.

345 Example The following are linear algorithms.

void sumfirst_n(int n) {
int i,sum=0;
for (i=1;i<=n;i++)
sum= sum+ i;

}

void msumfirst_n(int n) {
int i,k,sunFO;
for (i=1;i<=n;i++)
for (k=1; k<7; k++)
sum = sum+ i;

}

346 Definition (Logarithmic) Algorithms with running time of©(logn) are said to havéogarithmic
complexity. As the input siza increases, so does the running time, but very slowly. Logawc algo-
rithms are typically found when the algorithm can systeoadly ignore fractions of the input.

Recall that a logarithmic function is the inverse of an exgrttial function. That ish* = nis equivalent
to x = log,n. The following identity is very relevant to our discussiohcomplexity classes involving
logarithms:

(log, b)(logyn) = logan

This identity implies that logn = ©(log,n). In other words, changing the base of a logarithm just cheinge
the value by a constant amount. Therefore all logarithmarggeto the same complexity class. Because of
this, the base will often be omitted from logarithms wherythppear in asymptotic notation. In computer

science, the base of logarithms is often 2. Finally, in case lyave not seen this notation, you should

know that log'n = (logn)2.

347 Example The binary search algorithm has logarithmic complexity. Wileprove this fact later.

int binarysearch(int a[], int n, int val) {
int =1, r=n, m
while (r>=1) {
m= (l+r)/2;
if(a[m==val)
return m
if(a[m>val)
r=mi,
el se
| =mt+1;
}

return -1;

}

348 Definition (nlogn) Many divide-and-conquer algorithms have compleX@tgnlogn). These algo-
rithms break the input into a constant number of subproblitise same type, solve them independently,
and then combine the solutions together. Not all divide-emxlquer algorithms have this complexity,
however. Examples includ@uicksortandMergesort We’'ll analyze Mergesort later.

349 Definition (Quadratic) Algorithms with running time o®(n?) are said to havguadraticcomplex-
ity. As n doubles, the running time quadruples.

116

Common Growth Rates 117

350 Example The following algorithm is quadratic.

int compute_suns(int Al], int n) {
int Mn][n];
int i,j;
for (i=0;i<n;i++)
for (j=0;j<n;j++)
MiTlil=Ali]1+ALj];
return M

}

351 Definition (Polynomial) Algorithms with running time oE)(nk) for some constark are said to have
polynomialcomplexity. Notice that linear and quadratic are speciaésaf polynomial. When we say an
efficientalgorithm exists to solve a problem, we typically mean amatgm with polynomial complexity.

352 Definition (Exponential) ~ Algorithms with running time of®(k") for some constarit are said to
haveexponentiatomplexity. Since exponential algorithms can only be rursfoall values oh, they are
not considered to be efficient. Brute-force algorithms dtencexponential.

D Unlike logarithms, the the base of exponentials changesdah&plexity class. In other words" &
O(b") unless a=b.

5.3.1 Comparing Growth Rates

Figure5.1shows the value of several functions for various valuestofgive you an idea of their relative
rates of growth. Notice that the bottom of the table is lathsle you can get a sense of how slowhaand
log(logn) grow. Figuress.2and5.3 are attempting to demonstrate thatreisicreases, the constants and
lower-order terms do not matter. For instance, notice tlilabagh 10® is much larger than™for small
values ofn, asnincreases, 2quickly gets much larger than 100. Similarly, in Figlr&, notice that when
n=4,n% andn®+ 234 are virtually the same.

logn n{nlogn| n? n® 2N n[10n]| n? | 117 n° N

0 1 0] 1 1 2 1| 100 1] 11 1 2
0.6931 2| 139| 4 8 4 2| 200| 4| 44 8 4
1.099 3| 330| 9f 27 8 3| 300 9| 99| 27 8
1.386 4| 555| 16| 64 16 4| 400| 16| 176| 64 16
1.609 5| 805| 25| 125 32 5| 500| 25| 275| 125 32
1792 6| 1075 | 36| 216 64 6| 600| 36| 396| 216 64
1.946 7| 1362 | 49| 343 128 7| 700| 49| 539| 343 128
2,079 8| 1664 | 64| 512 256 8| 800| 64| 704| 512 256
2197 9| 1978 | 81| 729 512 9| 900| 81| 891| 729 512
2303 | 10| 2303 | 100 | 1000 | 1024 10 | 1000 | 100 | 1100 | 1000 | 1024
2398 | 11| 2638 | 121| 1331 | 2048 11| 1100 | 121 | 1331 1331| 2048
2485 | 12| 2982 | 144 | 1728 | 4096 12 | 1200 | 144 | 1584 | 1728 | 4096
2565 | 13| 3334 169 | 2197 | 8192 13 | 1300 | 169 | 1859 | 2197 | 8192
2639 | 14| 3695 | 196 | 2744 | 16384 14 | 1400 | 196 | 2156 | 2744 | 16384
2708 | 15| 4062 | 225| 3375| 32768 15 | 1500 | 225 | 2475 | 3375 | 32768
2773 | 16| 4436 | 256 | 4096 | 65536 16 | 1600 | 256 | 2816 | 4096 | 65536
2833 | 17| 4816 | 289 | 4913 | 131072 17 | 1700 | 289 | 3179 | 4913 | 131072
2890 | 18| 5203 | 324 | 5832 | 262144 18 | 1800 | 324 | 3564 | 5832 | 262144
loglogm | logm m 19 | 1900 | 361 | 3971 | 6859 | 524288

Figure 5.1: A comparison of growth rates Figure 5.2: Constants don’'t matter

117

118 Chapter 5

n nZ [nP=n| nZ+99 n® [n34+234
2 4 2 103 8 242
6 36 30 135 216 450
10 100 90 199 1000 1234

14 | 196 182 295 2744 2978
18 | 324 306 423 5832 6066
22 | 484 462 583 | 10648 10882
26 | 676 650 775 | 17576 17810
30 | 900 870 999 | 27000 27234
34 | 1156 | 1122 1255 | 39304 39538
38 | 1444 | 1406 1543 | 54872 55106
42 | 1764 | 1722 1863 | 74088 74322
46 | 2116 | 2070 2215 | 97336 97570
50 | 2500 | 2450 2599 | 125000 125234
54 | 2916 | 2862 3015 | 157464| 157698
58 | 3364 | 3306 3463 | 195112 195346
62 | 3844 | 3782 3943 | 238328 | 238562
66 | 4356 | 4290 4455 | 287496 | 287730
70 | 4900 | 4830 4999 | 343000 343234
74 | 5476 | 5402 5575 | 405224| 405458

Figure 5.3: Lower-order terms don't matter

Figures5.4 through5.8 give a more graphical representation of relative growtagaif several func-
tions.

Here are some of the most important results about the relgtowth rate of some common functions.
If you want proofs, try them yourself. Theorer®26and327 will help.

353 Theorem Leta < bbe real numbers. Then
1. n2=o(n®).

2. a"=o(b").

354 Theorem Leta> 0 andb > 0 be real numbers. Then Ibg= o(n°). In other words, any power of a
log grows slower than any polynomial.

355 Theorem Leta > 0 andb > 1 be real numbers. Then = o(b"). In other words, any exponential
with base larger than 1 grows faster than any polynomial.

An alternative notation of little-o is<. In other wordsf(n) = o(g(n)) iff f(n) < g(n). This notation
is useful in certain contexts, including the following caanigon of the growth rate of common functions.

c<logn< log?ln< yn<n<nlogn< nt! < n”’ < n® <« n*< 2"

You should convince yourself that these are correct.

Let me end on a very important note regarding analysis ofriilgns and asymptotic growth of func-
tions. If algorithmA is faster than algorithrB, then the running time oA is less than the running time of
B. On the other hand, i's running time is asymptotically faster than the runnimgdiofB, that mean8
is faster! In other words, the words fast/slow need to berssve/hen discussing algorithm speeds versus

the growth of the functions. Put simphA faster growing complexity means a slower algorithm, and
vice-versa

118

Algorithm Analsyis

119

Slow Growing Functions

250 w i 0G0 -
X
| loa(7
200 . 909
150 -
-/ 7

0 5

10 15 20 25 30 35 40

Figure 5.4:
functions.

The growth rate of some slow growing

Fast Growing Functions Part 1
5000 ‘ ‘ ‘ —
4500 - d
4000 -
3500 ’ A
3000 8
2500 1
2000 1
1500 - 1
1000 -
500 -
0

0 2 4 6 8 10
Figure 5.6: The growth rate of some polynomials

and an exponential. This graph makes it look like
is growing faster than’2 But see Figuré.7.

Polynomial Functions
40000 T ‘ ‘ ‘

35000
30000 ; ;
25000 1
20000F 1
15000 1
10000+ i 1

5000 1

0 ORIt I L - T
0 5 10 15 20 25 30 35 40

Figure 5.5: The growth rate of some polynomials.

Fast Growing Functions Part 2

500000 w w
4500001
4000001
3500001
3000001
2500001
2000001
150000
100000
50000 -
0

0 5 10

Figure 5.7: The growth rate of some polynomials
and an exponential. If we makelarge enough, it is
more clear that 2grows faster than®.

Why Constants and Non-Leading Terms Don't Matter

4e+08 w w
3.5e+08f
3e+08
2.5e+08f
2e+08
1.5e+08
le+081
5e+071

1000
300000*x**2 + 3200*X —

ooo*x----é

..............

0
0 5 10

20 25 30

Figure 5.8: Notice that as gets larger, the constants eventually matter less.

Homework
356 Problem Prove Theoren315

357 Problem Big-Theta can be thought of as a relation on the set of funstiwherg f,g) € Big-Theta

iff (n)

= 0O(g(n)). Prove that Big-Theta is an equivalence relation.

119

120 Chapter 5

This page intentionally left blank.

120

Chapter

Recursion, Recurrences, and Mathematical
Induction

In this chapter we will explore a proof technique, an aldonic technique, and a mathematical technique.
Each topic is in some ways very different than the othersthet have a whole lot in common. They are
also often used in conjunction.

You have already seenecurrence relations Recall that a recurrence relation is a way of defining a
sequence of numbers with a formula that is based on previambers in the sequence. You may or may
not be familiar withrecursion which is an algorithmic technique in which an algorithmlis#self (such
an algorithm is calledecursive, typically with “smaller” input. Finally, theprinciple of mathematical
inductionis a slick proof technique that works so well that sometinéssls like you are cheating.

We will see that induction can be used to prove formulas, @tbat algorithms—especially recursive
ones—are correct, and help solve recurrence relations. ngmther things, recurrence relations can be
used to analyze recursive algorithm. Recursive algoritbamsbe used to compute the values defined by
recurrence relations and to solve problems that can be brioke smaller versions of themselves.

As we will see, each of these has one or mbase casethat can be proved/computed/determined
directly and arecursiveor inductivestep that relies on previous steps. With each, the induotieersive
steps must eventually lead to a base case.

Because induction can be used to prove things about the twtbewe will begin there.

6.1 Mathematical Induction

Let P(n) be a propositional function with domal¥, Z*, or sometimega,a+1,a+2,...}. Theprinciple
of mathematical inductio(PMI, or simplyinduction) is usually used to prove statements of the form

foralln>a,P(n) is true

wherea s a constant, usually O or 1.

Induction is based on the following fairly intuitive obsaton. Suppose that we are to perform a task
that involves a certain number of steps. Suppose that thepe must be followed in strict numerical
order. Finally, suppose that we know how to perform il task provided we have accomplished the
(n—1)-th task. Thus if we are ever able to start the job (that isgfhave a base case), then we should be
able to finish it (because starting with the base case we deetodxt case, and then to the case following
that, etc.).

131

132 Chapter 6

Let's see an example. But first, recalbdus ponensf p is true andp — qis true, therg is true. In
English, “If pis true, and whenevey is trueq is true, therg is true.”

358 Example Assume that | know tha®(1) is true and that whenevér> 1, P(k) — P(k+ 1) is true.
What can | conclude?

Solution: Let’s start from the ground up.

We know:P(1) is true, andifk >1, P(k) — P(k+1).
SinceP(1) istrue, andsincet 1, P(1) — P(2), thereforeP(2) is true.
SinceP(2) is true, andsince2 1, P(2) — P(3), thereforeP(3) is true.
SlnceP(B) P(3) — P(4)

istrue, and since 31, , thereforeP(4) is true.

and this continues, 98(K) is true for allk > 1.

This example illustrates the idea behind induction. Iniurcis based on the fact thatff a) is true for
somea > 0 (thebase casg and fork > a, if P(k) is true, therP(k+ 1) is true (theinductive casg then
P(n) is true for alln > a. In other words, the principle of mathematical inductiob&sed on the tautology

[P(a) AVK(P(k) = P(k+1))] — (¥YnP(n)),

where the universe i@, a+1,a+2,...}. We won't prove that this is a tautology, but the previousegte
should help you convince yourself that it is indeed a taupldt is definitely worth your time to convince
yourself that this is a tautology, so if you aren’t convincetead the example, think about it some more,
and/or ask someone to help you see it.

To prove a statement using induction, you start by provirgg@rmorebase casesThen you show that
if P(K) is true for anyk which is at least as large as the base case(s)Rflen 1) is true. Alternatively, you
can show that iP(k— 1) is true fork larger than any of the base cases, tRék) is true. The assumption
thatP(k) is true is called thénductive hypothesjsand proving thaP(k+ 1) is true based on the inductive
hypothesis is called thaductive stepLet’s see an example.

359 Example Prove that the sum of the firstodd integers i®?. That is, show thaf!_;(2i — 1) = n? for
alln> 1.

Proof:
Let P(n) be the statement™_;(2i — 1) = n?".?
Sincey! ;(2i—1)=2-1-1=1=12 P(1) is true (the base case).
Now letk > 1 and assumB(k) is true. Thatisy"K_;(2i — 1) = k? (the inductive hypoth-

esis).
Then (the inductive step)
k+1 k
Y (2i—-1) = Z 2(k+1)—1)
i=1 i=1
= K+ (2k+2-1)
= K24+2k+1
= (k+1)2

lWe can also write this as the tautology/ (p —)] — g.

2 Notice the quotes in the statement. It is important that yelude these. This is particularly important if you use tiota
such a®(n) =Y (2i — 1) = n?”, which is common. Without the quotes, this becor®és) = "1 (2i — 1) = n?, which is
definingP(n) to bezi”zl(Zi — 1) and saying that it is also equalmd. These ar@otsaying the same thing.

132

Mathematical Induction 133

ThusP(k+ 1) is true. Since we proved th#(1) is true, and thaP(k) — P(k+ 1)
whenevek > 1, P(n) is true for alln > 1 by the principle of mathematical induction.

O

Notice that the proof had four components (or three if youpguhe second and third together), each
of which is necessary:

1. We proved the statement for thase case
2. We assumed it was true fkr That is, we made thieductive hypothesis

3. We proved that it was true fée+ 1 based on the assumption that it is truekomhat is, we did the
inductive step

4. We appealed to the principle of mathematical inductioth@summary

It is important to note that explicitly defining(k) and using it throughout is not necessary. The whole
proof could have been written without definiRgk), although the proof would have been longer. In other
words, we often usB(k) for convenience and clarity.

The form of induction we have discussed up to this point oslyuanes the statement is true for one
value ofk. This is sometimes callesteak induction In strong inductionwe assume that the statement is
true for all values up to and includirlg In other words, with strong induction, the inductive hypegis
involves proving that

[P(a) AP(a+1)A---AP(K)] — P(k+1) if k> a.

This may look more complicated, but practically speakihgre is really very little difference. Essentially,
strong induction just allows us to assumerethan weak induction. Let’s see an example of why we might
need strong induction.

360 Example Show that every integer> 2 can be written as the product of primes.

Proof: Let P(n) be the statemenn‘can be written as the product of primes.” We need to
show that for alh > 2, P(n) is true.

Base caseSince 2 is clearly prime, it can be written as the product & prime. Thud(2)
is true.

Inductive Hypothesis: AssumelP(2) AP(3) A--- AP(k—1)] is true fork > 2.

Inductive Step: We need to show th& (k) is true. Ifk is prime, clearlyP(k) is true. Ifk is
not prime, then we can write= a- b, where 2< a < b < k. By hypothesisP(a) andP(b)
are true, s@ andb can be written as the product of primes. Therefrean be written as the
product of primes, namely the primes from the factorizagiofia andb. ThusP(k) is true.
Summary: Since we proved thd(2) is true, and thatP(2) AP(3) A---AP(k—1)] — P(k)

if k> 2, by the principle of mathematical inductid®(n) is true for alln > 2. That is, every
integersn > 2 can be written as the product of primes. O

Notice that there is no way we could have used weak inductidhe previous example. Also notice
that we labeled the four parts of the proof. Although thatasrequired, | highly recommend labeling at
least thebase casandinductive stegor a while.

You can split an induction proof into more than four steps.reHeoutline one way to approach in-
duction proofs that | think helps you work through the whabacept of induction. These steps and this
approach are not required, but | think if you use it for youwstfgeveral proofs, it will help you immensely.

133

134

Chapter 6

1. Define: DefineP(n) based on the statement.

P(n) should be a statement about a single instance, not aboutea séinstances. For example, it
should be statements likeri2s even” or “A set withn elements has"2subsets,/NOT of the form
“2nis evenifn>1,"“n? > 0if n#0,” or “For all n > 1, a set witm elements has"subsets.”

. Rephrase: Rephrase the statement usi@). This step is mostly for your own clarity.

In almost all cases, the rephrased statement should be fFar>aa, P(n) is true,” wherea is
some constant, often 0 or 1. If the statement cannot be ghragais way, induction may not be
appropriate.

. Base CaseProve the base case or cases.

For most statements, this means showing B{a) is true, where is the value from the rephrased
statement. Sometimes one must prove multiple base caseslyu’(a), P(a+1), ...,P(a+i) for
somei > 0. For most statements, 1 or 2 base cases suffice.

. Hypothesis: Write down what you are assuming. This is almost always one of

P(Kk) is true
P(k—1)is true
or
[P(@) AP(a+1)A---AP(K)] is true

Sometimes it is helpful to write out the hypothesis explydithat is, write down the whole statement
with k or k— 1 plugged in).

. Goal: Explicitly write down what your next step is. This is anotlséep that is mostly for clarity.

It is almost always “| need to show thBtk+ 1) is true” (or "I need to show tha®(k) is true”).

Note: At this point in the proof you shouldot write out P(k+ 1) unless you preface it with a
statement like “I need to show that...”. Since you are aboprove thaP(k+ 1) is true, you don't
know that it is true yet, so writing it down as if it is a fact igciorrect and confusing.

. Inductive: Given theHypothesis prove theGoal statement.

This is the longest, and most varied, part of the proof. Ormeeget the hang of induction, you will
typically only think about two parts of the proof—the basseand this step. The rest will become
second nature.

Note: The inductive step shouldbot start with writing downP(k+ 1). Especially wherP involves

a formula, some students want to write ®{k+ 1) and work both sides until they get them to be
the same. This isota proper proof technique. You cannot start with somethinggo not know
and then work it until you get to something you do know and ttheclare it is true. | will have more
to say on this later.

. Summary: Almost always either:

“Since we proved tha®(a) is true, and thalP(k) — P(k+1), by PMI, P(n) is true for alln > a.”
or

“Since we proved tha®(a) is true, and thaP(a) AP(a+ 1) A---AP(K)] — P(k+1), by PMI, P(n)
is true for alin > a.”

Let’s see this approach in action.

134

Mathematical Induction 135

361 Example Prove than < 2" for all integersn > 1.

Proof: For this proof, | will explicitly show the steps as suggestbdve.

Define: Let P(n) be the statementi‘< 2"".

Rephrase: We want to prove tha®(n) is true for alln > 1.

Base CaseSince 1< 21, P(1) is clearly true.

Hypothesis: We assum@(K) is true ifk > 1. That isk < 2¢

Goal: We need to show th&(k+ 1)is true.

Inductive: By hypothesis (sinc@(k) is true), we know thak < 2K, thus

2X4+1 adding 1 to both sides of previous
2%+ 2% since 1< 2Xwhenk > 1

2(2¢) algebra

2+1 algebra

kK+1

A A

Since we have shown thiat- 1 < 21 P(k+ 1) is true.
Summary: Since we proved tha(1) is true, and thaP(k) — P(k+ 1), by PMI,
P(n) is true for alln > 1.

U

Here is one final tip that is often relevant to theluctivestep. Many statemenBk) are of the form
“LHS(k) = RHSK),”® where= might be replaced witk», <, etc. For instance, iP(k) is the statement
“k > 2%, LHS(k) = k, andRHSK) = 2X. In these cases, the goal of the induction step is to show that
LHS(k+1) = RHSk+ 1) given thattHS(k)=RHSKk). The way this is usually done is as follows:

LHS(k+1) = LHSKk)-+stuff applying algebra

= RHSKk) +stuff by hypothesis (sincB(k) is true)
= - 1 or most steps, usually involving algebra
= RHSk+1) more algebra, resulting in the goal

Several of the examples in this section follow this pattarciuding the first two examples you saw. Notice
that these exampldo notbegin the inductive step by writing ouH S(k+ 1) = RHSk+1). They start by
writing LHS(k+ 1), and use algebra, etc. until they geRblSk+ 1). You should do the same.

