1.2 Epsilon-delta definition of a limit

Toward a more rigorous definition

Definition

(Informal definitions) Given a function \(y = f(x) \), an \(x \)-value \(c \), and a
\(y \)-value \(L \), we say that \(\lim_{x \to c} f(x) = L \) provided

1. \(y = f(x) \) is near \(L \) whenever \(x \) is near \(c \).
2. whenever \(x \) is within a certain tolerance level of \(c \), then the
 corresponding value \(y = f(x) \) is within a certain tolerance level of
 \(L \).

Remark

The tolerances for \(x \) and \(y \) are different. The \(y \)-tolerance is called \(\varepsilon \),
and the \(x \)-tolerance is called \(\delta \).

1.2 Epsilon-delta definition of a limit

A rigorous definition of limit

Definition

(Rigorous definition) Let \(f \) be a function defined on an open interval
containing \(c \) (except perhaps at \(c \) itself). Then \(\lim_{x \to c} f(x) = L \) provided
that given any \(\varepsilon > 0 \), there exists a corresponding \(\delta > 0 \) such that
whenever \(0 < |x - c| < \delta \), we have \(|f(x) - L| < \varepsilon \).
1.2 Epsilon-delta definition of a limit

Examples

Example

1. Show \(\lim_{x \to 9} \sqrt{x} = 3 \). (Cf. §1.2: Example 6)
2. Show \(\lim_{x \to 4} x^2 = 16 \). (Cf. §1.2: Example 7)
3. Show \(\lim_{x \to 0} e^x = 1 \). (Cf. §1.2: Example 9)
4. Show \(\lim_{x \to c} e^x = e^c \).

Remark
This last example shows that the function \(f(x) = e^x \) is continuous at all values of \(x \). More generally, a function \(f(x) \) is continuous at \(c \) if \(\lim_{x \to c} f(x) = f(c) \). We’ll explore this important idea of continuity more in §1.5.

1.2 Epsilon-delta definition of a limit

Just checking. . . .

1. What’s wrong with the following “definition” of a limit?
 The limit of \(f(x) \) as \(x \) approaches \(c \) is \(K \) means that given any \(\delta > 0 \), there exists an \(\varepsilon > 0 \) such that whenever \(|f(x) - K| < \varepsilon \) we have \(0 < |x - c| < \delta \).
2. Using an \(\varepsilon - \delta \) argument, show \(\lim_{x \to 3} 5 = 5 \).
3. Using an \(\varepsilon - \delta \) argument, show \(\lim_{x \to 2} 3 - 2x = -1 \).
4. Using an \(\varepsilon - \delta \) argument, show \(\lim_{x \to 3} x^2 - 3 = 6 \).
5. Using an \(\varepsilon - \delta \) argument, show \(\lim_{x \to 0} e^{2x} - 1 = 0 \).