Rates of change

1 The slope of a secant line is

$$m_{\text{sec}} = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

and represents the *average rate of change* over [a, b]. Letting b = a + h, we can express the slope of the secant line as

$$m_{\text{sec}} = \frac{\Delta y}{\Delta x} = \frac{f(a+h) - f(a)}{h}$$

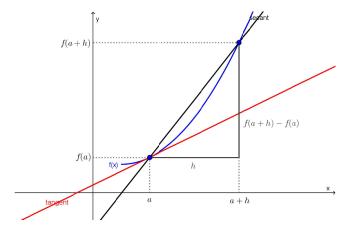
2 The slope of the tangent line to y = f(x) at a is the limit of the secant slopes

$$m_{\text{tan}} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

and represents the instantaneous rate of change at a.

2.1 The derivative

Rates of change



Link: GeoGebra tangent_line_slope.ggb

The derivative at a point

Definition

Let f be a continuous function on an open interval I and let c be in I. The *derivative* of f at c is

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

provided the limit exists.

- If the limit exists we say that f is differentiable at c.
- If the limit does not exist, then f is not differentiable at c.
- If f is differentiable at every point in I, then f is differentiable on I.
- If f is differentiable at c, then f'(c) is the slope of the line that is tangent to y = f(x) at c, and f'(c) represents the instantaneous rate of change in f at c.

2.1 The derivative

Example

Let $f(x) = 2x^2 - 3x + 1$. Find

- 3 f'(0) =_____
- Tangent: ________

 f'(-2) = _______
- Tangent:
- Tangent: $\underline{\hspace{1cm}}$

and use your answer to write an equation for the tangent line to y = f(x) at the given point.

Remark

An equation for a line of slope m through the point (x_0, y_0) may be written in either

- Point-slope form: $y y_0 = m(x x_0)$
- Slope-intercept form: y = mx + b

Normal lines

Remark

A line with slope m_1 is perpendicular to another line with slope m_2 if and only if $m_1m_2 = -1$.

Definition

A *normal line* to y = f(x) at c is a line that is perpendicular to the tangent line to y = f(x) at c.

Remark

If $f'(c) \neq 0$, then the slope of the normal line is -1/f'(c). If f'(c) = 0, then the normal line is the vertical line through (c, f(c)); that is, x = c.

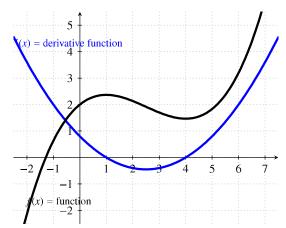
Example

Find the normal lines to $f(x) = 2x^2 - 3x + 1$ at

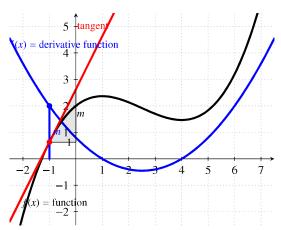
- *x* = 1: _____
- *x* = 0: _____
- *x* = 3: _____ *x* = -2: ____

2.1 The derivative

The derivative function

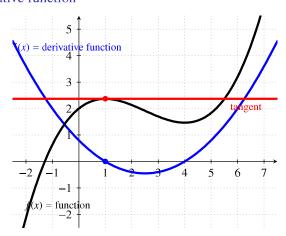


The derivative function

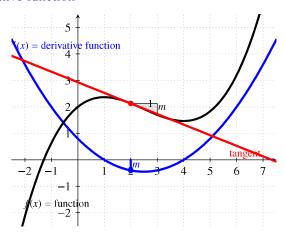


2.1 The derivative

The derivative function



The derivative function

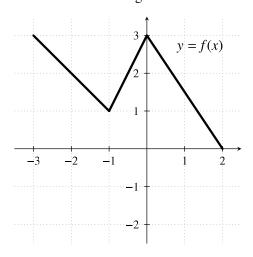


2.1 The derivative

The derivative function

Example

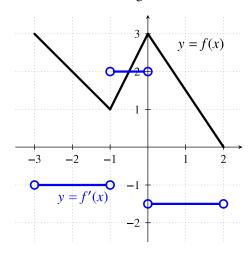
Sketch the derivative of the following function.