362 Example Prove the generalized form of DeMorgan’s law. That is, shiwat for anyn > 2, if p1, po,
..., Ppn are propositions, theA(p1V p2 V-V pn) = (Fp1A—=P2 A+ - A—pp).

Proof: To see that there are variations on how induction proofs eanriiten, we provide
several proofs of this one. Each one is shorter than thequrs\ine.
Proof 1: (Using the approach described above)

Define: LetP(n) be the statement(p1V paV---Vpn) = (=Pp1A—-P2A---A=pn).”
Rephrase: For alln > 2, P(n) is true.

Base CaseP(2) is DeMorgan’s law, which is clearly true.

Hypothesis: We assum®(k) is true.

3LHSstands foleft hand sideandRH Sstands foright hand side

135

136

Chapter 6

Goal: We need to show th&(k+ 1)is true.
Induction: Notice that

—(pLVP2V--Vpkr1) = —((PaVP2V---Vp)Vpki1) associative law
= =(p1Vp2V-VPk)APiia DeMorgan’s law
= (=pLA=pP2A---A-p) A—prsr hypothesis
= (ApLA=P2A---A-PcA—Pri1) associative law

ThusP(k+1) is true.
Summary: Since we proved thd(2) is true, and thaP(k) — P(k+1) if k> 2,
by thePMI, P(n) is true for alln > 2.

Proof 2: (A typical proof)

Let P(n) be the statementi(p1 vV p2 V- -V pn) = (mprA—p2A---A=pn).” We want to show
that for alln > 2, P(n) is true.P(2) is DeMorgan’s law, so the base case is true. AssB(ke
is true. Then

S(PLV P2V V1) = ((PLVp2V---Vpk)VPki1) - associative law
—(pLV P2V Vpk) A Pkrl DeMorgan’s law
(mPLA=P2 A A=p) AmPki1 hypothesis

= (2pLA—pP2A---A-pPkA—pPkr1) associative law

ThusP(k+1) is true. Since we proved thR(2) is true, and thalP(k) — P(k+1) if k> 2, by
the PMI, P(n) is true for alln > 2.

Proof 3: (Not explicitly defining/usind?(n))

We know that=(p1 Vv p2) = (=p1 A —p2) since this is simply DeMorgan’s law. Assume the
statement is true fdt. Thatis,~(p1V p2V---V px) = (mpr A—-p2A--- A—=pg). Then we can
see that

—(prV P2V Vpki) = —((PaVp2V---VpK)Vpke1) — associative law
= =(p1V P2V VPk)APiia DeMorgan’s law
= (=piA—pP2A---A—pP) A-pPker hypothesis
= (2p1tA-P2A---A-pPA-Py1) associative law

Thus the statement is true for- 1. Since we have shown that the statement is true fer2,
and that whenever it is true fdrit is true fork+ 1, by thePMI, the statement is true for all
n>2.

Proof 4: (Shorter base case proof, no restatement of hypothesis)
The cas&k = 2 is DeMorgan’s law. Assume the statement is truekforhen

—(PLVpP2V--Vpker) = 2((PLVP2V---VpK)Vpke1) associative law
—(pLV P2V VP A Prrl DeMorgan’s law
= (mpLA=pP2A---A-pk) A—prser hypothesis
= (2pLA=P2A---A-PcA—pPrr1) associative law

Thus the statement is true fle- 1. Since we have shown that the statement is true fer2,
and that whenever it is true fdrit is true fork+ 1, by thePMI, the statement is true for all

136

Mathematical Induction 137

n>2.

Proof 5: (Shorter summary)
The cas&k = 2 is DeMorgan’s law. Assume the statement is truekforhen

(pLV P2V Vpke1) = ((PLVP2Ve--VPK)VPke1) associative law
= =(pLVp2V-- VP A Prrt DeMorgan’s law
= (mpLA-pP2A---A-pk) A—pksir hypothesis
= (=prA-pP2A---A-pcA—Pksr1) associative law

Thus the statement is true flr- 1. By thePMI, the statement is true for ail> 2.

Proof 6: (Algebra steps not justified)
The cas& = 2 is DeMorgan’s law, and if the statement is true kpthen

APV eV Pra1) =PV VP APk = (T PLA APk APk = (FPLA P2 A APk A T PR 1)

Thus the statement is true fr- 1. By thePMI, the statement is true for ail> 2.

Proof 7: (An unacceptable proof for this class, but common in jouamntitles)
The result follows easily by induction. O

363 Example Prove that the expression
3PS _26n—27
is a multiple of 169 for all natural numbens

Proof: Let P(n) be the assertionr3T € N with 3%"3 —26n — 27 = 169T.” We will prove
thatP(1) is true and thaP(n— 1) — P(n). Whenn = 1 notice that 31+3 - 26.1—-27=676=
169-4, soP(1) is true. Now,P(n— 1) means there il € N such that 3"D+3 _26(n—1) —
27=16N, i.e., forn > 1,

3N —26n—1=16N
for some integeN. Then

33 _26n—27 = 27-33"—26n-27
= 27(3*"—26n—1)+676n
= 27-16N+169-4n
= 16927-N+-4n)

which is divisible by 169. The assertion is thus establidieohduction. O

364 Example Prove that ifk is odd, then 272|k2" — 1 for all natural numbers.

Proof: The statement is evident far= 1 sincek?’ — 1 =k2— 1= (k— 1)(k-+1) is divisible
by 212 = 8 for any odd natural numbes because botlik — 1) and (k+ 1) are divisible
by 2 and one of them is divisible by 4. Assume thafzakzn — 1, and let us prove that
2031k 1. Sincek?™™ — 1 = (k' — 1)(k2" + 1), we see that 2 divides (k2" — 1), so
the problem reduces to proving thatiZ" + 1). This is obviously true sinck’” odd makes
k?"+ 1 even. O

137

138 Chapter 6

365 Example Let f, be then-th Fibonacci number. Prove that for integer 1,
fo1foer = f2+ (=)
Proof: Forn= 1, we have
fofp=0-1=1%+ (-1t = 2+ (-1)%

and so the assertion is true foe= 1. Supposen > 1, and that the assertion is true for That
is,
fho1fhir = fr%‘f’ (=",

which can be rewritten as
f2 = fn_1fnes — (—1)"

Then
fafare = fa(fapa+ fn)
= fafhpa + fn2
fnfors+ fao1fopr — (—1)"
frr1(fn+ fno1) + (_1)n+1
= fopr o+ (-
= ot
and so the assertion follows by induction. O

D There is an important but subtle point that should be madeetir you assume(R) or P(k—1)

is true, you must specify the values of k precisely based engfmice. For instance, if you assumékyp

is true for all k> a, you have a problem. Although you knowfaPis true (because it is a base case),
when you assume(R) is true for k> a, the smallest k can be isfal. In other words, when you prove
P(k) — P(k+1), you leave out Pa) — P(a+ 1). But that means you can't get anywhere from the base
case, so the whole proof is invalid.

366 Example What is wrong with the following (supposed) proof tledt= 1 for n > 0:

Proof: Base c:aseSinceao =1, the statement is true for= 0.
Inductive stepAssumea! =1 for 0< j <k. Then

k. ak
a-at 1-1

Summary:Therefore by PMIa" = 1 for alln > 0. O

Solution: The base case is correct, and there is nothing wrong withuimersry, assuming
the inductive step is correct. The fact tfe&t= 1 andak~1 = 1 are correct by the inductive
hypothesis. Sincg > 1, the algebra is correct. So what is wrong? Notice that if wd h
allowedj = 0, a1 would be in the denominator, but we don’t know whether oraiot= 1.
Thus we needed to assume- 0. As it turns out, that is precisely where the problem lies.
We proved thaP(0) is true and thaP(k) — P(k+ 1) is true whenk > 0. Thus, we know
thatP(1) — P(2), andP(2) — P(3), etc., but we never showed tHat0) — P(1) because, of
course, itisn’'t true. The induction doesn’t work withd(0) — P(1).

138

Mathematical Induction 139

Induction proofs are both intuitive and non-intuitive. Qe one hand, when you talk through the
idea, it seems to make sense. On the other hand, it almossdigengou are usingircular reasoning It
is important to understand that induction proofsrax rely on circular reasoning. Circular reasoning is
when you assump in order to provep. But here we are not doing that. We are assunfifig and using
that fact to proveP(k+ 1), a different statement. However, we aret assuming thaP(k) is true for all
k > a. We are proving thaif we assume that P(k) istrue, thenP(k+ 1) is true. The difference between
these statements may seem subtle, but it is important.

Exercises

367 Problem Prove by induction that ih non-parallel straight lines on the plane intersect at a comm
point, they divide the plane intaegions.

368 Problem Demonstrate by induction that no matter howtraight lines divide the plane, it is always
possible to colour the regions produced in two colours sb dhg two adjacent regions have different
colours.

369 Problem Prove, by induction om, that 1.2+2-224+3.2%+...4n.2" =24 (n—1)2"1,

Answers

367 The assertion is clear for= 1 since a straight line divides the plane into two regionsulseP,_;, that is, that
n— 1 non-parallel straight lines intersecting at a common tpdivide the plane into @ — 1) = 2n— 2 regions. A
new line non-parallel to them but passing through a commamnt pall lie between two of the old lines, and divide
the region between them into two more regions, producing 2Zhe- 2+ 2 = 2n regions, demonstrating the assertion.

368 Forn =1 straight lines this is clear. Assuni_1, the proposition that this is possible for-1 > 1 lines is
true. So consider the plane split by- 1 lines into regions and coloured as required. Consider nognaline added

to then—1 lines. This line splits the plane into two regions, say | #nélve now do the following: in region | we
leave the original coloration. In region Il we switch theaas. We now have a coloring of the plane in the desired
manner. For, either the two regions lie completely in redioncompletely in region I, and they are coloured in the
desired manner by the induction hypothesis. If one liesgiorel and the other in region Il, then they are coloured
in the prescribed manner because we switched the coloung iseicond region.

369 Forn=1we have 12 =2+ (1—1)22, and so the statement is true foe= 1. Assume the statement is true for
n, that is, assume
P(n):1.24+2.2243.2°+...4n-2"=2+4 (n—1)2"%

We need to show
PN+1):1.242-2243. 2344 (n+1)- 2" =24 n2"2,

Adding (n+ 1)2"* to both sides oP(n) and simplifying the right side, we obtain

1.242:2243.224...4n- 2"+ (n+ 12" = 24 (n—1)2"1 4 (n4 12"
= 2+2n2™t
= 2+4+n2"?

provingP(n-+ 1). The result follows by induction.

139

140 Chapter 6

6.2 Recursion

You have seen examples of recursion if you have seen Russatyddhka dolls (Google it), two almost
parallel mirrors, a video camera pointed at the monitor, gicture of a painter painting a picture of
a painter painting a picture of a painter... More importafdr us, recursion is a very useful tool to
implement algorithms.

370 Definition An algorithm isrecursiveif it calls itself.

Some problems can be solved by combining solutions of smakéances of the given problem. Re-
cursion can be useful in these cases. Examples that you nvayalr@ady seen includgnary search
Quicksort andMergesort

If a subroutine/function simply called itself as a part &f @xecution, it would result in infinite re-
cursion. This is a bad thing. Therefore, when using recayssme must ensure that at some point, the
subroutine/function terminates without calling itselefBre getting into more details, let's see an example.

371 Example Notice that

1 =1
2! = 2x1 = 2x1!
3! = 3x2x1 = 3x2!
4] = 4x3x2x1 = 4x3!
and in general, when> 1
n = nx(n—-1)x---x2x1 = nx(n-1)!

In other words, we can defime recursively as follows:

Al — 1 whenn=1
" | n¥x(n—1)! otherwise

This leads to the following recursive algorithm to compunite

/!l Returns n!, assum ng n>=0.
int factorial (int n) {
if (n<=1)
return 1;
el se
return nxfactorial (n-1);

}

Notice thatifn <1,f act ori al does not make a recursive call. Also notice that when a reeucall
is made tdf act ori al , the argument is smaller. Both of these are of critical intgoace, as we will see
next.

Every recursive algorithm needs

[0 Base case(s)One or more cases which are solved non-recursively. Inraotioeds, when an al-
gorithm gets to the base case, it does not call itself agaims i also called &topping caser
terminating condition

O Inductive case(s)One or more recursive rule for all cases except the base case

140

Recursion 141

O Progress:The inductive case(s) should always progress toward thedsse. Often this means the
arguments will get smaller until they approach the base, tagesometimes it is more complicated
than this.

In general, we can solve a problem with recursion if we can:

O Find one or more simple cases of the problem that can be sdluectly.

0 Find a way to break up the problem into smaller instancesexameproblem.
0 Find a way to combine the smaller solutions.

372 Example Implement an algorithmount down(i nt n) that outputs the integers fromdown to 1,
wheren > 0. So, for examplesount down(5) would output“54 321"

Solution: One way to do this is with a simple lodp:

voi d countdown(int n) {
for(i=n;i>0;i--)
print(i);
}

Of course, if we did this, we wouldn’t learn anything abouwduesion. So, let’'s consider how
to do it with recursion. Notice thatount down(n) outputsn followed by the numbers from
n—1 down to 1. But the numbers— 1 down to 1 are the output fromount down(n-1).
This leads to the following recursive algorithm:

voi d countdown(int n) {
print(n);
countdown(n-1):

}

To see if this is correct, we can trace throu hExecution of outputs _then executes
the execution otount down(3) (see the ta- count down(3) 3 Count down(2)
ble to the right). Unfortunatelzountdown | . . nt down(2) 2 count down(1)
will never terminate. We are supposed t0 StR; o ynt down(1) 1 count down(0)
printing whenn = 1, but we didn't take that | count down(0) 0 count down(- 1)
into account. To fix this, we can modify it count down(- 1) 1 count down(- 2)
so that a call t@ount down(0) produces no

output and does not calbunt down again.

Calls tocount down(n) should also produce no output wher: 0. The following algorithm
takes care of both problems and is our final solution.

voi d countdown(int n) {

i f(n>0) {
print(n);
countdown(n-1):
}
}
4For simplicity, we will sometimes uger i nt to output results and not worry about spacing, etc. You cak if this as
being equivalentto JavaSyst em out . print (i +" ") or C++'scout <<i <<" ", orCsprintf ("% ",1).

141

142 Chapter 6

Notice that whem < 0, count down(n) does nothing, making < 0 thebase casesWhen

n > 0, count down(n) callscount down(n- 1), makingn > 0 theinductive casesFinally,
whencount down(n) makes a recursive call itis tamunt down(n- 1) , so the inductive cases
progresgo the base case.

Although recursion is a great technique to solving many lmls, care must be taken when using it.
Not only is it easy to make simple mistakes like we did in thet &xample, but recursive algorithms often
take more memory than iterative ones.

373 Example Consider our algorithms faml. The iterative one from Exampl&2 uses memory to store
four numbers:n, f, i, and return valué. The recursive one from ExampB¥1 uses memory to store
two numbers:n and the return value. Although the recursive algorithm usss memory, it is called
multiple times, and every call needs its own memory. Foraimsg, a call td act ori al (3) will call
factori al (2) which will call f act ori al (1) . Thus, computing 3! requires enough memory to store 6
numbers, which is more than the 4 required by the iteratigerathm. In general, the recursive algorithm
to computen! will need to store & numbers, whereas the iterative one will still just need 4.

Since computers have a finite amount of memory, and since eairto a function requires its own
memory, there is a limit to how many recursive calls can bearmadractice. In fact some languages,
including Java, have a defined limit to how deep the recursanbe. Even for those that don’t have a
limit, if you run out of memory, you can certainly expect baethgs to happen. This is one of the reasons
recursion is avoided when possible. Good compilers remegarsion whenever possible, but it is not
always possible.

There are many possible errors that one can make when imptelgeecursive algorithms. Let’s see
a few of the most common ones.

374 Example The following algorithm is supposed to sum the numbers framrt

voi d Sunilt oN(int n) {
if (n==0)
return(0);
el se
return(n + SumltoN(n-1));

}

Unfortunately the algorithm will go into infinite recursiohn < 0. Like our original solution to the
count down problem, the mistake here is anproper base case

375 Example It is easy to get things backwards when recursion is involleat instance, one of these
routines prints from 1 up to, the other fromm down to 1. We leave it to you to figure out which is which.

void PrintN(int n) { void NPrint(int n) {
if (n>0) { if (N> 0) {
PrintN(n-1); print(n);
print(n); NPrint(n-1);
} }
} }

5] won’t get technical here, but memory needs to be allocatethi value returned by a function.

142

Recursion 143

The next example is a classic example of a more subtle protilatrcan occur with recursive algo-
rithms.

376 Example Recall theFibonacci sequencelefined by the recurrence relation

(
fn:{
(

Let's see an iterative and a recursive algorithm to compitd he iterative algorithm (on the left) starts

with fg and f; and computes each based orf;_; andfj_» for i from 2 ton. As it goes, it needs to keep

track of the previous two values. The recursive algorithmtfe right) just uses the definition and is pretty
straightforward.

0 if n=0
1 if n=1
fro1+ faeo ifn>1.

int Fib(int n) { int FibR(int n) {
int fib, fibml, fibnR, index; if (n <=1)
if (n <=1) return(n); return(n);
el se { el se
fibm2 = 0; return(Fi bR(n-1) + Fi bR(n-2));
fibml = 1; }
i ndex = 1; }

while (index < n) {
fib = fibml + fibng;

fibm2 = fibnt;
fibmL = fib;
i ndex = i ndex + 1;
}

return(fib);

}
}

Which algorithm is better? It is pretty clear that the resugslgorithm is much shorter and was a lot
easier to write. It is also a lot easier to make a mistake implaing the iterative algorithm. However, it
turns out that in this case the iterative version is actuallch betterwhen it comes to efficiency. In fact,
computingfag takes virtually no time with the iterative algorithm, buveeal seconds with the recursive
algorithm. The recursive algorithm gets much worse axreases. We will see why later.

We conclude this section by summarizing some of the advastagd disadvantages of recursion.
The advantages include:

0 Recursion often mimics the way we think about a problem, thagecursive solutions can be very
intuitive to program.

0 Often recursive algorithms to solve problems are much shdtnan iterative ones. This can make
the code easier to understand, modify, and/or debug.

O The best known algorithms for many problems are based oni@dedand-conquer approach:

e Divide the problem into a set of smaller problems
e Solve each small problem separately

143

144 Chapter 6

e Put the results back together for the overall solution
These divide-and-conquer techniques are often best thofighterms of recursive functions.

Perhaps the main disadvantage of recursion is the extraaimespace required. We have already
discussed the extra space. The extra time comes from théhzctvhen a recursive call is made, the
operating system has to record how to restart the callingpstiibe later on, pass the parameters from the
calling subroutine to the called subroutine (often by pnghhe parameters onto a stack controlled by
the system), set up space for the called subroutine’s lar#ébies, etc. The bottom line is that calling a
function is not “free”.

Example376 demonstrates a more subtle disadvantage of recursion—etketal for hidden ineffi-
ciencies. On the other hand, if such inefficiencies are fotimele are techniques that can often easily
remove them (e.g. a technique called memoiz&)ion

Exercises

377 Problem Prove that the recursiveunt down(n) algorithm from Exampl&72works correctly.

Answers

377 Notice thatifn<0,count down(0) prints nothing, so it works in that case. Fo¥ 0, assumeount down(k)
works correctly. Thencount down(k+1) will print ‘k’ and call count down(k) . By the inductive hypothe-
sis, count down(k) will print ‘kk—1...21", socount down(k+1) will print ‘k+ 1kk—1...21’, so it works
properly. By PMI,count down(n) works for alln > 0.

6.3 Recurrence Relations

Recall that aecurrence relations simply a sequence that is recursively defined. More fdgmalrecur-
rence relation is a formula that defingsin terms ofa;, for one or more values af< n.8

378 Example We previously saw that we can defineby 0! =1, and ifn> 0,n! =n-(n—1)!. Thisisa
recurrence relation for the sequente

Similarly, recall then-th Fibonacci number, given bl = f; =1 and forn > 1, f, = f,_1+ f,_2. This
is recurrence relation for the sequence of Fibonacci nusnber

379 Example Each of the following are recurrence relations.

th = N-th1+4-th 3

= Tyetl

an = ap1t+2-ah 2+3-ap3+4-an4
Ph = Pn-1-Pn-2

S = S3+n—4n+32

6No, that’s not a typo. Google it.

"We are lettingn = 0 be the base case. You could alsorlet 1 be the base case, but then you would need to prove that
count down(1) works.

8You might see recurrence relations written in terms of stptad letters, likea,, or using functional notation, lika(n).
Although there are technical differences between thesainos, you can think of them as being essentially equitalen

144

Recurrence Relations 145

Notice that recurrence relations have 2 types of terrasursiveterm(s) and theon-recursiveterms.
These are synonymous with timeluctiveandbasecases of recursive algorithms. In the previous example,
the recursive term o, is s,_3 and the non-recursive termng — 4n -+ 32.

In computer science, recurrence relations are used to anaedgursive algorithms. We won't get too
technical yet, but let’s see a simple example.

380 Example How many multiplications are required to computeusing the algorithm from Example
3712

Solution: LetM;, be the number of multiplications needed to compitesing the algorithm
from Example371 From the code, it is obvious th; = 0. If n > 1, the algorithm uses
one multiplication and then makes a recursive callfto;. The recursive call doebl, 1
multiplications. Therefordyl, = Mp_1 + 1.

Given a recurrence relation fay, you can't just plug im and get an answer. For instanceajif=
n-a,_1, anda; = 1, what isa(100)? Not obvious, is it? That is the reason whglving recurrence
relations is so important. As mentioned previously, s@winrecurrence relation simply means finding a
closed form expressidor it.

381 Example It is not too difficult to see that the recurrence from Exan§8é has the solutioM (n) =
n—1. To prove it, notice that with this assumptidfy,_1 +1= (n—2) +1=n— 1= My, so the solution
is consistent with the recurrence relation.

We can also prove it with induction: We know thdy = O, so the base case nf= 1 is true. Assume
Mg = k—1. Then we have

M1 =M +1=(k—=1)+1=K,

so the formula is correct fde+ 1. Thus, by PMI, the formula is correct for &> 1.

The last example demonstrates an important fact aboutresse relations used to analyze algorithms.
The recursive terms come from when a recursive functiors daklf. The non-recursive terms come from
the other work that is done by the algorithm, including anlttspg or combining of data that must be
done.

382 Example Consider thévinary searchalgorithm to find an item on a sorted list. Informally, the@lg
rithm works as follows. We want to find a valwen a sorted array of size.

We compare the middle value of the array tov.

If the m=v, we are done.

Else ifm < v, we binary search the left half of the array.

Else fn > v), we binary search the right half of the array.
¢ Now, we have the same problem, but only half the size.

Here is an implementation of the algorithm:

145

146 Chapter 6

bool ean bi narySearch(int[] A, int First,int Last,int Value) {
i f(Last>=First) {
int md=(Last+First)/2;
i f(Value==Alnmd])
return true;
el se if(Val ue<A[md])
return binarySearch(A First,nd-1, Val ue);
el se
return binarySearch(A m d+1, Last, Val ue) ;
} else {
return fal se;
}
}

Find a recurrence relation for the worst-case complexityi ofar ySear ch.

Solution: Let T (n) be the complexity obi nar ySear ch for an array of sizen. Notice that
the only things done in the algorithm are to find the middlenslat, make a few comparisons,
perhaps make a recursive call, and return a value. Asidetlierrecursive call, the amount of
work done is constant. Notice that at most one recursivesalhde, and that the array passed
in is half the size. Therefor&(n) = T(n/2)+1.° We'll see how to solve this recurrence
shortly.

383 Example Give a recurrence relation for the complexity of the follagialgorithm:

int Nothing(int n) {
i f(n>5) {
ret urn Not hi ng(n-1) +Not hi ng(n-1) +Not hi ng(n-5) +Not hi ng(sqrt(n));

}

el se {
return n;

}

Solution: It is not hard to see that if (n) is the running time foNot hi ng(n) , then
T(nN)=2T(n—1)+T(n—=5)+T(yv/n)+0O(1).

There is no general method to solve recurrences. There arg strategies, however. In the next few
sections we will discuss four common techniquasbstitution methqgdteration methogdMaster method
andcharacteristic equation methddr linear recurrences.

6.3.1 Substitution Method

Thesubstitution methoohight be better called thguess and prove it by induction method/hy? Because
to use it, you first have to figure out what you think the solui® and then you need to actually prove
it. Because of the close tie between recurrence relatiotnsnatuction, it is the most natural technique to
use. Let’'s see an example.

9Technically, the recurrence relationTign) = T(|n/2]) + 1 sincen/2 might not be an integer. It turns out that most of the
time we can ignore the floors/ceilings and still obtain theect answer.

146

Recurrence Relations 147

384 Example Consider the recurrence

S(n) = { 1 whenn=1

S(n—1)+n otherwise

o n
Prove that the solution i§(n) =

Proof: Whenn=1,51)=1= 1(1—2“) Assume that for & j <k, §(j) = j(jzﬂ). Then

Sk) = Sk—1)+k (Definition of S(k))
(k—=1)(k)

= +k (Inductive hypothesis)
k? —k .
= +k (The rest is just algebra)
B k? —k+ 2k
= —5—
Ktk
- 2
~ k(k+1)
- 2
Thus,S(n) = 22 for all n > 1. O

385 Example Solve the recurrence

H. — 1 whenn=1
"7 | 2H,_1+1 otherwise

Proof: NoticethatH; =1,H,=2-1+1=3,H3=2-3+1=7,andH;=2-7+1=15. It
sure looks likeH, = 2" — 1, but now we need to prove it. Sineh = 1= 211, we have our
base case af = 1. AssumeH, =2"—1. Then

Hhpi = 2Hh+1
— 22— 1)+1
2n+1_1

and the result follows by induction. O
386 Example Why was the recursive algorithm to computefrom Example376so bad?

Solution: Let’s count the number of additior/d bR(n) computes since that is the main
thing that the algorithm doé$. Let F(n) be the number of additions required to compute
fn usingFi bR(n) . SinceFi bR(n) performs one addition and then callisbR(n- 1) and

Fi bR(n-2),itis easy to see that

FinNN=F(n—1)+F(n—2)+1,

10Alternatively, we could count the number of recursive cailsde. This is reasonable since the amount of work done by the
algorithm, aside from the recursive calls, is constant.réfuge, the time it takes to compufgis proportional to the number
of recursive calls made. This would produce a slightly défe answer, but they would be comparable.

147

148 Chapter 6

whereF (0) = F(1) = 0 is clear from the algorithm. We could use the method fordine
recurrences that will be outlined later to solve this, bt élgebra gets a bit messy. Instead,
Let’s see if we can figure it out by computing some values.

F(0) 0

F(1) = O

F(2) = F(1))+F(0)+1=1
F3) = F(2)+F(1)+1=2
F(4) F3+F(2)+1=4
F(5 = F@4)+F3)+1=7
F(6) = F(5)+F(4)+1=12
F(7) = F(6)+F(5+1=20

No patternis evident unless you add one to each of theseudgpyou willget 11,2, 3,5,8,13,21,
etc., which looks a lot like the Fibonacci sequence startity f1. So it appears (n) =

fnr1 — 1. To verify this, first notice that (0) = 0= f; —1 andF (1) =0= f, — 1. Assume it
holds for all values less thda Then

F(kk = F(k=1)+Fk-2)+1
= fy—1+f1—14+1
= fy+fk—-1-1

fk+1—:|--

The result follows by induction.
So what does this mean? It means in order to comfytei bR(n) performsf,, 1+ 1 ad-
ditions. In other words, it computefs by adding a bunch of Os and 1s, which doesn’t seem

very efficient. Sincef, grows exponentially (we’ll see this in Exampl@3), thenF (n) does
as well. That pretty much explains what is wrong with the reme algorithm.

6.3.2 Iteration Method

With the iteration method, we expand the recurrence andesgpt as a summation dependent onlynon
and initial conditions. Then we evaluate the summation.

387 Example Solve the recurrence

R(n) = 1 whenn=1
| 2R(n/2)+n/2 otherwise

148

Recurrence Relations

149

Proof: We have

Using this method requires a little abstract thinking anttgua recognition. It also requires good
algebra skills. Care must be taken when doing algebra, edlyegith the non-recursive terms. Sometimes
you should add/multiply (depending on context) them aletbgr, and other times you should leave them
as is. The problem is that it takes experience (i.e. pract@eetermine which one is better in a given

2R(n/2)+n/2
2(2R(n/4)+n/4)+n/2
=2°R(n/4)+n/2+4n/2
= 22R(n/4) +n
22(2R(n/8) +n/8) +n
=2°R(n/8) +n/2+4n
=2°R(n/8) +3n/2
(
(
(

23(2R(n/16) +n/16) +3n/2

— 24

R
= 2*R(n/16) +2n

2XR(n/(2)) +kn/2

21°%"R(n/(2'°%")) + (log, n)n/2

nR(n/n) + (log,n)n/2
nR(1) + (log,n)n/2
n+ (log,n)n/2

n/16)+n/2+3n/2

situation. The key is flexibility. If you try doing it one wayd don’t see a pattern, try another way.
Here is my suggestion for using this method

O Iterate enough times so you are certain of what the patterfiyigically this means at least 3 or 4

iterations.

0 As you iterate, make adjustments to your algebra as negeseayou can see the pattern. For
instance, whether you writé’®r 8 can make a difference in seeing the pattern.

0 Once you see the pattern, generalize it, writing what it &htmok like afterk iterations.

0 Determine the value dfthat will get you to the base case, and then plug it in.

O Simplify.

388 Example Solve the recurrence

Hn:{ 1 whenn=1

2H,_1+1 otherwise

149

150 Chapter 6

Solution:

Hn — 2Hn_1+ 1
2(2Hn_2+1)+1=2"Hp+2+1
22(2Hn_3+1)+2+1=2%H_3+2°+2+1

= 2" 22234241
= 27 hp2r P 241
= 21

Thus,H,=2"—1.

6.3.3 Master Method

We will omit the proof of the following theorem which is partilarly certain recursive algorithms.

389 Theorem (Master Theorem) Let T(n) be a monotonically increasing function satisfying

T(n) = aT(n/b)+ f(n)
T(1) = c

wherea > 1,b > 2, andc > 0. If f(n) = 8(n%), whered > 0, then
[o(nd) ifa < b
:{ G)ndlogn ifa=bd

L ©(n%a) ifa > b

390 Example Solve the recurrence
T(n)=4T(n/2)+n

Solution: We havea=4,b=2, andd = 1. Since 4> 2%, T(n) = ©(n'°%*) = O(r?) by the
third case of the Master Theorem.

391 Example Solve the recurrence
T(n) =4T(n/2)+n?

Solution: We havea = 4,b =2, andd = 2. Since 4= 22, we haveT (n) = ©(n?logn) by
the second case of the Master Theorem.

392 Example Solve the recurrence
T(n)=4T(n/2)+n°

Solution: Here,a=4,b= 2, andd = 3. Since 4< 23, we haveT (n) = O(n%) by the first
case of the Master Theorem.

150

Recurrence Relations 151

Wow. That was eas¥ But the ease of use of the Master Method comes with a costcéltiat we
do not get arexactsolution, but only arasymptoticsolution. Depending on the context, this may be good
enough. If you need an exact numerical solution, the Mastethibtl will do you no good. But when
analyzing algorithms, typically we are more interestechi& asymptotic behavior. In that case, it works
great.

393 Example Let’s redo one from a previous section. Solve the recurrence

R(n) = 1 whenn =1
| 2R(n/2)+n/2 otherwise

Solution: Here, we havea = 2, b = 2, andd = 1. Since 2= 2%, R(n) = ©(n'logn) =
O(nlogn). Recall that in Exampl@87 we showed thaR(n) = n+ (log,n)n/2. Sincen+
(log,n)n/2 = ©(nlogn), our solution is consistent.

394 Example What is the time complexity ibinary searcl?

Solution: We previously saw that the number of comparisons neededifiarybsearch is
T(n) =T(n/2) +1. Here we hava= 1, b = 2, andd = 0. Since 1= 2°, the second case of
the Master Theorem tells is th&tn) = ©(n°logn) = O(logn).

6.3.4 Linear Recurrence Relations

Although in my mind linear recurrence relations are of thestemportance of these four methods for
computer scientists, we will discuss them briefly, both fompleteness sake, and because we can talk
about the Fibonacci number again.

395 Definition Letcy,Cy,...,ck be real constants anfd: N — R a function. A recurrence relation of the
form

Codn +C18ny1+Coani2+ - +Cank = f(n), n>0. (6.1)

is called alinear recurrence relatior{or linear difference equation If f is identically zero, we say
that the equation isomogeneoysnd otherwise we say the equatiom@homogeneous

Notice that equatioB.1above is equivalent to

8nik = Co@n + Cl8ns1+ Chan 2+ - +CG_18nk-1+ f(N),

wherec, = —¢j/ch ik, Which is the form we are more used to. Since the technique tgssolve these
involves factoring polynomials, it is more convenient tovdall of the terms on the same side of the
equation, which is why we think of them in the form of equatéfhwhen solving them.
Theorder of the recurrence is the difference between the highestlabbtvest subscripts. For exam-

ple

Unj2 —Unp1 =2
is of the first order, and

Unig+9U2 = n°

is of the fourth order.
There is a general technique that can be used to solve lioneaodeneous recurrence relations. How-
ever, we will restrict our discussion to first and second prdeurrences.

HAlmost too easy...

151

152 Chapter 6

First Order Recurrences
We outline a method for solving first order linear recurreralations of the form
Xn = a%-1+ f(n),a# 1,

wheref is a polynomial.

1. First solve the homogeneous recurrerge- ax, 1 by “raising the subscripts” in the form' =
ax"1. This we call thecharacteristic equation Canceling this giveg = a. The solution to the
homogeneous equatioq = ax,_1 will be of the formx, = Aa", whereA is a constant to be deter-
mined.

2. Test a solution of the form, = Aa" + g(n), whereg is a polynomial of the same degreefas
396 Example LetXxg= 7 andx, = 2xX,_1,n > 1. Find a closed form fogy,.

Solution: Raising subscripts we have the characteristic equadica 2x"~1. Canceling,
x = 2. Thus we try a solution of the form, = A2", wereA is a constant. But & xg = A2°
and soA = 7. The solution is thug, = 7(2)".

Here is a different method that sometimes works. We have:

X = 7

X1 = 2Xo
Xo = 2X1
X3 = 2X
Xn = 2Xn-1

Multiplying both columns,
XoX1+ X = 7+ 2"XoX1 Xz - Xn-1.
Canceling the common factors on both sides of the equality,

Xp=7-2".
397 Example LetXxy =7 andx, = 2xX,_1+1,n > 1. Find a closed form foxk,.

Solution: By raising the subscripts in the homogeneous equation wairokt = 2x"~1 or
x = 2. A solution to the homogeneous equation will be of the fagma- A(2)". Now f(n) =1
is a polynomial of degree 0 (a constant) and so we test a pkaticonstant solutio®. The
general solution will have the form, = A2"+B. Now, 7= Xy = A2°+ B = A+ B. Also,
X1 = 2%+ 7 =15 and so 15= x; = 2A+ B. Solving the simultaneous equations

A+B=7,

2A+B= 15,
we findA = 8,B = —1. So the solution i, = 8(2") —1=2M3 1.

152

Recurrence Relations 153

398 Example LetXy=2,X,=9%,_1—56n+ 63. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneous equation warothte characteristic
equationx” = 9x"~1 or x = 9. A solution to the homogeneous equation will be of the form
Xn = A(9)". Now f(n) = —56n+ 63 is a polynomial of degree 1 and so we test a particular
solution of the forrBn+C. The general solution will have the formg = A9" + Bn+C. Now

X0 =2,X1 = 9(2) —56+ 63 = 25X, = 9(25) —56(2) + 63= 176. We thus solve the system

2=A+C,

25=9A+B+C,
176=81A+2B+C.
We findA = 2,B=7,C = 0. The general solution i&, = 2(9") 4 7n.

399 Example Letxg = 1,X, = 3x,_1 — 2n?+6n— 3. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneous equation varothte characteristic
equationx" = 3x"~1 or x = 9. A solution to the homogeneous equation will be of the form
xn = A(3)". Now f(n) = —2n? 4+ 6n— 3 is a polynomial of degree 2 and so we test a particular
solution of the formBr? +Cn+ D. The general solution will have the for = A3"+ Bré +
Cn+D. Nowxo=1x =3(1)—2+6-3=4,% =3(4) —2(2)2+6(2) —3=13x3 =
3(13) — 2(3)%+ 6(3) — 3= 36. We thus solve the system

1=A+D,

4=3A+B+C+D,
13=9A+4B+2C+D,
36=27A+9B+3C+D.
We findA=B=1,C= D = 0. The general solution i&, = 3" +n?.

400 Example Find a closed form for, = 2X,_1+ 3" 1, %0 = 2.

Solution: We test a solution of the form, = A2"+B3". Thenxy = 2,x; = 2(2) +3° = 5.
We solve the system
2=A+B,

7=2A+3B.
We find A= 1,B= 1. The general solution ig, = 2"+ 3".

We now tackle the case wher= 1. In this case, we simply consider a polynongadf degree 1 higher
than the degree df.

401 Example LetXp = 7 andx, = X,—1+n,n > 1. Find a closed formula fax,.

153

154 Chapter 6

Solution: By raising the subscripts in the homogeneous equation varotbte characteristic
equationx" = x"~1 or x = 1. A solution to the homogeneous equation will be of the form
X = A(1)" = A, a constant. Nowf(n) = n is a polynomial of degree 1 and so we test a
particular solution of the fornBr? +Cn+ D, one more degree than that f The general
solution will have the formx, = A+ Br?+Cn+D. SinceA andD are constants, we may
combine them to obtair, = Bi?+Cn+E. Now,Xg = 7,x1 = 7+1=8,% = 8+2=10. So
we solve the system
7=E,
8=B-+C+E,
10=4B+2C+E.
1 2

We findB=C = > E = 7. The general solution ig, = % + r_21 +7.

Second Order Recurrences

All the recursions that we have so far examined are first arglaursions, that is, we find the next term
of the sequence given the preceding one. Let us now briefljneeahow to solve some second order
recursions.
We now outline a method for solving second order homogen&oear recurrence relations of the
form
Xn = %1+ bX-2.

1. Find the characteristic equation by “raising the sulpsstiin the formx" = ax®1 4 bx*~2. Cancel-
ing this gives® —ax— b = 0. This equation has two roots andr.

2. If the roots are different, the solution will be of the fong = A(r1)" + B(r2)", where A B are
constants.

3. If the roots are identical, the solution will be of the form= A(r1)" + Bn(ry)".
402 Example LetXg=1,X1 = —1,Xn+2 4+ SXnt1+ 6%y = 0.

Solution: The characteristic equation 3§ + 5x+ 6 = (x+ 3)(x+ 2) = 0. Thus we test
a solution of the formx, = A(—2)" + B(—3)". Since 1=xo=A+B,—1= —-2A— 3B, we
quickly find A= 2,B = —1. Thus the solution ig, = 2(—2)" — (—3)".

403 Example Find a closed form for the Fibonacci recursigp=0, f; = 1, fn = fr_1 + fa_2.

Solution: The characteristic equation i& — f —1 = 0, whence a solution will have the

form 0 0
fn:A<lt;%>-+B<12;@>.

The initial conditions give

0=A+B,
1:A<1+2\/§> +B<l_2\/§> = %(A+B)+§’(A—B) = ?(A—B)

154

Recurrence Relations 155

o 1 1 .
This givesA = —,B = ———. We thus have th€auchy-Binet Formula:
V5 V5

fn

V5

i<1+¢5>” 1 (1—2\@>” 6.2)

404 Example Solve the recursiory = 1,X; = 4,%Xn = 4Xn_1 — 4%n_2 = 0.

Solution: The characteristic equationx$— 4x+4 = (x—2)?> = 0. There is a multiple root
and so we must test a solution of the foxp= A2" + Bn2". The initial conditions give

1=A,

4 =2A+ 2B.
This solves to)A = 1,B = 1. The solution is thug, = 2"+ n2",

Exercises

405 Problem (Lines on the Plane) Find a recurrence relation for the number of regions intocllihe
plane is divided by straight lines if every pair of lines intersect, but no thliees intersect.

406 Problem Solve the recursiop, = 1+ ZE;%ak forn>2anda; = 1.

407 Problem Letxg = 1,X%, = 3X,_1 — 2n?+ 6n— 3. Find a closed form for this recursion.

408 Problem Find a closed form for, = 2xn_1+3"1, %9 = 2.

409 Problem LetXxy = 2,X, = 9%,_1 — 56n+63. Find a closed form for this recursion.

410 Problem Letxg =7 andx, = X,_1-+n,n> 1. Find a closed formula fax,.

411 Problem There are two urns, one is full of water and the other is eniythe first stage, half of the
contains of urn | is passed into urn Il. On the second stageflitse contains of urn Il is passed into urn
|. On stage three, 1/4 of the contains of urn | is passed imadluOn stage four 1/5 of the contains of urn
Il is passed into urn I, and so on. What fraction of water remaan urn | after the 1978th stage?

412 Problem (Derangements) An absent-minded secretary is fillimgenvelopes withn letters. Find

a recurrence relation for the numhb@y of ways in which she never stuffs the right letter into thehtig
envelope.

Answers

405 Let a, be this number. Clearls; = 2. Thenth line is cut by the previous — 1 lines ath— 1 points, addingn
new regions to the previously existig_;. Hence

h=ah1tn =2

155

156 Chapter 6
Notice that

a = a1+2

ag = a+3,

a = at4

-1 = ap2+(n-1),
an = ap-1+N,

Add these equalities together, we get

atagtayt - +an1+an=ait+a+agt+ast---+an 1+ (2+3+--

Solving fora, yields

n(n+1) > n?+n+2
> 1) =—7F—

an=611+< >

406 Observe that
n—1 n—-2
8 —an-1= (l+2ak> = (l+2ak> = an-1.
k=1 k=1

This means that, = 2a,_1 and so

aZ, = Zap
a1 = Zan2
a = 2a

Multiplying all these equalities,

ndn 18 =2" "8 181 2 -8 = & =2"tay =2"".
407 x, = 3"+ n?. We leave it to the reader to verify this.
408 x, = 2"+ 3". We leave it to the reader to verify this.

409 x, = 2(9") + 7n. We leave it to the reader to verify this.

410 We have
X = 7
Xy = X+1
Xo = X142
X3 = Xo+3
X = Xp-1+N

Adding both columns,

+n).,

Xo+X1+Xo+ +Xn=T+Xo+Xo+ -+ X1+ (1+2+3+---+n).

n(n+1)
>

Cancelling and using the fact thatt2+ --- +n=

n(n+1)

Xn=7
n+2

156

Analyzing Recursive Algorithms 157

411 Let x5,¥n,n = 0,1,2,... denote the fraction of water in urns | and Il respectively tagen. Observe that
Xn+Yn = 1 and that

Xo =1, Yo=0

D Y1=Yi+3X=13

Nl

X1 = X0 — 3%0 =

1 2. 1 1
Xo=X+3Y1=3 Y2=Y¥Y1—3Y1=3

A pattern emerges (which may be proved by induction) thaael @dd staga we havex, =y, = % and that at each
even stage we have (if= 2k) xox = ;%Jrll,yzk = Tkﬂ Since@3 =989 we havexjg7g = %.

412 Number the envelopes 2,3, --- ,n. We condition on the last envelope. Two events might hapgéhern and
r (for some 1<r < n—1) trade places or they do not.

In the first case, the two lettersand n are misplaced. Our task is just to misplace the otiner2 letters,
(4,2,---;r—=1,r+1,--- ,n—1)inthe slots(1,2,--- ,r —1,r +1,--- ;n—1). This can be done iD,_» ways. Since
r can be chosen in— 1 ways, the first case can happer(iin- 1)D,,_, ways.

In the second case, let us say that lettél < r < n— 1) moves to ther-th position butn moves not to the-th
position. Since has been misplaced, we can just ignore it. Simgenot going to the-th position, we may relabel
nasr. We now haven— 1 numbers to misplace, and this can be donB4n; ways.

As r can be chosen in— 1 ways, the total number of ways for the second cas@is 1)D,,_;. ThusD, =
(n—1)Dp_2+4 (n—1)Dp_1.

6.4 Analyzing Recursive Algorithms

In Section6.3 we already saw a few examples of analyzing recursive algost We will provide a few
more examples in this section. In case it isn't clear, thetnsommmon method to analyze a recursive
algorithm is to develop and solve a recurrence relationtéorinning time. Let’'s see some examples.

413 Example What is the worst-case running time of Mergesort?

Solution: The algorithm forMer gesort is below. LetT(n) be the worst-case running
time of Mer gesort on an array of size =right —left. Recall thatver ge takes two sorted
arrays and merges them into one sorted array in @tre, wheren is the number of elements
in both arrays. Since the two recursive callsMer gsort are on arrays of half the size,
they each require tim&(n/2) in the worst-case. The other operations take constant time,
indicated below.

157

158 Chapter 6

Analysis of Mergesort

Algorithm Time required
Mergesort(int[] Aint left,int right) { T(n)
if (left <right) { C
int md = (left + right)/2; C
Mergesort (A, left, md); T(n/2)
Mergesort (A, md + 1, right); T(n/2)
Merge(A, left, md, right); o(n)
}
}

Given this, we can see that

T(n) = C+C+T(n/2)+T(n/2)+0O(n)
= 2T(n/2)+0O(n).

For simplicity, we will write this asl (n) = 2T (n/2) + cnfor some constant.

We could use the Master Theorem to prove that) = ©(nlogn), but that would be too easy.
Instead, we will use induction to prove thktn) = O(nlogn), and leave th&-bound to the
reader.

By definition, T (n) = O(nlogn) if and only if there exists constaritandng such thafl (n) <
knlogn for all n > ng.

For the base case, notice tigi2) = a for some constard, anda < k2log2= 2k as long as
we pickk > a/2. Now, assume that(n/2) < k(n/2)log(n/2). Then

T(n) = 2T(n/2)+cn
2(k(n/2)log(n/2) +cn
knlog(n/2) +cn
knlogn—knlog2+cn
= knlogn+ (c—k)n
knlogn ifk>c

IA

IA

As long as we pick = max{a/2,c}, we haveT (n) < knlogn, soT (n) = O(nlogn) as desired.

414 Example (Towers of Hanoi) The following legend is attributed to French mathematidtatouard
Lucas in 1883. The tower of Brahma had 64 disks of gold restimghree diamond needles. At the
beginning of time, God placed these disks on the first needleoadained that a group of priests should
transfer them to the third needle according to the followings:

1. The disks are initially stacked on peg A, in decreasingo(ftom bottom to top).

2. The disks must be moved to another peg in such a way thatomaydisk is moved at a time and
without stacking a larger disk onto a smaller disk.

When they finish, the Tower will crumble and the world will erldlow many moves does it take to solve
the Towers of Hanoproblem withn disks?

Solution: The usual (and best) algorithm to solve ffaavers of Hanois as follows:

158

Analyzing Recursive Algorithms 159

e Move the topn — 1 disk to from peg 1 to peg 2.
e Move the last disk from peg 1 to peg 3.
e Move the topn— 1 disks from peg 2 to peg 3.

The only question is how to move the tap- 1 disks. The answer is simple: using the same
algorithm (with the peg numbers switched). Don’t worry ilydon’t see why this works. Our
main concern here is analyzing the algorithm.

Let H(n) be the time required to solve tHewers of Hanoproblem withn disks. Assuming
moving a single disk takes 1 operations k@l) = 1), the above algorithm requires

H(n)=H(Nn-1)+14+H(Mn-1)=2H(n—-1)+1

operations. As with the first example, we want a closed fomkif). But we already showed
thatH (n) = 2" — 1 in Examples385and388

6.4.1 The Average Complexity of Quicksort

In this section we give a proof that the average case runinimg of randomized quicksort ®(nlogn).
This proof gets its own section because the analysis ig/faiviolved. This proof is based on the one
presented in Section 8.4 of the clasiaroduction to Algorithmdy Cormen, Leiserson, and Rivest.
The algorithm they give is slightly different, and they inde some interesting insights, so read their
proof/discussion if you get a chance.

There are several slight variations of the quicksort atgari and although the exact running times are
different for each, the asymptotic running times are allsame. We begin by presenting the following
version ofQui cksort , written in C++.

Quicksort(int Al],int I, int r) { int RPartition(int A[], int I, int r) {
if (r >1) { int piv=l+(rand()%r-1+1);
int p=RPartition(Al,r); Swap(A[l],A piv]);
Qui cksort (A, |, p-1); int i =1+1;
Qui cksort (A p+l,r); int j =r;
} while (1) {
} while (A[i] <= All] && i<r)
++i ;

while (A[j] >= All] && j>I)
Rk

if (i >=j) {
Swap(ALj].All]);
return j;

}
el se Swap(Alil,Alj]l);

}

We will base our analysis on this version@ii cksort . It is straightforward to see that the runtime
of RPartitionis®(n). (A proof of this is left to the reader). We start by develapi recurrence
relation for the average case runtimeQifi cksort .

415 Theorem Let T(n) be the average case runtime@fi cksort on an array of size. Then

2]’]—1
T(n) = - kz_:lT(k) +0(n).

159

160 Chapter 6

Proof: Since the pivot element is chosen randomly, it is equallgtjikthat the pivot will end
up at any position fronhtor. That is, the probability that the pivot ends up at locatien is

1/nfor eachi =0,...,r —1. If we average over all of the possible pivot locations, weaob
1 n-1
T(n) = - > (T(k)+T(n—k—1)) | +O(n)
k=0
1 n—-1 1 n—-1

= =Y T(k+=> T(n—k—-1)+6(n)
N o N>
1n71 1n71
= ST+ TR +6(M)
k=0 k=0
2n71
~ S T(+om
k=0

2n71
= - ZT(k) +0O(n).
L]

The last step holds sinde(0) = 0. O

We will need the following result in order to solve the re@nte relation.
416 Lemma For anyn > 3,

n—1 1) 1)
g klogk < =n°l ——n°.
2 ogK < 2n ogn 8n

Proof: We can write the sum as

n—1 [n/2]-1 n—1
> klogk= " klogk+ > klogk
k=2 k=2 k=[n/2]

Then we can bountklogk) by (klog(n/2)) = k(logn— 1) in the first sum, and byklogn) in

160

Analyzing Recursive Algorithms 161

the second sum. This gives

[n/2]-1

n—1 n—1
> klogk = Y klogk+ > klogk
k=2 k=2 k=[n/2]

n/2]-1 n-1

Z k(logn—1)+ >~ klogn
k=[n/2]

IN

[n/2]-1
= (logn—1) Z k+logn Z k
k=[n/2]
n/2]-1 [n/2]-1
= logn Z k— Z k+logn Z K
=2 k=[n/2]
n—1 [n/21—1

= lognd k— > k
k=2 k=2

n-1 [n/2]-1
logn k- Z k
k=1

1 1n
(logn)= (n 1)n—§(§—1)2
. n—DIo no 22yl
= phogn=slognm gty
1, 1,

én logn— 8

IN

IA

IA

The last step holds since

< 5 logn,

n
2
whenn > 3. O

NI S

Now we are ready for the final analysis.

417 Theorem LetT(n) be the average case runtime@fi cksort on an array of size. Then
T(n) =O(nlogn).

Proof: ~ We need to show thal (n) = O(nlogn) and T(n) = Q(nlogn). To prove that
T(n) = O(nlogn), we will show that for some constaat

T(n) < anlogn for all n>2.%?

Whenn=2
anlogn =a2log2= 2a,

12\We pick 2 for the base case sinalgn=0 if n= 1, so we cannot make the inequality hold. Another solutionldde to
show thafT (n) < anlogn+ b. In this caseb can be chosen so that the inequality holdsfer 1.

161

162 Chapter 6

anda can be chosen large enough so th&2) < 2a. Thus, the inequality holds for the base
case. Assume thdt(1) = C, for some constar€. For 2< k < n, assumeT (k) < aklogk.
Then

2n71
T(n) = - kzle(k) +0(n)

n-1
r_2] > aklogk+ %T(l) +0(n) (by assumptioh
k=2

IN

2ad 2
= = > klogk+ HC+ o(n)
k=2

2a n—1
= > klogk+C+0(n) (sinceZ < 1)
k=2

IN

IN

2a /1 1

@ (Enzlogn— §n2> +C+0(n) (byLemma 3
a

= anIogn—ZnJrCJrG)(n)

= anlogn+ (O(n) +C— gn>

< anlogn (chooseasoO(n) +C < §n)

We have shown that with an appropriate choice,of (n) < anlogn for alln> 2, soT(n) =
O(nlogn).
We leave it to the reader to show tfiatn) = Q(nlogn). O

Homework

418 Problem Assuming the priests can move one disk per second, that taggd moving disks 6000
years ago, and that the legend of the Towers of Hanoi is trbenwvill the world end?

n
419 Problem Prove that for all positive integers » "i-i! = (n+1)! —1.
i=1

420 Problem Prove that for all positive integers 2+ {5+ ...+ f2 = ffn.1, wheref, is thenth Fi-
bonacci number.

421 Problem Explain why the following joke never end®ete and Repete got in a boat. Pete fell off.
Who's left?

422 Problem Binary palindromes can be defined recursivelyy, 1 € P, and whenevep € P, then

1pl € P and O € P. (Note: A is the notation sometimes used to denotedimpty string—that is, the
string of length 0. Also, b1 means the binary string obtained by appending 1 to the meginend of
string p. Similarly for Op0.) Notice that there is 1 palindrome of lengthX)(2 of length 1 (0, 1), 2 of
length 2 (00, 11), 4 of length 3 (000, 010, 101, 111), etc.

162

Recursion, Recurrences, and Induction 163

1. Prove that the number of binary palindromes of lendttie¥en length) is ®for all k > 0. (Hint:
Use induction and don’t over think it).

2. Prove that the number of binary palindromes of lendth-2 (odd length) is 1 for all k > 0.

423 Problem Prove that the recursive algorithinact ori al (n) from Example371works correctly for
n>0.

424 Problem Prove that th&Par t i t i on algorithm from Sectior6.4.1has complexity®(n).

163

164 Chapter 6

This page intentionally left blank.

164

Chapter ;

Counting

In this chapter we provide a very brief introduction to a fiellled combinatorics It turns out that
combinatorial problems are notoriously deceptive. Somesithey can seem much harder than they are,
and at other times they seem easier than they are. In faot, dhe many cases in which one combinatorial
problem will be relatively easy to solve, but a very clos@lated problem that seems almost identical will
be very difficult to solve.

When solving combinatorial problems, you need to make sorefully understand what is being
asked and make sure you are taking everything into accouynmbppately. | used to tell students that
combinatorics was easy. | don’t say that anymore. In somsesiéns easy. But its also easy to make
mistakes.

7.1 The Multiplication and Sum Rules

We begin our study of combinatorial methods with the follegviwo fundamental principles.

425 Rule (Sum Rule: Disjunctive Form) LetEj,Ep,...,Exk, be pairwise finite disjoint sets. Then
[ErUEU- - UE| = |Eq| +[Eo| 4 - 4 |Exl.

Another way of putting the sum rule is this: If you have to aoptish some task and you can do it in one
of n; ways, or one ohy, ways, etc., up to one @i ways, and none of the ways of doing the task on any of
the list are the same, then there ate- no + - - - + N ways of doing the task.

426 Rule (Product Rule) LetEj, Ey,..., E, be finite sets. Then
[Erx Exx - X E| = [Ea] - |Eg| - [El-

Another way of putting the product rule is this: If you needaromplish some task that takesteps,
and there are; ways of accomplishing the first stegy ways of accomplishing the second step, etc., and
nk ways of accomplishing thkth step, then there argn,- - - n, ways of accomplishing the task.

427 Example | have 5 brown shirts, 4 green shirts, 10 red shirts, and 3ddirés. How many choices do
| have if | intend to wear one shirt?

Solution: Since each list of shirts is independent of the others, | Gatbe sum rule.
Therefore | can choose any of my3+ 10+ 4 = 22 shirts.

171

172 Chapter 7

428 Example | have 5 pairs of socks, 10 pairs of shorts, and 8 t-shirts. H@amy choices do | have if |
intend to wear one of each?

Solution: 1 can think of choosing what to wear as a task broken into 3stidpave to choose
a pair of socks (5 ways), a pair of shorts (10 ways), and fireathghirt (8 ways). Thus | have
5x 10x 8 =400 choices.

429 Example If license plates are required to have 3 letters followed digis, how many license plates
are possible?

Solution: There are 26 choices for each of the first three charactedsl @ohoices for each
of the final three characters. Therefore, there afe 26 possible license plates.

430 Example What is the value osumafter each of the following segments of code?

i nt suneoO; i nt sunroO;
for(int i=0;i<n;i++) { for(int i=0;i<n;i++) {
for(int i=0;i<mi++) { sum = sum + 1;
sum = sum + 1; }
} for(int i=0;i<mi++) {
} sum = sum + 1;
}

Solution: In the code on the left, the inner loop executeimes, so every time the inner
loop executessumgetsm added to it. The outer loop executeimes, each time calling the
inner loop. Thereforenis added tasum ntimes, sossum= n x mat the end.

In the code on the right, The first loop adut sum and then the second loop adds$o sum
Thereforesum= n+ mat the end.

431 Example How many ordered pairs of integes y) are there such that@ |xy| <5?
Solution: LetEx = {(x,y) € Z?: |xy| =k} for k= 1,...,5. Then the desired number is

|Eq| +|Ep| +- -+ |Es).

Then
El - {(_17_1)7(_17]-)7(17_1)7(171)}
E> {<_27 _1)7 <_27 1)7 (_17 _2)7 (_17 2)7 (17 _2)7 (17 2)7 (27 _1)7 (27 1)}
Es {<_37 _1)7 <_37 1)7 (_17 _3)7 (_17 3)7 (17 _3)7 (17 3)7 (37 _1)7 (37 1)}
E4 = {(_47_1) (_471>7(_27_2>7(_272)7(_17 _4)7(_174>7(17 _4)7
(1,4),(2,-2),(2,2),(4,-1),(4,1)}
E5 = {(_57_1)7(_57 1>7(_17_5>7(_175)7(17_5>7(175)7(57_]-)7(57 1)}

The desired number is therefore-8+ 8+ 12+ 8 = 40.
432 Example The positive divisors of 400 are written in increasing order
1,2,4,5,8,...,200 400

How many integers are there in this sequence. How many ofitneods of 400 are perfect squares?

172

The Multiplication and Sum Rules 173

Solution: Since 400= 2452, any positive divisor of 400 has the forri3® where 0< a< 4
and 0< b < 2. Thus there are 5 choices farand 3 choices fob for a total of 5 3 = 15
positive divisors.

To be a perfect square, a positive divisor of 400 must be ofdtra 2958 with a € {0,2,4}
andp € {0,2}. Thus there are @ = 6 divisors of 400 which are also perfect squares.

It is easy to generalize Exampi@2to obtain the following theorem. following theorem.
433 Theorem Let the positive integem have the prime factorization
n=pps - pg,

where thep; are distinct primes, and ttegare integers> 1. If d(n) denotes the number of positive divisors
of n, then

d(n) = (ar+1)(a+1)--- (& +1).

434 Example The integers from 1 to 1000 are written in succession. Fiedtim of all the digits.

Solution: When writing the integers from 000 to 999 (with three digi&x 1000= 3000
digits are used. Each of the 10 digits is used an equal nunilienes, so each digit is used
300 times. The the sum of the digits in the interval 000 to $9®ius

(0+1+42+3+4+5+6+7+8+09)-300= 13500

Therefore, the sum of the digits when writing the integeosrirl to 1000 is 13500 1 =
13501.

Aliter: Pair up the integers from 0 to 999 as
(0,999), (1,998), (2,997), (3,996, ...,(499500).

Each pair has sum of digits 27 and there are 500 such pairsnégddor the sum of digits of
1000, the required total is
27-500+1= 13501

435 Example The strictly positive integers are written in succession
1,2,3,4,56,7,8,9,10,11,12 13 14,15,16,17,18,19, 20,....
Which digit occupies the 3000-th position?

Solution: Upon using

9-1=9 1-digit integers,
90-2=180 2-digit integers,
900-3=2700 3-digitintegers,

a total of 94 180+ 2700= 2889 digits have been used, so the 3000-th digit must belong t
a 4-digit integer. There remains to use 36002889= 111 digits, and 11+ 4-27+ 3, so
the 3000-th digit is the third digit of the 28-th 4-digit ilgger, that is, the third digit of 4027,
namely 2.

173

174 Chapter 7

7.2 Pigeonhole Principle

The following theorem seems so obvious that it doesn't ned&e tstated. However, it often come in handy
in unexpected situations.

436 Theorem (The Pigeonhole Principle) If nis a positive integer and+ 1 or more objects are placed
into n boxes, then one of the boxes contains at least two objects.

437 Example In any group of 13 people, there are always two who have tliirday on the same month.
Similarly, if there are 32 people, at least two people wems lom the same day of the month.

The pigeonhole principle can be generalized.

438 Theorem (The Generalized Pigeonhole Principle) If nobjects are placed intoboxes, then there
is at least one box that contains at leastk| objects.

Proof: Assume not. Then each of tlkeboxes contains no more than/k| — 1 objects.
Notice that/n/k] < n/k+1 (convince yourself that this is always true). Thus, thaltotmber
of objects in the&k boxes is at most

K([n/K] —1) < k(n/k+1—1)=n,

contradicting the fact that there ameobjects in the boxes. Therefore, some box contains at
least[n/k] objects. O

The Pigeonhole Principle is useful in proviegistenceproblems, that is, we show that something
exists without actually identifying it concretely.

439 Example Show that amongst any seven distinct positive integersxueatezling 126, one can find two
of them, saya andb, which satisfy
b<a<?2b.

Solution: Split the numberg1,2,3,...,126} into the six sets
{1,2},{3,4,5,6},{7,8,...,13,14} {15 16,...,29,30},
{31,32,...,61,62} and{63,64,...,126}.

By the Pigeonhole Principle, two of the seven numbers masnlione of the six sets, and
obviously, any such two will satisfy the stated inequality.

440 Example Given any 9 integers whose prime factors lie in the{&¥,11} prove that there must be
two whose product is a square.

Solution: For an integer to be a square, all the exponents of its pricterigation must be
even. Any integer in the given set has a prime factorisatfathe form #7°11¢. Now each
triplet (a, b, ¢) has one of the following 8 parity patterns: (even, even, g\emen, even, odd),
(even, odd, even), (even, odd, odd), (odd, even, even), éwea, odd), (odd, odd, even), (odd,
odd, odd). In a group of 9 such integers, there must be two tivéglsame parity patterns in
the exponents. Take these two. Their product is a square 8ie sum of each corresponding
exponent will be even.

174

Pigeonhole Principle 175

441 Example Prove that if five points are taken on or inside a unit squdreret must always be two

) . 2
whose distance is g

Solution: Split the square into four congruent squares as shown taghe r
Two of the points must fall into one of the smaller squaresl @@ longest

. . 2
distance there is, by the Pythagorean Theorg})2 + (3)? = %

442 Example Given any set of ten natural numbers between 1 and 99 inelugiove that there are two
disjoint nonempty subsets of the set with equal sums of #lements.

Solution: There are ¥ —1 = 1023 non-empty subsets that one can form with a given 10-
element set. To each of these subsets we associate the stgretdfments. The maximum
value that any such sum can achieve is @1+ - - - +99= 945< 1023 Therefore, there must
be at least two different subsets that have the same sum.

443 Example Prove that if 55 of the integers from 1 to 100 are selectedh tive of them differ by 10.

Solution: First observe that if we choose+ 1 integers from any set ofr2consecutive
integers, there will always be some two that differroyThis is because we can pair the 2
consecutive integers

{a+1,a+2,a+3,...,a+2n}

into then pairs
{a+1,a+n+1},{a+2,a+n+2},...,{a+n,a+2n},

and ifn+ 1 integers are chosen from this, there must be two that bedotige same group.
So now group the one hundred integers as follows:

{1,2,...20},{21,22,...,40},

{41,42,...,60}, {61,62,...,80}

and
{81,82,...,100}.

If we select fifty five integers, then we must have selecte@adt|55/5] = 11 from one of
the groups. From that group, by the above observatiom(etl0), there must be two that
differ by 10.

444 Example Label one discl”, two discs 27, three discs 3,, fifty discs “60". Put these %243+
---+50= 1275 labeled discs in a box. Discs are then drawn from the ba@ndom without replacement.
What is the minimum number of discs that must me drawn in ci@lguarantee drawing at least ten discs
with the same label?

Solution: If we draw all the 1+-2+---+9 =45 labelled 1", ..., “9” and any nine from
each of the discs10’, ..., “50", we have drawn 45-9-41 = 414 discs. The 415-th disc
drawn will assure at least ten discs from a label.

175

176 Chapter 7

7.3 Permutations and Combinations

Most counting problems we will be dealing with can be clasdifnto one of four categories. We explain
such categories by means of an example.

445 Example Consider the sefa,b,c,d}. Suppose we “select” two letters from these four. Depending
on our interpretation, we may obtain the following answers.

[0 Permutations with repetitions. The order of listing the letters is important, anépetition isal-
lowed. In this case there are4= 16 possible selections:

aa|ab|ac|ad
ba | bb| bc|bd
cal|cb|cc|cd
da|db|dc|dd

[0 Permutations without repetitions. The order of listing the letters is important, anépetition is
notallowed. In this case there are3= 12 possible selections:

ab|ac|ad
ba bc | bd
calch cd
da|db|dc

[0 Combinations with repetitions. The order of listing the letters is1ot important, andepetition is
, 4.3 : :
allowed. In this case there aF% +4 =10 possible selections:

aalab|ac|ad
bb| bc| bd
cc|cd
dd

[0 Combinations without repetitions. Theorder of listing the letters isi0t important, andepetition
: . 4.3 . .
is notallowed. In this case there ar% = 6 possible selections:

ab|ac| ad
bc | bd
cd

Although most of the simple types of counting problems we ttarsolve can be reduced to one of
these four, care must be taken. The previous example assbatede had a set afistinguishablebjects.
When objects are not distinguishable, the situation is eemomplicated.

The next four sections provide more details and exampleadf ef the four interpretations from the
previous example.

176

Permutations and Combinations 177

7.3.1 Permutations without Repetitions

446 Definition Let X1,Xo,...,X, ben distinct objects. Apermutationof these objects is simply a rear-
rangement of them.

447 Example There are 24 permutations of the letterdAT H, namely

MATH MAHT MTAH MTHA MHTA MHAT
AMTH AMHT ATMH ATHM AHTM AHMT
TAMH TAHM TMAH TMHA THMA THAM
HATM HAMT HTAM HTMA HMTA HMAT

448 Theorem Letxy,Xo,..., X, bendistinct objects. Then there anépermutations of them.

Proof: The first position can be chosennrways, the second object m— 1 ways, the third
inn— 2, etc. This gives
nn-1)(n—2)---2-1=nl.

O

449 Example A bookshelf contains 5 German books, 7 Spanish books and®lrieooks. Each book is
different from one another. How many different arrangerseain be done of these books if

[0 we put no restrictions on how they can be arranged?
[0 books of each language must be next to each other?
O all the French books must be next to each other?

O no two French books must be next to each other?

Solution:

0 We are permuting 5 74 8 = 20 objects. Thus the number of arrangements sought is
20!'=2432902008176640000.

0 “Glue” the books by language, this will assure that bookshaf $ame language are
together. We permute the 3 languages in 3! ways. We permet&¢nman books in 5!
ways, the Spanish books in 7! ways and the French books in y$.widence the total
number of ways is 3!5!7!8+ 146313216000.

O Align the German books and the Spanish books first. Puttingettb+ 7 = 12 books
creates 12-1 = 13 spaces (we count the space before the first book, the dpeivesen
books and the space after the last book). To assure thaedrémch books are next each
other, we “glue” them together and put them in one of theseespaNow, the French
books can be permuted in 8! ways and the non-French bookseaernmuted in 12!
ways. Thus the total number of permutations is

(13)8112! = 251073478656000

177

178 Chapter 7

O Align the German books and the Spanish books first. Puttingettb+ 7 = 12 books
creates 12- 1 = 13 spaces (we count the space before the first book, the dpeivesen
books and the space after the last book). To assure that neremah books are next to
each other, we put them into these spaces. The first Frendéhdamabe put into any of
13 spaces, the second into any of 12 remaining spaces, mdahea eighth French book
can be put into any 6 remaining spaces. Now, the non-Frenckstzan be permuted in
12! ways. Thus the total number of permutations is

(13)(12)(11)(10)(9)(8)(7)(6)12!,

which is 24856274386944000

7.3.2 Permutations with Repetitions

We now consider permutations with repeated objects.
450 Example In how many ways may the letters of the word
MASSACHUSETTS

be permuted to form different strings?

Solution: We put subscripts on the repeats forming
MA1SSA CHUSET To&.

There are now 13 distinguishable objects, which can be peanin 13! different ways by
Theorem448 But this counts some arrangements multiple times sinceatity the dupli-
cated letters are not distinguishable. Consider a singtay@tion of all of the distinguishable
letters. If | permute the lette’; Ay, | get the same permutation when ignoring the subscripts.
The same thing is true dkTo. Similarly, there are 4! permutations §f$,$%, so there are

4! permutations that look the same (without the subscri@s)ce | can do all of these inde-
pendently, there are 2!2!4! permutations that look idexitrehen the subscripts are removed.
This is true of every permutation. Therefore, the actual Ineinof permutations is

13!
214121

= 64864800

If you do not follow this example, | highly recommend tryingg yourself by determining the number
of permutations of a few smaller words with fewer repeatsriistance, tryTALL, SELLSandAEEEF.
Using reasoning analogous to the one of examplg we may prove the following theorem.

451 Theorem Let there bek types of objectsn; of type 1;n, of type 2; etc. Then the number of ways in
which thesen; +ny + - - - + ng objects can be rearranged is

(Ne+n2+---4ny)!
nyino!---nid ’

10.K., I admit that this isn’t a word. | couldn’t come up with aBsix letter word with three repeats

178

Permutations and Combinations 179

452 Example In how many ways may we permute the letters of the wdliSSACHUSET Ti& such a
way thatMASSis always together, in this order?

Solution: The particleMASScan be considered as one block along with the remaining 9
lettersA, C, H, U, S E, T, T, S There are twSs? and twoT’s and so the total number of

permutations sought is

10!
o1 = 907200

453 Example In how many ways may we write the number 9 as the sum of thregy@omteger sum-
mands? Here order counts, so, for example,7L- 1 is to be regarded different from71+ 1.

Solution: We first look for answers with
at+b+c=91<a<b<c<7

and we find the permutations of each triplet. We have

(a,b,c) | Number of permutations
3!
(1,1,7) o1 = 3
(1,2,6) | 31=6
(1,35) | 31=6
3!
(1,4,4) | 5 =
]l
(2,2,5) o =
(2,3,4) | 31=6
3!
(3,3,3) 3= 1

Thus the number desired is

3+6+6+3+3+6+1=28

454 Example In how many ways can the letters of the wdidRMUR be arranged without letting two
letters which are alike come together?

Solution: If we started with, say MU then theR could be arranged as follows:

(MJU[R] [R]

)

(MIU[R] [[R]or

(MIU[[R][R].
In the first case there are 21 2 ways of putting the remainingl andU, in the second there
are 2!= 2 ways and in the third there is only 1! way. Thus starting tleedwvith MU gives

242+ 1 =5 possible arrangements. In the general case, we can chmoBest letter of the
word in 3 ways, and the second in 2 ways. Thus the number of s@yght is 32-5= 303

2Remember, the other tw8s are part oMASS which we are now treating as a single object.
3It should be noted that this analysis worked because the thiters each occurred twice. If this was not the case wedvoul
have had to work harder to solve the problem.

179

180 Chapter 7

455 Example In how many ways can the letters of the wokFECTION be arranged, keeping the
vowels in their natural order and not letting the tiv's come together?

|
Solution: There areg—; ways of permuting the letters &fFFFECTION . The 4 vowels can be
permuted in 4! ways, and in only one of these will they be irirthatural order. Thus there are
|
% ways of permuting the letters 8FFECTION in which their vowels keep their natural

order. If we treaFF as a single letter, there are 8! ways of permuting the letterthat the
|

8! .
F’s stay together. Hence there afepermutations oAFFECTION where the vowels occur

in their natural order and theF’s are together. In conclusion, the number of permutations
soughtis

ol 8l 8,9 8.7.6.5.41 7
- <2 1>: '

444 ar o 2880

7.3.3 Combinations without Repetitions

456 Definition Let n,k be non-negative integers with<0k < n. Thebinomial coefﬁuen(k) (read 'n

choose K is defined and denoted by

nn n - n-(n-1)-(n-2)---(n—k+1)
(k>_k!(n—k)!_ 1-2:3---k

D Observe that in the last fraction, there are k factors in biith numerator and denominator. Also,
observe the boundary conditions

0= ()=(a"s)=n

457 Example We have

6 6-5-4

(3) = 123
11 11-10
(2) = 12 7

1.2.3.4.5.6-7 =192

110
(109) = 110

(12) ~ 12.11-10-9-8-7-6 _

If there aren kittens and you decide to takeof them home, you also decidedtto taken — k of them
home. This idea leads to the following important theorem.

180

Permutations and Combinations 181

458 Theorem If n,k € Z, with 0 <k < n, then

(E) - k!(nni K (n—k)!(nni R (nik>

Proof: Sincek =n— (n—Kk), the result is obvious. O

11 11
(a)-(5)-=
12 12
= =792
(5)-(7)
460 Definition Let there ben distinguishable objects. A-combinationis a selection ok, (0 < k < n)
objects from then made without regards to order.

459 Example

461 Example The 2-combinations from the li$iX,Y,Z,W} are
XY, XZ,XW,YZYWWZ
462 Example The 3-combinations from the ligiX,Y,Z, W} are
XYZXYWXZW.YW Z

463 Theorem Let there ben distinguishable objects, and gt 0 < k < n. Then the numbers d-

combinations of these objects is(rl:) :

Proof: Pick any of thek objects. They can be orderedriftn—1)(n—2)---(n—k+1), since
there aren ways of choosing thérst, n— 1 ways of choosing theecongetc. This particular
choice ofk objects can be permuted khways. Hence the total number kfcombinations is

n(n-1)(n-2)---(n—k+1) _ (n)

Kl — k)
O

464 Example From a group of 10 people, we may choose a committee of<4lfr> = 210 ways.

465 Example Three different integers are drawn from the §&22, ..., 20}. In how many ways may they
be drawn so that their sum is divisible by 3?

Solution: In {1,2,...,20} there are

6 numbers leaving remainder O
7 numbers leaving remainder 1
7 numbers leaving remainder 2

181

182 Chapter 7

The sum of three numbers will be divisible by 3 when (a) the¢hmumbers are divisible by 3;
(b) one of the numbers is divisible by 3, one leaves remaih@erd the third leaves remainder
2 upon division by 3; (c) all three leave remainder 1 upongidn by 3; (d) all three leave

remainder 2 upon division by 3. Hence the number of ways is

90066

466 Example To count the number of shortest routes frérto B in Figure7.1, observe that any shortest
path must consist of 6 horizontal moves and 3 vertical ones fotal of 6+ 3 =9 moves. Once we choose
which 6 of these 9 moves are horizontal the 3 vertical onedetermined. For instance, if | choose to go
horizontal on moves 1, 2, 4, 6, 7, and 8, then moves 3, 5 and ®eugrtical. Thus there afg) = 84
paths.

Another way to think about it is that we need to compute thelmemof permutations @EEEEENNN
whereE means move east, abldmeans move north. The number of permutations $&B!) = (2).

467 Example To count the number of shortest routes frénto B in Figure7.2that pass through poil@
we count the number of paths frofnto O (of which there are(g) = 20) and the number of paths frod

to B (of which there ard3) = 4). Thus the desired number of pathg3$(3) = (20)(4) = 80.
B B
©)

Figure 7.1: Example466. Figure 7.2: Example467.

7.3.4 Combinations with Repetitions

468 Theorem (De Moivre) Letn be a positive integer. The number of positive integer sohsito

X1 +Xo+---+X =n
n-1
r—1)°

Nn=1+1+--+1+1,

where there are 1s andn— 1 +s. To decompose in r summands we only need to choose
r — 1 pluses from then— 1, For instance, writingh = 7 as 7= 2+ 3+ 2 is equivalent to
7=(1+1)+(1+1+1)+(1+1), where thet's outside of the parentheses are the ones we
chose. This proves the theorem. O

Proof: Writenas

469 Example In how many ways may we write the number 9 as the sum of thregymomteger sum-
mands? Here order counts, so, for example,74-1 is to be regarded different fromH71+ 1.

182

Permutations and Combinations 183

Solution: Notice that this is the same problem as Exam{i& We are seeking integral
solutions to

at+b+c=9 a>0b>0c>0.

9-1 8
(63)- ()=
D The solution in Examplé69was much easier than the solution in Examg, demonstrating the
fact that choosing the right tool for the job can make a hudgiedince. Sometimes recognizing the best
tool for the job can be tricky. Of course, the more problemshid type you solve, the easier it gets.
Similarly, having more tools in your bag gives you more apgio

This also demonstrates something that is true of a lot of coatbrial problems: There are often
several valid ways of approaching them. But there are alsat aflinvalid approaches, so be careful!

By Theorem468this is

470 Example In how many ways can 100 be written as the sum of four posititegier summands?
Solution: We want the number of positive integer solutions to
a+b+c+d=100
which by Theoren68is
(939> = 156849

The following corollary is similar to Theore#68 except that the numbers are allowed to be O.

471 Corollary Letn be a positive integer. The number of non-negative integetisos to

YitY2+--+Yr=n

n+r—1
r—-1 /)
Proof: Setxi—1=vy,fori=1,...,r. Thenx > 1, and equation

X1—1+X—1+ - +X%—1=n

is equivalent to
X1+Xo+--+X=N+T,

n+r—1
r-1

solutions. 0

which from Theoren?68 has

472 Example Find the number of quadrupléa, b, c,d) of integers satisfying

a+b+c+d=100a>30b>21c>1d>1.

183

184 Chapter 7

Solution: Puta’ +29=a,b’+20= b. Then we want the number of positive integer solutions
to
a+29+b +21+c+d=100

or
a+b +c+d=50.

By Theorem468this number is

49
— 18424
(5)

473 Example In how many ways may 1024 be written as the product of thredipeftegers?

Solution: Observe that 1024 219, We need a decomposition of the forff2= 22202¢ that
is, we need integers solutions to

at+b+c=10, a>0,b>0,c>0.

By Corollary471there arg(*% > 1) = (%) = 66 such solutions.

7.4 Binomial Theorem

It is well known that
(a+b)? = a? 4 2ab+ b? (7.1)

Multiplying this last equality bya+ b one obtains
(a+b)® = (a+b)?(a+b) = a+ 3a’b+ 3ab? + b°

Again, multiplying
(a+b)® =a°+3a’b+3ab? +b° (7.2)

by a+ b one obtains

(a+b)* = (a+b)3(a+b) = a*+ 4a’b + 6a’b? + 4ab’ + b*

This generalizes, as we see in the next theorem.

474 Theorem (Binomial Theorem) Letx andy be variables and be a nonnegative integer. Then
n . .
(x+y)" Z (> XY
475 Example

(4x+5)° = (2) (4x)35° 4 @ (4x)%(5)* + @ (4x)1(5)% + @ (4x)%53

= (4%)3+3(4x)?(5) + 3(4x)(5)? + 5°
= 64+ 240 + 300+ 125

184

Binomial Theorem 185

476 Example

2yt = Q)@+ (J) @+ () @0 (3) oy () v

= (20" +4(203(—y?) + 6(20)%(—y*)* + 4(2x) (=Y > + (—y*)*
= 165" — 32Cy? 4+ 243y — 8xyP + P

The most important things to remember when using the bindhearem are not to forget the binomial
coefficients, and not to forget that the powers (ix8.' andy') apply to the whole term, including any
coefficients. A specific case that is easy to forget is a negaign on the coefficient. We skip a few steps
(e.g. the step of explicitly writing out the binomial coef@int) in the next few examples.

477 Example
(24+1)° = 2545(2)%i)+10(2)3(i)%2+10(2)2(i)3+5(2)(I)*+i°

= 32+80—80—-40 +10+i
= —38+39

478 Example

(V3+VE)* = (V3)*+4(V3*(V5) + 6(v3*(VE) +4(VI)(VE) + (VB)*

= 941215+ 90+ 20y/15+ 25
= 12443215

479 Example Given thata—b =2, ab= 3 finda® — b?.

Solution: One has

8 = 28
(a—h)3
a® — 3a’b+ 3ab? — b3
a®—b% - 3ab(a—b)
— a®-b3-18

whencea3 — b3 = 26.

If we ignore the variables in the Binomial Theorem and writevd the coefficients for increasing
values ofn, a pattern, calle@ascal’s Triangleemerges.

Notice that each entry different from 1 is the sum of the twighleors just above it. This leads to the
following theorem

480 Theorem (Pascal’s Identity) Letn andk be positive integers witk < n. Then

()= (5))

185

186 Chapter 7

1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 3 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

Figure 7.3: Pascal’s Triangle

7.5 Inclusion-Exclusion

The Sum Rulet25 gives us the cardinality for unions of finite sets that areually disjoint. In this
section we will drop the disjointness requirement and obgaformula for the cardinality of unions of
general finite sets.

The Principle ofinclusion-Exclusionis attributed to both Sylvester and to Poincaré. We willyonl
consider the cases involving two and three sets, althoughrihciple easily generalizes kasets.

481 Theorem (Inclusion-Exclusion for Two Sets)
|AUB| = |A|+ |B| — |ANB|

Proof: Clearly there aréAN B| elements that are in bothandB. Therefore)A| + |B| is the
number of element i andB, where the elements iiAN B| are counted twice. From this it
is clear thatAUB| = |A| + |B| — |ANB. O

482 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also knownlth&oth smoke and
chew. How many among the 40 neither smoke nor chew?

Solution: Let A denote the set of smokers aBdhe set of chewers. Then
|AUB| = |A|+|B|—|ANB| =28+ 16— 10= 34,

meaning that there are 34 people that either smoke or chepogsibly both). Therefore the
number of people that neither smoke nor chew is-8% = 6.

483 Example Consider the seA that are multiples of 2 no greater than 114. That is,
A={2,4,6,...,114}.
[0 How many elements are thereA?

0 How many are divisible by 3?

0 How many are divisible by 5?

186

Inclusion-Exclusion 187

[0 How many are divisible by 15?
[0 How many are divisible by either 3, 5 or both?
0 How many are neither divisible by 3 nor 5?

0 How many are divisible by exactly one of 3 or 5?

Solution: Let Ax C A be the set of those integers divisible ky

O Notice that the elements are=22(1), 4= 2(2), ..., 114= 2(57). Thus|A| = 57.

0 Notice that
A3 ={6,1218,...,114} ={1-6,2-6,3-6,...,19- 6},

So|Az| =19.
0 Notice that

As = {10,20,30,...,110} = {1-10,2-10,3-10,...,11- 10},

So|As| = 11.
O Notice thatA;5 = {30,60,90}, so|A;5| = 3.

O First notice thafzNAs = Ags. Theniitis clear that the answerA&sUAs| = |Ag| + |As| =
|A15| =19411-3=27.

0 We want
A\ (AgUAg)| = |A| — |AgUAs| = 57— 27= 30,
0 We want
[(AsUAs) \ (AsNAs)| = [(AsUAs)| —[AsNAg|
= 27-3
= 24

484 Example How many integers between 1 and 1000 inclusive, do not shaymanon factor with 1000,
that is, are relatively prime to 1000?

Solution: Observe that 1008 2353, and thus from the 1000 integers we must weed out
those that have a factor of 2 or of 5 in their prime factorizati If A, denotes the set of

. R , . 1000 .
those integers divisible by 2 in the interyal 100Q then clearly|Ay| = {TJ = 500. Sim-
. . , — 1000
ilarly, if As denotes the set of those integers divisible by 5 tiAgh= {—J = 200. Also

1000 . .
Ao Ag| = {WJ — 100. This means that there % UAs| = 500+ 200— 100= 600 inte-

gersin the intervdll, 1000 sharing at least a factor with 1000, thus there are 10800= 400
integers in[1,1000 that do not share a factor prime factor with 1000.

We now derive a three-set version of the Principle of Indodtxclusion.

187

188 Chapter 7

485 Theorem (Inclusion-Exclusion for Three Sets)

|JAUBUC| = |A+|B|+|C|
—|ANB|—|BNC| —[CNA|
+|/ANBNC|

Proof: Using the associativity and distributivity of unions ofsewe see that

JAUBUC| = |AU(BUC)]
= |A|+|BUC|—|AN(BUC)|
= |Al+|BUC|—|(ANB)U(ANC)|
= |Al+|B|+|C|—|BNC|—|ANB|—|ANC|+|(ANB)N(ANC)|
= |A|+|B|+|C|-|BNC|-(JAnB|+|ANC|—|]ANBNC|)
|Al+|B| +|C| — |ANB| - |BNC| — |CNA|+ |ANBNC|.

O
486 Example How many integers between 1 and 600 inclusive are not diei&i 3 nor 5, nor 77?

Solution: Let A denote the numbers i, 600 which are divisible byk = 3,5,7. Then

Al = [%°) = 200
Al = [%°) = 120
Al = %] = 85
A = [T = 40
Aoy = 5] = 28
Ass = 5] = 17

|Aro5 = [7g8) = 5

By Inclusion-Exclusion there are 260120+ 85— 40— 28— 17+5 = 325 integers irj1,600
divisible by at least one of 3, 5, or 7. Those not divisible bggde numbers are a total of
600— 325= 275

487 Example
How many integral solutions to the equation

a+b+c+d =100
are there given the following constraints:

1<a<10,b>0,¢c>220<d<307?

188

Inclusion-Exclusion 189

Solution: We use Inclusion-Exclusion. There a(tsé’) = 82160 integral solutions to
at+b+c+d=100 a>1,b>0,c>2,d> 20.
Let A be the set of solutions with
a>11b>0,c>2,d> 20
andB be the set of solutions with
a>1b>0.c>2d>3L

Then|A| = (3, [B] = (%), |ANB| = (%) and so

70 69 59
|AUB| = <3> + <3> — <3> = 74625
The total number of solutions to

a+b+c+d=100

with
1<a<10,b>0,¢c>220<d<30
is thus
80 70 69 59
(5)-(5) () (5) =7
Exercises

488 Problem Telephone numbers irand of the Flying Camelsave 7 digits, and the only digits available
are{0,1,2,3,4,5,7,8}. No telephone number may begin in 0, 1 or 5. Find the numbeelephone
numbers possible that meet the following criteria:

0 You may repeat all digits.

[0 You may not repeat any of the digits.

[0 You may repeat the digits, but the phone number must be even.
[0 You may repeat the digits, but the phone number must be odd.

[0 You may not repeat the digits and the phone numbers must he odd

489 Problem The number 3 can be expressed as a sum of one or more posiggels in four ways,
namely, as 3, #2, 2+ 1, and 14+ 1+ 1. Show that any positive integarcan be so expressed ifi 2
ways.

490 Problem How many two or three letter initials for people are avakaiblat least one of the letters
must be a D and one allows repetitions?

189

190 Chapter 7

491 Problem The sequence of palindromes, starting with 1 is written geading order
1,2,3,4,5,6,7,8,9,11,22 33 ...
Find the 1984-th positive palindrome.

492 Problem Would you believe a market investigator that reports that@3¥0 people, 816 like candy,
723 like ice cream, 645 cake, while 562 like both candy anatieam, 463 like both candy and cake, 470
both ice cream and cake, while 310 like all three? State yeasons!

493 Problem An auto insurance company has Q00 policyholders. Each policy holder is classified as
e young or old,
e male or female, and
e married or single.

Of these policyholders, 3000 are young, 4600 are male, abd & married. The policyholders can also
be classified as 1320 young males, 3010 married males, afidybddg married persons. Finally, 600 of
the policyholders are young married males.

How many of the company’s policyholders are young, femaid,single?

494 Problem In Medieval Highthere are forty students. Amongst them, fourteen like Maidiecs, six-
teen like theology, and eleven like alchemy. It is also knadkat seven like Mathematics and theology,
eight like theology and alchemy and five like Mathematics alotiemy. All three subjects are favoured
by four students. How many students like neither Mathersatior theology, nor alchemy?

495 Problem (Lewis Carrollin A Tangled Tale.) In a very hotly fought battle, at least 70% of the com-
batants lost an eye, at least 75% an ear, at least 80% an adnat éast 85% a leg. What can be said
about the percentage who lost all four members?

496 Problem An urn contains 28 blue marbles, 20 red marbles, 12 white lesyrthO yellow marbles, and
8 magenta marbles. How many marbles must be drawn from theumler to assure that there will be
15 marbles of the same color?

497 Problem The nine entries of a 8 3 grid are filled with—1, 0, or 1. Prove that among the eight
resulting sums (three columns, three rows, or two diagdtiadse will always be two that add to the same
number.

498 Problem Forty nine women and fifty one men sit around a round table. @estnate that there is at
least a pair of men who are facing each other.

499 Problem An eccentric widow has five cdtsThese cats have 16 kittens among themselves. What is
the largest integean for which one can say that at least one of the five catshatsens?

500 Problem Given any set of ten natural numbers between 1 and 99 inelugrove that there are two
disjoint nonempty subsets of the set with equal sums of #lements.

4Why is it always eccentric widows who have multiple cats?

190

Inclusion-Exclusion 191

Answers

488 We have
0 Thisis 5 8% = 1310720.
0 Thisis57-6-5-4-3.2=25200.
O Thisis 5 8°-4 = 655360.
0 Thisis 5 8°-4 = 655360.

0 We condition on the last digit. If the last digit were 1 or 5nthee would have 5 choices for the first digit, and
so we would have
5.6-5-4-3-2-2=7200

phone numbers. If the last digit were either 3 or 7, then welevbave 4 choices for the last digit and so we
would have
4.6-5-4-3-2.-2=5760

phone numbers. Thus the total number of phone numbers is

72004-5760= 12960

489 n=1+1+---+ 1. One either erases or keeps a plus sign.
N———
n—-1-+'s

490 (267 — 25°) + (26° — 25°) = 2002

491 It is easy to see that there are 9 palindromes of 1-digit, thghaimes with 2-digits, 90 with 3-digits, 90
with 4-digits, 900 with 5-digits and 900 with 6-digits. Thast palindrome with 6 digits, 999999, constitutes the
9+ 9+ 90+ 90+ 900+ 900 = 1998th palindrome. Hence, the 1997th palindrome is 9988@91996th palindrome

is 997799, the 1995th palindrome is 996699, the 1994th i§9®5etc., until we find the 1984th palindrome to be
985589.

492 Let C denote the set of people who like cantlyhe set of people who like ice cream, aldlenote the set of
people who like cake. We are given th@at = 816, || = 723,|K| = 645,|CNl| = 562,|CNK]| = 463,|| NK| =470,
and cardCNINK) = 310. By Inclusion-Exclusion we have

ICUIUK] = |C|+|I|+]|K]
—[CNl|—|CNK|—[INC]|
+/CNINK]|
= 816+ 723+ 645—562—463— 470+ 310
= 999

The investigator miscounted, or probably did not report jpaeson who may not have liked any of the three things.

493 LetY,F,S M stand for young, female, single, male, respectively, anMkestand for married. We have

IYNFNS = |[YNF|—|YNFNMa|
= [Y[=IYnM]|
—([YNnMa| —cardlY nManM))
= 3000- 1320— (1400—- 600)
= 880

191

192 Chapter 7

494 LetAbe the set of students liking MathematiBshe set of students liking theology, aGde the set of students
liking alchemy. We are given that

|A| = 14,|B| = 16,|C| = 11,|ANB| = 7,|BNC| = 8,|ANC| =5,

and
|JANBNC|=4.

By the Principle of Inclusion-Exclusion,
|ANBNC| = 40— |A| - |B| - |C| + |ANB| + |ANC| +|BNC| — |ANBNC]|
Substituting the numerical values of these cardinalities
40—14-16—-11+7+5+8—-4=15

495 Let A denote the set of those who lost an eBalenote those who lost an e@rdenote those who lost an arm
andD denote those losing a leg. Suppose therenarembatants. Then

n > |AUB]

= |Al+|B|—|ANB
7n+.750— |ANB],

n > |CuD|
= [Cl+[D|-[CND|
.8n+.85n—card(CnD).

This gives
|ANB| > .45n,

ICND| > .65n.

This means that
[(ANB)U(CND)|

|ANB|+|CND|—|ANBNCND|
451+ .65n— |[ANBNCND|,

AVAN | BV

whence
|JANBNCNDJ| > .45+ .65n—n=.1n.

This means that at least 10% of the combatants lost all founlnees.

496 If all the magenta, all the yellow, all the white, 14 of the mad 14 of the blue marbles are drawn, then in
among these & 10+ 12+ 14+ 14 = 58 there are no 15 marbles of the same color. Thus we need G8anan
order to insure that there will be 15 marbles of the same color

497 There are seven possible sums, each one a numBerdn-2,—1,0,1,2,3}. By the Pigeonhole Principle, two
of the eight sums must add up to the same.

498 Pick a pair of different sex facing one another, that is, fiogra “diameter” on the table. On either side of the
diameter there must be an equal number of people, that ig,rfiore. If all the men were on one side of the diameter
then we would have a total of 491 = 50, a contradiction.

499 We haveﬂl—fﬂ = 4, so there is at least one cat who has four kittens.

500 There are ¥ — 1 = 1023 non-empty subsets that one can form with a given 10esieset. To each of these
subsets we associate the sum of its elements. The maximwm tvedt any such sum can achieve istf9@1+ - - - +
99 =945 < 1023 Therefore, there must be at least two different subsetdtha the same sum.

192

Inclusion-Exclusion 193

Homework

501 Problem (E 6tv 6s, 1947) Prove that amongst six people in a room there are at least tie know
one another, or at least three who do not know one another.

502 Problem Suppose that the letters of the English alphabet are listad arbitrary order.
1. Prove that there must be four consecutive consonants.
2. Give a list to show that there need not be five consecutims@uants.

3. Suppose that all the letters are arranged in a circle.eRt@t there must be five consecutive conso-
nants.

503 Problem Bob has ten pockets and forty four silver dollars. He wanitdhis dollars into his pockets
so distributed that each pocket contains a different nurabdollars.

1. Can he do so?

2. Generalize the problem, consideripgockets andh dollars. The problem is most interesting when

(P-1)(p-2)

n= >

Why?
504 Problem Expand
1. (x—4y)®
x3+y2)4
2+3x)3

2i —3)*

2i +3)4 - (2i — 3)*
V3—V2)?
V3+v2)3+(V3-v2)3
V3+v2)3—(vV3-v2)3

505 Problem Prove that

© © N o g & w0 D

(
(
(
(
(2i +3)4+ (21 —3)4
(2
(V3
(
(

(a+b+c)?=a?+b?+c®+2(ab+bc+ca)

Prove that
(a+b+c+d)? = a?+b?+c?+d? + 2(ab+ ac+ ad+ bc+ bd + cd)

Generalize.

506 Problem Compute(x+ 2y+ 32)2.

193

194 Chapter 7

1 1
+

507 Problem Given thata+ 20 = ~8, ab= 4, find (i) a? + 402, (i) a*+8b° (i) ~ + -

508 Problem The sum of the squares of three consecutive positive irgeg@1170. Find the sum of the
cubes of those three consecutive positive integers.

509 Problem What is the coefficient at*y® in
(xv2-y)1%
510 Problem Expand and simplify
(V1-x+1)7— (V1-x2—1)".

511 Problem There are approximately 7,000,000,000 people on the pl@sstume that everyone has a
name that consists of exacthytower-case letters from the English alphabet.

1. If k=8, is it guaranteed that two people have the same name? Explai
2. What is the maximum value &fthat would guarantee that at least two people have the same™a
3. What is the maximum value &fthat would guarantee that at least 100 people have the same?na

4. Now assume that names can be between kainédracters long. What is the maximum valueof
that would guarantee that at least two people have the same™ma

512 Problem Password cracking is the process of determining someossword, typically using a
computer. One way to crack passwords is to perform an exkiaisgarch that tries every possible string
of a given length until it (hopefully) finds it. Assume yourmputer can test 10,000,000 passwords per
second. How long would it take to crack passwords with theowahg restrictions? Give answers in
seconds, minutes, hours, days, or years depending on hgevtlae answer is (e.g. 12,344,440 seconds
isn't very helpful). Start by determining how many possipé&sswords there are in each case.

1. 8 lower-case alphabetic characters.
2. 8 alphabetic characters (upper or lower).
3. 8 alphabetic (upper or lower) and numeric characters.

4. 8 alphabetic (upper or lower), numeric characters, aediapcharacters (assume there are 32 al-
lowable special characters).

5. 8 or fewer alphabetic (upper or lower) and numeric charact

6. 10 alphabetic (upper or lower), numeric characters, qatial characters (assume there are 32
allowable special characters).

7. 8 characters, with at least one upper-case, one lower-cae number, and one special character.

194

Inclusion-Exclusion 195

513 Problem [P addresses are used to identify computers on a networkPuv, IIP addresses are 32
bits long. They are usually written using dotted-decimattion, where the 32 bits are split up into 4
8-bit segments, and each 8-bit segment is represented imae&o the IP address 10000001 11000000
00011011 00000100 is represented as.12227.4. Thesubnet maskf a network is a string ok ones
followed by 32— k zeros, where the value &fcan be different on different networks. For instance, the
subnet mask mightbe 1111111111111111111111110000006f 18 2552552550 in dotted decimal.
To determine thaetid an IP address is bitwise ANDed with the subnet mask. To aeterthehostid an
IP address is bitwise ANDed with the bitwise complement efghbnet mask. Since every computer on a
network needs to have a differémstid the number of possibleostics determines the maximum number
of computers that can be on a network.

Assume that the subnet mask on my computer is currently2852550 and my IP address is
209.14020927.

1. What are theetidandhostidof my computer?
2. How many computers can be on the network that my computaris

3. In 2010, Hope College’s network was not split into subroeks like it is currently, so all of the
computers were on a single network that had a subnet maslkbd#®%5240.0. How many computers
could be on Hope’s network in 20107

n
514 Problem Prove that) | (E) = 2" by counting the number of binary strings of lengtim two ways.
k=0

515 Problem You get a new job and your boss gives you 2 choices for yourysatau can either make
$100 per day or you can start at $.01 on the first day and havesatary doubled every day. You know
that you will work fork days. For what values é&fshould you take the first offer? The second? Explain.

516 Problem The 300-level courses in the CS department are split ineetgroups: Foundations (361,
385), Applications (321, 342, 392), and Systems (335, 3%8).3n order to get a BS in computer science
at Hope you need to take at least one course from each group.

1. How many different ways are there of satisfying this regient by taking exactly 3 courses?

2. If you take four 300-level courses, how many differentgioisities do you have that satisfy the
requirements?

3. How many ways are there to take 300-level courses thafg#tie requirements?

4. What is the fewest number of 300-level courses you neeakidto guarantee that you will satisfy
the requirement no matter which courses you choose?

517 Problem In March of every year people fill out brackets for the NCAA Betball Tournament. They
pick the winner of each game in each round. We will assumedimieaiment starts with 64 teams (it has
become a little more complicated than this recently). Thet fiound of the tournament consists of 32
games, the second 16 games, the third 8, the fourth 4, thefithd the final 1. So the total number of
games is 32-16+8+4+2+1=63. You can arrive at the number of games in a different wagrgv
game has a loser who is out of the tournament. Since only led4tteams remains at the end, there must
be 63 losers, so there must be 63 games. Notice that we cawialsdl+ 2+ 4+ 8+ 16+ 32= 63 as

5
Y2k=26-1.
k=0

195

196 Chapter 7

n
1. Use a combinatorial proof to show that for amy 0, > 2X=2"1_1 (Thatis, define an appro-

k=0
priate set and count the cardinality of the set in two waydit@aio the identity.)

2. When you fill out a bracket you are picking who you think thiener will be of each game. How
many different ways are there to fill out a bracket? (Hint: dydon’t over think it, this is pretty
easy.)

3. If everyone on the planet (7,000,000,000) filled out a kegds it guaranteed that two people will
have the same bracket? Explain.

4. Assume that everyone on the planet fills kulifferent brackets and that no brackets are repeated
(either by an individual or by anybody else). How large wokildave to be before it is guaranteed
that somebody has a bracket that correctly predicts theaexiohevery game?

5. Assume every pair of people on the planet gets togethell touti a bracket (so everyone has
6,999,999 brackets, one with every other person on the plaM¢hat is the smallest and largest
number of possible repeated brackets?

518 Problem Mega Millions has 56 white balls numbered 1-56 and one reldhbahbered 1-46. To play
you pick 5 white balls and 1 red ball. Then 5 of the 56 balls ad the 46 balls are drawn randomly (or
so they would have us believe). You win if you match all 6 balls

1. How many different draws are possible?

2. If everyone in the U.S.A. bought a ticket (about 314,000)0is it guaranteed that two people have
the same numbers? Three people?

3. Ifeveryone inthe U.S.A. bought a ticket, what is the maxiimumber of people that are guaranteed
to share the jackpot?

4. Which is more likely: Winning Mega Millions or picking emewinner in the NCAA Basketball
Tournament (see previous question)?

5. (hard) What is the largest value lotuch that you are more likely to pick at le&swinners in the
NCAA Basketball Tournament than you are to win Mega Milli@ns

519 Problem |am implementing a data structure that consistslidts. | want to store a total af objects

in this data structure, with each item being stored on oné@lists. All of the lists will have the same
capacity (e.g. perhaps each list can hold up to 10 elements).

Write a methodri ni nunCapacity(int n, int k) that computes the minimum capacity each of the
k lists must have to accommodat@bjects. In other words, if the capacity is less than thisntthere is
no way the objects can all be stored on the lists. You may assoteger arithmetic truncates (essentially
giving you thefloor function), but that there is neeiling function available.

520 Problem How many license plates can be made using either threeddttbowed by three digits or
four letters followed by two digits?

521 Problem How many license plates can be made using 4 letters and 3 msiifki®e letters cannot be
repeated?

196

Inclusion-Exclusion 197

522 Problem How many bit strings of length 8 either begin with three 1smt with four 0s?
523 Problem How many alphabetic strings are there whose length is at Bibst

524 Problem How many bit strings are there of length at least 4 and at nfdst 6

525 Problem How many subsets with 4 or more elements does a set of sizev@® ha

526 Problem Prove that at a gathering of> 2 people, there are two people who have shaken hands with
the same number of people.

527 Problem Given a group of ten people, prove that at least 4 are maleleastt 7 are female.

528 Problem My family wants to take a group picture. There are 7 men and & and we want none
of the women to stand next to each other. How many differensvaae there for us to line up?

529 Problem My family (7 men and 5 women) wants to select a group of 5 of ysdao Christmas. We
want at least 1 man and 1 woman in the group. How many ways are tbor us to select the members of
this group?

530 Problem Compute each of the followind3), (3), (3), 8!, and 5!
531 Problem For what value(s) ok is (1k8) largest? smallest?

532 Problem For what value(s) okis (1) largest? smallest?

533 Problem A computer network consists of 10 computers. Each compsiirectly connected to zero
or more of the other computers. Prove that there are at lwastamputers in the network that are directly
connected to the same number of other computers.

534 Problem Simplify the following expression so it does not involve gagtorials or binomial coeffi-

cients: () / (5*3)-

535 Problem What is the coefficient af®y® in (3x — 2y)15?

L N n . : .
536 Problem Prove that for any positive mtegarZ(—Z)k(k) = (—1)". (Hint: Don't use induction.)
k=0

537 Problem Write a methocchoose(i nt n, int k) (ina Java-like language) that compu(@}s,
Your implementation should be as efficient as possible.

197

198 Chapter 7

This page intentionally left blank.

198

Chapter 8

Graph Theory

8.1 Simple Graphs

538 Definition A simple graph (network) G= (V,E) consists of a non-empty skt (called thevertex
(node)set) and a sdE (possibly empty) of unordered pairs of elements (callecettgesor arcs) of V.

Vertices are usually represented by means of dots on the dad the edges by means of lines connecting
these dots. See figur8sl through8.4for some examples of graphs.

V3
V2 Vi
() — o
Vi V2 \%1 Vo i
V3 V4
Figure 8.1: Ky, a Figure 8.2: Ky, a Figure 8.3: K3, a , .
graph with|V| = 1 graph with|V| = 2 graph with|V| = 3 Figure 8.4: A
and|E| =0. and|E| = 1. and|E| = 3. graph with|V| =3
and|E| =5.

539 Definition If vandV are vertices of a grap® which are joined by an edgewe say thav is adjacent
to vV and thatv andV areneighboursand we writee = vW. We say that vertex is incidentwith an edge
eif vis an endpoint oé. In this case we also say thais incident withv.

540 Definition Thedegreeof a vertex is the number of edges incident to it.

Depending on whetheg¥| is finite or not, the graph is finite or infinite. In these notes will only
consider finite graphs.

Our definition of a graph does not allow that two vertices lnegd by more than one edge. If this were
allowed we would obtain enultigraph Neither does it allooops, which are edges incident to only one
vertex. A graph with loops is pseudograph

541 Definiton Thecomplete graphwith n verticesKy is the graph where any two vertices are adjacent.
ThuskK;, has(}) edges.

201

202 Chapter 8

Figure8.1showsKj, figure8.2 showsKj, figure8.3showsKs, and figureB.5showsKg, figure 8.6 shows
Ks.

V2 \%1 B A B C V2 V1
C
A
D E
V3 V4 D E F V3 V4
Figure 8.5: Kg. Figure 8.6: Ks. Figure 8.7: K3 3. Figure 8.8: Ps.

542 Definition LetG = (V,E) be a graph. A subs&C V is anindependent seif vertices ifuv ¢ E for
all u,vin S (Smay be empty). Abipartite graphwith bipartition X,Y is a graph such that = X UY,
XNY =g, andX andY are independent set&.andY are called thgartsof the bipartition.

543 Definition Kmn denotes theomplete bipartite grapwith m+n vertices. One part, witm vertices,
is connected to every other vertex of the other part, witlertices.

544 Definition A u—v walkin a graphG = (V,E) is an alternating sequence of vertices and edgé in
with starting vertexu and ending vertex such that every edge joins the vertices immediately pracgitli
and immediately following it.

545 Definition A u—v trail in a graphG = (V,E) is au— v walk that does not repeat an edge, while a
u— v pathis a walk that which does not repeat any vertex.

546 Definition P, denotes gath of lengthn. It is a graph withn edges, anah+ 1 verticesvgvy - - - Vp,
wherey; is adjacent toj, 1 forn=0,1,...,.n—1.

547 Definition C, denotes &ycleof lengthn. It is a graph witm edges, and verticesv; - - - vy, wherey,
is adjacent tovi 1 forn=1,... n—1, andv; is adjacent to,.

548 Definition Qp denotes th@-dimensional cubéor hypercubg It is a simple graph with Rvertices,
which we label withn-tuples of 0’s and 1's. Vertices @, are connected by an edge if and only if they
differ by exactly one coordinate. Observe tigathasn2"—1 edges.

Figure8.7 showsKg3 3, figure 8.8 showsP, figure8.9 showsCs, figure8.10showsQ,, and figure8.11
showsQs.

A
. 01 11 B
C
A C
i G
D E 00 10
Figure 8.9: Cs. Figure 8.10: Q,. Figure 8.11: Qs. Figure 8.12: Example

550

202

Simple Graphs 203

549 Definition A subgraph G = (V4,E;) of a graphG = (V,E) is a graph with/; CV andE; C E.

We will now give a few examples of problems whose solutionsobee simpler when using a graph-
theoretic model.

550 Example If the points of the plane are coloured with three differemibars, red, white, and blue,
say, show that there will always exist two points of the saolewr which are 1 unit apart.

Solution: Infigure8.12all the edges have length 1. Assume the property does noghald
thatA is coloured redB is coloured whiteD coloured blue. Thefr must both be coloured
red. SinceE andC must not be red, we also conclude tkais red. But therF andG are at
distance 1 apart and both coloured red which contradictasgumption that the property did
not hold.

551 Example A wolf, a goat, and a cabbage are on one bank of a river. Thenfiem wants to take them
across, but his boat is too small to accommodate more thaonfahem. Evidently, he can neither leave
the wolf and the goat, or the cabbage and the goat behind.Hedarryman still get all of them across the
river?

Solution: Represent the position of a single item by O for one bank ofriver and 1

for the other bank. The position of the three items can nowibengas an ordered triplet,
say (W, G,C). For example(0,0,0) means that the three items are on one bank of the river,
(1,0,0) means that the wolf is on one bank of the river while the godttaa cabbage are on
the other bank. The object of the puzzle is now seen to be teerfrom (0,0,0) to (1,1,1),

that is, traversing@ds while avoiding certain edges. One answer is

000— 010— 011— 001— 101— 111

This means that the ferryman (i) takes the goat across.eftirms and that the lettuce over
bringing back the goat, (iii) takes the wolf over, (iv) ratarand takes the goat over. Another
one is

000— 010— 110— 100— 101— 111

This means that the ferryman (i) takes the goat acrossefuyms and that the wolf over bring-

ing back the goat, (iii) takes the lettuce over, (iv) retuansl takes the goat over. The graph
depicting both answers can be seen in fig8wE3 You can find a pictorial representation at
http://ww. cut -t he-knot. org/ctk/ Goat CabbageWl f.shtn.

011 001
000 111
110 100

Figure 8.13: Example551

552 Example Prove that amongst six people in a room there are at least ¥ine know one another, or
at least three who do not know one another.

203

http://www.cut-the-knot.org/ctk/GoatCabbageWolf.shtml

204

Chapter 8

Solution: In graph-theoretic terms, we need to show that every calgui the edges of
Kg into two different colours, say red and blue, contains a nsbnamatic triangle (that is,
the edges of the triangle have all the same colour). Conaidarbitrary person of this group
(call him Peter). There are five other people, and of thefiggeihree of them know Peter or
else, three of them do not know Peter. Let us assume threeayo Rater, as the alternative is
argued similarly. If two of these three people know one aetthen we have a triangle (Peter
and these two, see figuBel4 where the acquaintances are marked by solid lines). If wo tw
of these three people know one another, then we have thraehsiitangers, giving another
triangle (see figur8.15.

Figure 8.14: Exampleb52 Figure 8.15: Example552

553 Example Mr. and Mrs. Landau invite four other married couples forrdin Some people shook
hands with some others, and the following rules were noigd:gerson did not shake hands with himself,
(i) no one shook hands with his spouse, (iii) no one shooldeanore than once with the same person.
After the introductions, Mr. Landau asks the nine people hwany hands they shook. Each of the nine
people asked gives a different number. How many hands did Mwsdau shake?

Solution: The given numbers can either bel(®,...,8, or 1.2,...,9. Now, the sequence
1,2,...,9 must be ruled out, since if a person shook hands nine tirheg, he must have
shaken hands with his spouse, which is not allowed. The oesnsible sequence is thus
0,1,2,...,8. Consider the person who shook hands 8 times, as in figji& Discounting
himself and his spouse, he must have shaken hands with egrglse. This means that he is
married to the person who shook 0 hands! We now consider tisepéhat shook 7 hands, as
in figure 8.17. He didn’t shake hands with himself, his spouse, or with thespn that shook
0 hands. But the person that shook hands only once did so wétpdrson shaking 8 hands.
Thus the person that shook hand 7 times is married to the péhsd shook hands once.
Continuing this argument, we see the following paBs0), (7,1), (6,2), (5,3). This leaves
the person that shook hands 4 times without a partner, mg#mat this person’s partner did
not give a number, hence this person must be Mrs. Landau! IG@gion: Mrs. Landau shook
hands four times. A graph of the situation appears in figui&

Mr. Landau Mr. Landau Mr. Landau

3 0 3 0
2 1 2 1

Figure 8.16: Example553 Figure 8.17: Example553. Figure 8.18: Example553.

204

Graphic Sequences 205

8.2 Graphic Sequences

554 Definition A sequence of non-negative integergraphicif there exists a graph whose degree se-
guence is precisely that sequence.

555 Example The sequence,1,1 is graphic, sinc&s is a graph with this degree sequence, and in gen-
eral, soisthe sequenoen, ..., n, sinceK, 1 has this degree sequence. The degree sequea& 1.,2,1
N———— N—————

n+1n's n twos
is graphic, sincé>,, 1 has this sequence. The degree sequen2e .2,2 is graphic, sinc&, has this se-
N——

n twos
guence. The sequencgl(2,3,4,5,6,7,8 is graphic, but the sequencg13,4,5,6,7,8,9is not according
to Examples53

8.3 Connectivity

556 Definition A graph isconnectedf there is a path between every pair of verticesc@dmponenof a
graph is a maximal connected subgraph.

557 Definition A forestis a graph with no cycles (acyclic). #&eeis a connected acyclic graph. A
spanning treef a graph of a connected grafhis a subgraph ofs which is a tree and having exactly the
same of vertices &S.

8.4 Traversability

We start with the following, which is valid not only for simglgraphs, but also for multigraphs and
pseudographs.

558 Theorem (Handshake Lemma) LetG = (V,E) be a graph. Then

> degv=2|E|.

veV

Proof: If the edge connects two distinct vertices, as sum traveéhseagh the vertices, each
edge is counted twice. If the edge is a loop, then every védrdwing a loop contributes 2 to
the sum. This gives the theorem. O

559 Corollary Every graph has an even number of vertices of odd degree.

Proof: The sum of an odd number of odd numbers is odd. Since the suhne afegrees of
the vertices in a simple graph is always even, one cannotdraweld number of odd degree
vertices. O

560 Definition A trail is a walk where all the edges are distinct. Bualerian trail on a graplG is a trail
that traverses every edge®f A tour of G is a closed walk that traverses each edgé at least once. An
Euler touron G is a tour traversing each edge @fexactly once, that is, a closed Euler trail. A graph is
Eulerianif it contains an Euler tour.

561 Theorem A nonempty connected graph is Eulerian if and only if has mtiaes of odd degree.

205

206 Chapter 8

Proof: Assume first thaG is Eulerian, and le€ be an Euler tour o€ starting and ending
at vertexu. Each time a vertex is encountered alon@, two of the edges incident toare
accounted for. Sincg contains every edge @&, d(v) is then even for al # u. Also, sinceC
begins and ends in, d(u) must also be even.

Conversely, assume th@&tis a connected nonEulerian graph with at least one edge and no
vertices of odd degree. L& be the longest walk it that traverses every edge at most once:

W = V07V0V17V17V1V27V27 ---,Vn—l,Vn—lvn,Vn-

ThenW must traverse every edge incidenwtg otherwiseW could be extended into a longer
walk. In particularWV traverses two of these edges each time it passes thkgugiu traverses
Vh_1Vy at the end of the walk. This accounts for an odd number of edgegghe degree of
Vp IS even by assumption. Hend&, must also begin at,, that is,vo = vy. If W were not
an Euler tour, we could find an edge notwh but incident to some vertex MW sinceG is
connected. Call this edges4. But then we can construct a longer walk:

u7 uVi,Vi,ViVH_]_, ---,Vn—1Vn,Vn7VOV17 ...,Vi_]_Vi,Vi .
This contradicts the definition &%, soW must be an Euler tour. O

The following problem is perhaps the originator of graplotiye

562 Example (K 6nigsberg Bridge Problem) The town of Konigsberg (now called Kaliningrad) was
built on an island in the Pregel River. The island sat nearrevh@o branches of the river join, and the
borders of the town spreaded over to the banks of the riveedsa®/a nearby promontory. Between these
four land masses, seven bridges had been erected. The tdkvaséd to amuse themselves by crossing
over the bridges and asked whether it was possible to findlstasting and ending in the same location
allowing one to traverse each of the bridges exactly oncgureB.19has a graph theoretic model of the
town, with the seven edges of the graph representing the seidges. By Theorer6l, this graph is not

Eulerian so it is impossible to find a trail as the townsfolkeas
A

C
Figure 8.19: Example562

563 Definition A Hamiltonian cyclen a graph is a cycle passing through every ver@is Hamiltonian
if it contains a Hamiltonian cycle.

Unlike Theorenb61l, there is no simple characterisation of all graphs with a Htaman cycle. We have
the following one way result, however.

564 Theorem (Dirac’s Theorem, 1952) Let G = (V,E) be a graph witm = |E| > 3 edges whose every
vertex has degree 5. ThenG is Hamiltonian.

206

Planarity 207

Proof: Arguing by contradiction, supposgis a maximal non-Hamiltonian with with > 3,
and thatG has more than 3 vertices. Th@&cannot be complete. Letandb be two non-
adjacent vertices db. By definition of G, G+ abis Hamiltonian, and each of its Hamiltonian
cycles must contain the edgé. Hence, there is a Hamiltonian patv, . . . v, in G beginning
atv; = aand ending at,, = b. Put

S={virav;1 € E} and {vj:vjbeE}.

Asvp € SNT we must haveSUT| = n. Moreover,SNT = &, since if,8N T thenG would
have the Hamiltonian cycle
ViV2 - -ViVnVn-1---Vi41Va,

as in figure8.2Q contrary to the assumption th@tis non-Hamiltonian. But then

d(@) +d(b)=|S+|T|=|SUT|+|SNT| < n.

=}

: : n : -
But since we are assuming tti{a) > > andd(b) > 5 we have arrived at a contradictidn.

Vi ' ' Vh-1

Vn

Figure 8.20: Theorem564

8.5 Planarity
565 Definition A graph isplanarif it can be drawn in a plane with no intersecting edges.

566 Example Kjis planar, as shown in figu&21

Figure 8.21: Example568.

567 Definition A faceof a planar graph is a region bounded by the edges of the graph.

568 Example From figure8.21, K4 has 4 faces. Fackwhich extends indefinitely, is called tloaitside
face

207

208 Chapter 8

569 Theorem (Euler's Formula) For every drawing of a connected planar graph witkertices e edges,
and f faces the following formula holds:
v—e+f=2

Proof: The proof is by induction oe. Let P(e) be the proposition that— e+ f = 2 for
every drawing of a grap@® with eedges. le= 0 and itis connected, then we must have 1
and hencef = 1, since there is only the outside face. Thereforee+f=1-0+1=2,
establishing?(0).

Assume nowP(e) is true, and consider a connected gr&ptith e+ 1 edges. Either

O G has no cycles. Then there is only the outside face, arfd-=sd. Since there are+ 1
edges and is connected, we must have= e+ 2. This gives(e+2) — (e+1)+1=
2—1+1=2, establishing?(e+1).

O or G has at least one cycle. Consider a spanning tr&easfd an edgavin the cycle, but
not in the tree. Such an edge is guaranteed by the fact thes &&s no cycles. Deleting
uv merges the two faces on either side of the edge and leaveph @tavith only e
edgesy vertices, andf faces.G' is connected since there is a path between every pair
of vertices within the spanning tree. 8e- e+ f = 2 by the induction assumptid?(e).
But then

v—e+f=2= (v)—(e+1)+(f+1)=2 = v—e+ =2
establishind?(e+1).
This finishes the proof. U

570 Theorem Every simple planar graph with> 3 vertices has a < 3v— 6 edges. Every simple planar
graph withv > 3 vertices and which does not hav€sahase < 2v—4 edges.

Proof: If v= 3, both statements are plainly true so assume@iata maximal planar graph
with v > 4. We may also assume thatis connected, otherwise, we may add an edgé.to
SinceG is simple, every face has at least 3 edges in its boundariietétaref faces, let
denote the number of edges on tath face, for 1< k < f. We then have

Fi+Fo- 4 Fr > 3f.

Also, every edge lies in the boundary of at most two faces.ceéiE; denotes the number of
faces that thg-th edge has, then

2e>E1+Ex+---+Ee

SinceE1 +Ex+---+Ee=F+F---+ Ff, we deduce that&> 3f. By Euler's Formula we
then havee < 3v— 6.

The second statement follows fee= 4 by inspecting all graph& with v= 4. Assume then
thatv > 5 and thatG has no cycle of length 3. Then each face has at least four edgies
boundary. This gives&> 4f and by Euler’'s Formula < 2v—4. O

208

Planarity 209

571 Example Ks is not planar by Theorer70sinceKs has(3) = 10 edges and 18 9 = 3(5) — 6.
572 Example K33 is not planar by Theore70sinceKs 3 has 3 3= 9 edges and 8 8 = 2(6) — 4.

573 Definition A polyhedrons a convex, three-dimensional region bounded by a finitebmiraf polyg-
onal faces.

574 Definition A Platonic solidis a polyhedron having congruent regular polygon as facdshaming
the same number of edges meeting at each corner.

By puncturing a face of a polyhedron and spreading its sarifato the plane, we obtain a planar graph.

575 Example (Platonic Solid Problem) How many Platonic solids are there? nfis the number of
faces that meet at each corner of a polyhedron, raisdthe number of sides on each face, then, in the
corresponding planar graph, there aredges incident to each of thwevertices. As each edge is incident
to two vertices, we haveiv= 2e, and if each face is bounded hyedges, we also havef = 2e. It follows
from Euler's Formula that
2e 2e 1 1 1 1
+—==2= —+-==+=.
m n e 2
We must haven > 3 andm > 3 for a nondegenerate polygon. Moreover, if either mwere> 6 then

1,11 11
~3 6 2 e 2

Thus we only need to check the finitely many cases withr8m < 5. The table below gives the existing

polyhedra.

e f | polyhedron

6 4 |tetrahedron

12 6 | cube

6 12 8 | octahedron

12 30 20| icosahedron
12

20 30 dodecahedrol

o<

w| o & w| w3

QW W WS

—

576 Example (Regions in a Circle) Prove that the chords determined bypoints on a circle cut the
interior into 1+ (3) + (}}) regions provided no three chords have a common intersection

Solution: By viewing the points on the circle and the intets® of two chords as vertices, we obtain
a plane graph. Each intersection of the chords is deternmbgddur points on the circle, and hence our
graph hasy = (2) + n vertices. Since each vertex inside the circle has degreal 4ach vertex on the
circumference of the circle has degree 1, the Handshake Lemma (Theor&38) we have a total of

e= % (4(2) +n(n+ 1))

edges. Discounting the outside face, our graph has

svenvc) (o) ()

faces or regions.

209

210 Chapter 8

Exercises

577 Problem Seventeen people correspond by mail with one another—eaatvivh all the rest. In their
letters only three different topics are discussed. Eachgdaiorrespondents deals with only one of these
topics. Prove that there at least three people who writedb ether about the same topic.

578 Problem If a given convex polyhedron has six vertices and twelve sdgeove that every face is a
triangle.

579 Problem Prove, using induction, that the sequence
nnn-1n-1...,44332211
is always graphic.

580 Problem Seven friends go on holidays. They decide that each will sepdstcard to three of the
others. Is it possible that every student receives posictrain precisely the three to whom he sent
postcards? Prove your answer!

Answers

577 Choose a particular person of the group, say Charlie. Hesponds with sixteen others. By the Pigeonhole
Principle, Charlie must write to at least six of the peoplené topic, say topic I. If any pair of these six people
corresponds on topic |, then Charlie and this pair do thé&.tand we are done. Otherwise, these six correspond
amongst themselves only on topics Il or lll. Choose a pdgicperson from this group of six, say Eric. By the
Pigeonhole Principle, there must be three of the five remgithat correspond with Eric in one of the topics, say
topic Il. If amongst these three there is a pair that corredpavith each other on topic Il, then Eric and this pair
correspond on topic Il, and we are done. Otherwise, these fople only correspond with one another on topic
lll, and we are done again.

2 24 .
578 Letx be the average number of edges per face. Then we muskiiav@e. Hencex = Te =35 = 3. Since no
face can have fewer than three edges, every face must hasttyakaee edges.

579 The sequence, 1 is clearly graphic. Assume that the sequence
n—-1n-1...,44332211

is graphic and add two vertices,v. Joinv to one vertex of degree— 1, one of degree ai— 2,, etc., one vertex of
degree 1. Sinceis joined ton— 1 vertices, andi so far is not joined to any vertex, we have a sequence

nn—1n—-1n-1n-2n-2,...,4433,2210.
Finally, join u to v to obtain the sequence
nnn—-1n-1...,44332211.
580 The sequence,3,3,3,3,3,3 is not graphic, as the number of vertices of odd degree is dtids the given
condition is not realizable.
Homework

581 Problem Determine whether there is a simple graph with eight vesticaving degree sequence
6,5,4,3,2,2,2,2.

210

GNU Free Documentation License

Version 1.2, November 2002
Copyright(© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim cepiethis license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbookthar dunctional and useful document “free” in the sense eéflom: to assure everyone the effective freedom to copyeatistribute it, with
or without modifying it, either commercially or noncommigtty. Secondarily, this License preserves for the autmat publisher a way to get credit for their work, while not kpzonsidered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that detiva works of the document must themselves be free in the samge. It complements the GNU General Public License, whiattopyleft
license designed for free software.

We have designed this License in order to use it for manualsde software, because free software needs free docutizenta free program should come with manuals providing #reesfreedoms that
the software does. But this License is not limited to sofavaanuals; it can be used for any textual work, regardlesshjést matter or whether it is published as a printed book.réemmend this License
principally for works whose purpose is instruction or refere.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any nredihat contains a notice placed by the copyright holdemspifican be distributed under the terms of this License. $uebtice grants a
world-wide, royalty-free license, unlimited in duratidn, use that work under the conditions stated herein. Thactiment’, below, refers to any such manual or work. Any member of thblig is a licensee,
and is addressed agdu”. You accept the license if you copy, modify or distribute thork in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document aréign of it, either copied verbatim, or with modificationsddor translated into another language.

A “Secondary Sectiohis a named appendix or a front-matter section of the Docurtet deals exclusively with the relationship of the pufdiss or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing thaldcfall directly within that overall subject. (Thus, if tHeocument is in part a textbook of mathematics, a SecondartidBemay not explain any
mathematics.) The relationship could be a matter of hisabgonnection with the subject or with related matters,fdegal, commercial, philosophical, ethical or politicalgition regarding them.

The “Invariant Sections’ are certain Secondary Sections whose titles are designasebeing those of Invariant Sections, in the notice thegs tzat the Document is released under this License. If a
section does not fit the above definition of Secondary thesibi allowed to be designated as Invariant. The Documentanatain zero Invariant Sections. If the Document does nentifly any Invariant
Sections then there are none.

The “Cover Texts’ are certain short passages of text that are listed, as f@omer Texts or Back-Cover Texts, in the notice that saysttt@Document is released under this License. A Front-Coeer
may be at most 5 words, and a Back-Cover Text may be at most &wo

A “Transparent” copy of the Document means a machine-readable copy, remess in a format whose specification is available to the ggmmiblic, that is suitable for revising the document
straightforwardly with generic text editors or (for imagesmposed of pixels) generic paint programs or (for drawjirsgsne widely available drawing editor, and that is suitdbtenput to text formatters or
for automatic translation to a variety of formats suitaldeifiput to text formatters. A copy made in an otherwise Tpamnent file format whose markup, or absence of markup, has &eanged to thwart or
discourage subsequent modification by readers is not Taaeisp An image format is not Transparent if used for any tauitisl amount of text. A copy that is not “Transparent” iled“Opaque’.

Examples of suitable formats for Transparent copies irelpidin ASCII without markup, Texinfo input format, LaTeXpiat format, SGML or XML using a publicly available DTD, andastlard-
conforming simple HTML, PostScript or PDF designed for hamaodification. Examples of transparent image formats oelBNG, XCF and JPG. Opaque formats include proprietarydtsthat can be read
and edited only by proprietary word processors, SGML or XMt which the DTD and/or processing tools are not generaliylable, and the machine-generated HTML, PostScript or pidBuced by some
word processors for output purposes only.

The “Title Page’ means, for a printed book, the title page itself, plus sudloving pages as are needed to hold, legibly, the matérisLicense requires to appear in the title page. For worksrimats
which do not have any title page as such, “Title Page” meamsetkt near the most prominent appearance of the work’s iteeeding the beginning of the body of the text.

A section ‘Entitled XYZ " means a named subunit of the Document whose title eithaeisigely XYZ or contains XYZ in parentheses following texat translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, sucAdsbwledgements, “ Dedications’, “ Endorsements, or “History”.) To “Preserve the Title' of such a section when you modify the Document
means that it remains a section “Entitled XYZ" accordingttis definition.

The Document may include Warranty Disclaimers next to thecaavhich states that this License applies to the Documémse Warranty Disclaimers are considered to be includedfeyence in this
License, but only as regards disclaiming warranties: ahgrdtmplication that these Warranty Disclaimers may haw®id and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, eitbenmercially or noncommercially, provided that this Lise, the copyright notices, and the license notice sayisd-tbense applies to
the Document are reproduced in all copies, and that you addh®s conditions whatsoever to those of this License. Yoy nw use technical measures to obstruct or control the mgaati further copying of
the copies you make or distribute. However, you may accappemsation in exchange for copies. If you distribute a l@mgugh number of copies you must also follow the conditioreertion 3.

You may also lend copies, under the same conditions staeaand you may publicly display copies.

3. COPYING IN QUANTITY

221

222 Chapter 8

If you publish printed copies (or copies in media that comipbave printed covers) of the Document, numbering more i) and the Document’s license notice requires Cover Tgatsmust enclose
the copies in covers that carry, clearly and legibly, alsth€over Texts: Front-Cover Texts on the front cover, anckBzmver Texts on the back cover. Both covers must also gleant legibly identify you
as the publisher of these copies. The front cover must préserfull title with all words of the title equally promineand visible. You may add other material on the covers in &fditCopying with changes
limited to the covers, as long as they preserve the title@tbcument and satisfy these conditions, can be treatedlaatire copying in other respects.

If the required texts for either cover are too voluminoustefjibly, you should put the first ones listed (as many as éisomably) on the actual cover, and continue the rest onézewlj pages.

If you publish or distribute Opaque copies of the Documemhbering more than 100, you must either include a machingatela Transparent copy along with each Opaque copy, oristatewith each
Opaque copy a computer-network location from which the ggmeetwork-using public has access to download using pdtéindard network protocols a complete Transparent cbhyedocument, free of
added material. If you use the latter option, you must takeaeably prudent steps, when you begin distribution of Qpamppies in quantity, to ensure that this Transparent calpyamain thus accessible at
the stated location until at least one year after the las fiou distribute an Opaque copy (directly or through younggjer retailers) of that edition to the public.

It is requested, but not required, that you contact the astbbthe Document well before redistributing any large nemif copies, to give them a chance to provide you with an wgutieérsion of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Documemder the conditions of sections 2 and 3 above, providedytharelease the Modified Version under precisely this Lieemsth the
Modified Version filling the role of the Document, thus licergsdistribution and modification of the Modified Version tdvaever possesses a copy of it. In addition, you must do tihésgstin the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a titleidistfrom that of the Document, and from those of previousigrs (which should, if there were any, be listed in the Histection of the
Document). You may use the same title as a previous verstbe ibriginal publisher of that version gives permission.

B. List on the Title Page, as authors, one or more personstitiesresponsible for authorship of the modifications ia Modified Version, together with at least five of the printipathors of the
Document (all of its principal authors, if it has fewer tharei, unless they release you from this requirement.

C. State on the Title page the name of the publisher of the fiéati/ersion, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modificat@ujacent to the other copyright notices.

F. Include, immediately after the copyright notices, afi®e notice giving the public permission to use the ModifiecsMa under the terms of this License, in the form shown inAHdendum below.
G. Preserve in that license notice the full lists of Invari@actions and required Cover Texts given in the Documengse notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve it$eTiand add to it an item stating at least the title, year, aathors, and publisher of the Modified Version as given orilitie Page. If there is
no section Entitled “History” in the Document, create oragisg the title, year, authors, and publisher of the Docuraemiven on its Title Page, then add an item describing thdifiéol Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Doauinher public access to a Transparent copy of the Documeditliewise the network locations given in the Document faypous versions
it was based on. These may be placed in the “History” section.may omit a network location for a work that was publishelast four years before the Document itself, or if the avégipublisher
of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedicais”, Preserve the Title of the section, and preserve irséntion all the substance and tone of each of the contrilatarowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,tened in their text and in their titles. Section numbers erehuivalent are not considered part of the section titles.
M. Delete any section Entitled “Endorsements”. Such a seatiay not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled “Endmrgents” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sectiomsppendices that qualify as Secondary Sections and camiaimaterial copied from the Document, you may at your optiesighate some or
all of these sections as invariant. To do this, add thegditb the list of Invariant Sections in the Modified Versiditense notice. These titles must be distinct from any osleetion titles.

You may add a section Entitled “Endorsements”, providedittains nothing but endorsements of your Modified Versiorndyous parties—for example, statements of peer reviewairthe text has been
approved by an organization as the authoritative definiticanstandard.

You may add a passage of up to five words as a Front-Cover Texg @assage of up to 25 words as a Back-Cover Text, to the ehd bt of Cover Texts in the Modified Version. Only one pagsaf
Front-Cover Text and one of Back-Cover Text may be added bth(ough arrangements made by) any one entity. If the Dootileeady includes a cover text for the same cover, preljadded by you or
by arrangement made by the same entity you are acting onflefhgbu may not add another; but you may replace the old onexplicit permission from the previous publisher that atitte old one.

The author(s) and publisher(s) of the Document do not bytticisnse give permission to use their names for publicityoioto assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents releaseerithis License, under the terms defined in section 4 atmweddified versions, provided that you include in the corabion all of the
Invariant Sections of all of the original documents, unnfiedi and list them all as Invariant Sections of your combiwedk in its license notice, and that you preserve all theirifaty Disclaimers.

The combined work need only contain one copy of this Licease, multiple identical Invariant Sections may be replacét @ single copy. If there are multiple Invariant Sectiorigwmthe same name
but different contents, make the title of each such sectivque by adding at the end of it, in parentheses, the nameeafriginal author or publisher of that section if known, aseeh unique number. Make the
same adjustment to the section titles in the list of Invar@erctions in the license notice of the combined work.

In the combination, you must combine any sections Entitldistory” in the various original documents, forming onets&t Entitled “History”; likewise combine any sections Ehed “Acknowledge-
ments”, and any sections Entitled “Dedications”. You muedet all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

222

Planarity 223

You may make a collection consisting of the Document andratbeuments released under this License, and replace tivédinal copies of this License in the various documents igingle copy that
is included in the collection, provided that you follow thées of this License for verbatim copying of each of the doenta in all other respects.

You may extract a single document from such a collection,distiibute it individually under this License, providedwymsert a copy of this License into the extracted documentt fallow this License
in all other respects regarding verbatim copying of thatuoeent.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with otheparate and independent documents or works, in or on a vadfimetorage or distribution medium, is called an “aggretiathe copyright
resulting from the compilation is not used to limit the legghts of the compilation’s users beyond what the individuarks permit. When the Document is included in an aggredhie License does not apply
to the other works in the aggregate which are not themsekegative works of the Document.

If the Cover Text requirement of section 3 is applicable &sthcopies of the Document, then if the Document is less tharhalf of the entire aggregate, the Document’s Cover Textg Ine placed on
covers that bracket the Document within the aggregate eoelctronic equivalent of covers if the Document is in et@dt form. Otherwise they must appear on printed coverstiteket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you miayrithute translations of the Document under the terms ciee 4. Replacing Invariant Sections with translatiorguiees special permission
from their copyright holders, but you may include transiasi of some or all Invariant Sections in addition to the exgiversions of these Invariant Sections. You may includerstation of this License, and
all the license notices in the Document, and any WarrantglBisers, provided that you also include the original Estylersion of this License and the original versions of thastéces and disclaimers. In case
of a disagreement between the translation and the origéralan of this License or a notice or disclaimer, the origueasion will prevail.

If a section in the Document is Entitled “Acknowledgement®edications”, or “History”, the requirement (sectiontd)Preserve its Title (section 1) will typically require cltang the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Duent except as expressly provided for under this Licensg. cdiner attempt to copy, modify, sublicense or distribute Brocument is void,
and will automatically terminate your rights under thisémse. However, parties who have received copies, or riffbts, you under this License will not have their licenses tieated so long as such parties
remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revisedaessif the GNU Free Documentation License from time to timechShew versions will be similar in spirit to the present i@ns but may
differ in detail to address new problems or concerns. See/httvw.gnu.org/copyleft/.

Each version of the License is given a distinguishing versiomber. If the Document specifies that a particular nuntbeeesion of this License “or any later version” applies toyitu have the option
of following the terms and conditions either of that spedifi@rsion or of any later version that has been publisheddsat draft) by the Free Software Foundation. If the Documeas dhot specify a version
number of this License, you may choose any version ever ghaddi (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, includepy of the License in the document and put the following cagiytrand license notices just after the title page:

Copyright© YEAR YOUR NAME. Permission is granted to copy, distributelr modify this document under the terms of the GNU Free Duentation License, Version 1.2 or any
later version published by the Free Software Foundatioth wo Invariant Sections, no Front-Cover Texts, and no Baoker Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Ba&oker Texts, replace the “with ... Texts.” line with this:
with the Invariant Sections being LIST THEIR TITLES, withetfFront-Cover Texts being LIST, and with the Back-Cover 3dding LIST.

If you have Invariant Sections without Cover Texts, or sofeepcombination of the three, merge those two alternativesit the situation.
If your document contains nontrivial examples of programesave recommend releasing these examples in parallel yndechoice of free software license, such as the GNU Gelrerlic License,
to permit their use in free software.

223

Index

v (for all), 3, 48

O(f(x)) (Big-0), 101
Q(f(x)) (Big-Omega),102
O(f(x)) (Big-Theta),103
w(f(x)) (little-omega),104
o(f(x)) (little-0), 104

(1) (binomial coefficient) 180
= (congruence moduln), 58

3 (there exists)3, 48

I (factorial), 10

| | (floor), 26

[(ceiling),26

| (divides),2

A (AND), 42

— (NOT), 42, 48

V (OR),42

@ (XOR), 42

— (conditional),42

<> (biconditional),42

= (logically equivalent)45
mod operator4

% (modulus)4

|A| (set cardinality) 50

€ (element of set)50

¢ (not element of sethO0
7 (integers) b1

7" (positive integers)>1
7~ (negative integershl
N (natural numbersh1
R (real numbers);1

C (complex numbersh1
& (empty set)51

{} (empty set)51

N (intersection)53

224

U (union),53

A (complement of\), 54
\ (set-minus)p3

x (Cartesian producth7
P(A) (power set)53

C (subset)pl

¢ (not a subsetp1

C (proper subsetp1

>~ (summation)87

[T (product),87
algorithm,21

AND, 42
anti-symmetric relatior58
arithmetic progressiorgs
arithmetic sequenc&b
array,26

assignment operatazl
asymptotic notation101

base case (inductior)32
base case (recursiori40
biconditional 42
Big-O, 101
Big-Omega 102
Big-Theta,103
binary searchl145
binomial coefficient180
Binomial Theorem184
bipartite graph202
boolean
operator42
AND, 42
biconditional 42
conditional 42
conjunction42

Index

225

disjunction,42
exclusive or42
inclusive or,42
negation28, 42
not, 28
OR,42
XOR, 42
proposition41
variable,28
Boolean algebres2
boolean operato?2
bounded sequencé4

cardinality, set50
Cartesian producg7
ceiling, 26
characteristic equatiod52, 154
choose 180
closed form (recurrence relatiod45
combination181
combinatorics171
complement, seg4
complete bipartite grapi202
complete graph?01
complex number§1
component of a grapi205
composite numbeg9
compound propositior2
conditional statemen#2
congruence modulo, 58
conjunction42
connected grapt205
constant growth rate,15
contingency45
contradiction45
contradiction proofp
contraposition

proof by,9
contrapositive9
counterexample

proof by, 10
CPU time,110
cycle,202

decreasing sequend}
degree of a vertex201
DeMorgan’s Law

for Boolean algebra$i4
for propositions46
for quantifiers 48
for sets 55
Dirac’s Theorem206
direct proof,1
disjoint, set54
disjunction 42
divides,2
divisor, 2

element, of a seg0
empty setpl
equivalence clas$9
equivalence relatior§8
equivalent

logically, 45
Eulerian graph205
exclusive or42
existential quantifier3, 48
exists,3, 48
exponential growth ratd,17

face,207

factor, 2

factorial, 10, 25, 140

Fibonacci numbers33, 138 143 144, 147, 154
first order recurrencd,52

floor, 26

for all, 3, 48

for loop, 25

forest,205

geometric progressioB5
geometric sequenc8b
geometric serieg7
graph
planar,207
simple,201

Hamilitonian cycle 206

Hamiltonian cycle206

Hamiltonian graph206
homogeneous recurrence relati@b;1
hypercube202

if-then-else statemen?4
inclusion-exclusion

225

226

three sets]188

two sets ;186
inclusive or,42
increasing sequence3
induction,131
inductive case (recursion}40
inductive hypothesis, 32
integerspl
intersection, sef3
irrational number6
iteration method148

I'Hopital’s Rule, 108
linear growth rate116
linear recurrence relatiod51
little-O, 104
little-omega, 104
logarithmic growth ratel16
logically equivalent45
loop, 201

for, 25

while, 29

Master Method150
mathematical inductiori,31
maximum

array element26

of three number4

of two numbers24
mergesort157
mod, 4
modus poneng,, 132
monotonic sequencé4
multigraph,201
multiple, 2

natural number§1
negationp, 42
guantifiers 48
negation operatog8
negative integer§1
non-recursive term (recurrence relatioiys
nonhomogeneous recurrence relatibhl]
not, 5
not operator28
null set,51

operator

booleanseeboolean, operatod?2

negation28
not, 28
OR,42
outside face207

partial order58
partition,57

Pascal’s Identity]1 85
Pascal’s Trianglel 85 186
path,202

permutationg, 177
pigeonhole principlel74
planar graph207
polynomial growth rate]l17
positive integers1
power setb3

precedence, logical operatofs

predicate48
primality testing,29
prime number29
product of sums;6
product rule171
proof
by cases10
by contradictionb
by counterexample,0
contrapositive9
direct,1
induction,131
trivial, 9
proper subsef1
proposition41
compound4?2
propositional function48
pseudograp01

quadratic growth ratel, 16
quantifier
existential 3, 48
universal3
guantifiers 48
quicksort,159

rational number6

real numbers51

recurrence relatiorl, 44
solving,145

226

Index

227

recurrence relations
solving
iteration method148
linear,151
Master method] 50
substitution methodL46
recursion140
recursive 140
recursive term (recurrence relatiod}i5
reflexive relation58
relation,57
anti-symmetric58
equivalence58
reflexive,58
symmetric 58
transitive,58
reverse, an array,/

second order recurrencE4

sequencefl

set,50
cardinality,50
complement54
containment proof5
difference 53
disjoint,54
empty,51
intersection53
mutually exclusiveb4
operationsb3
partition,57
power,53
relation,57
size,50
union,53
universeb4

solid
Platonic,209

spanning tree205
strictly decreasing sequendé}
strictly increasing sequenceé3
strong induction133
subgraph203
subsetb1

proper,51
substitution method, 46
sum of products66
sumrule171
swapping22
symmetric relation58

tautology,45
tour, 205
Euler,205
Towers of Hanoi 158
trail, 202 205
Eulerian,205
transitive relation58
tree,205
trivial proof, 9
truth table 44
truth value 41

unbounded sequenc®}
union, setb3

universal quantifier3, 48
universal set4
universeb4

Venn diagram53
vertex,201

walk, 202
wall-clock time,110
weak induction133
while loop,29

XOR, 42

227

	Preface
	Proof Methods
	Direct Proofs
	Proof by Contradiction
	Proof by contraposition
	Other Proof Techniques
	Exercises
	Answers
	Homework

	Programming Fundamentals and Algorithms
	Algorithms
	If-then-else Statements
	The for loop
	Arrays
	The while loop
	Exercises
	Answers
	Homework

	Propositional Logic, Sets, and Boolean Algebra
	Propositional Logic
	Propositional Equivalence
	Predicates and Quantifiers
	Exercises
	Answers

	Sets
	Set Operations
	Partitions and Equivalence Relations
	Exercises
	Answers

	Boolean Algebras
	Sum of Products and Products of Sums
	Logic Puzzles
	Exercises
	Answers

	Homework

	Sequences and Summations
	Sequences
	Exercises
	Answers

	Sums and Products
	Exercises
	Answers

	Homework

	Algorithm Analysis
	Asymptotic Notation
	The Notations
	Proofs using the definitions
	Proofs using limits

	Analyzing Algorithms
	Common Growth Rates
	Comparing Growth Rates

	Homework

	Recursion, Recurrences, and Mathematical Induction
	Mathematical Induction
	Exercises
	Answers

	Recursion
	Exercises
	Answers

	Recurrence Relations
	Substitution Method
	Iteration Method
	Master Method
	Linear Recurrence Relations
	Exercises
	Answers

	Analyzing Recursive Algorithms
	The Average Complexity of Quicksort

	Homework

	Counting
	The Multiplication and Sum Rules
	Pigeonhole Principle
	Permutations and Combinations
	Permutations without Repetitions
	Permutations with Repetitions
	Combinations without Repetitions
	Combinations with Repetitions

	Binomial Theorem
	Inclusion-Exclusion
	Exercises
	Answers
	Homework

	Graph Theory
	Simple Graphs
	Graphic Sequences
	Connectivity
	Traversability
	Planarity
	Exercises
	Answers
	Homework

	GNU Free Documentation License
	Index