The derivative function

Example

Sketch the derivative of the following function.



2.1 The derivative

The derivative function

Definition

Let f be a differentiable function on an open interval I. The function

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

is the *derivative* of f.

If y = f(x), then the following notations all represent the derivative:

$$\underbrace{f'(x) = y' = y'(x)}_{\text{Newton}} = \underbrace{\frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}(f) = \frac{d}{dx}(y)}_{\text{Leibniz}}$$

Remark

In Leibniz notation
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\Delta y}{\Delta x}$$
.

The derivative function

Example

Find the derivative of each of the following functions.

$$f'(x) = \underline{\qquad}$$

$$f'(x) = \frac{3}{x+2}$$

$$g'(x) = \frac{3}{x+2}$$

3
$$h(x) = 3x - 2$$

$$h'(x) =$$

$$k'(x) = \underline{\hspace{1cm}}$$

Remark

- Evaluating the derivative function f'(x) at x = c gives us f'(c), which is the slope of the tangent line at c.
- 2 The line that is tangent to a linear function is the line itself. If a(x) = |x|, what is a'(x)?

2.1 The derivative

The derivative function

Example

Find the derivative of each of the following functions.

$$f'(x) = 4x - 3$$

$$g(x) = \frac{3}{x+2}$$

$$g'(x) = \frac{-3}{(x+2)^2}$$

3
$$h(x) = 3x - 2$$

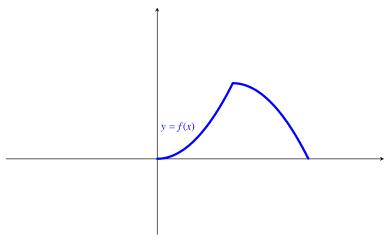
$$h'(x) = \frac{3}{3}$$

$$k'(x) = \frac{3}{2\sqrt{3x}}$$

Remark

- Evaluating the derivative function f'(x) at x = c gives us f'(c), which is the slope of the tangent line at c.
- 2 The line that is tangent to a linear function is the line itself. If a(x) = |x|, what is a'(x)?

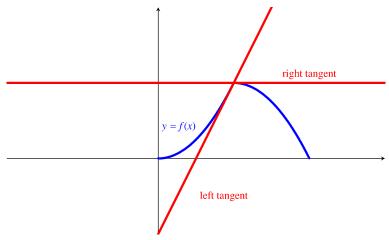
Differentiability



A function is not differentiable at a corner, where the one-sided tangent lines have different slopes.

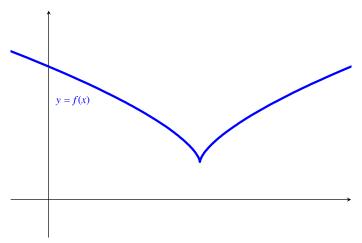
2.1 The derivative

Differentiability



A function is not differentiable at a corner, where the one-sided tangent lines have different slopes.

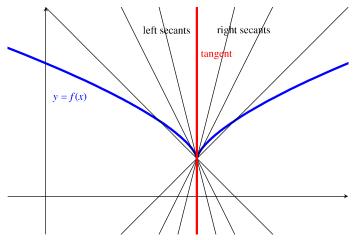
Differentiability



A function is not differentiable at a cusp, where the secant slopes approach $-\infty$ from one side and $+\infty$ from the other.

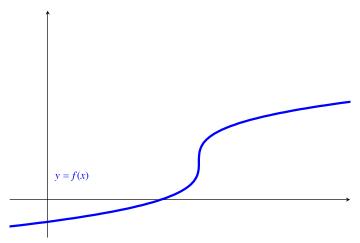
2.1 The derivative

Differentiability



A function is not differentiable at a cusp, where the secant slopes approach $-\infty$ from one side and $+\infty$ from the other.

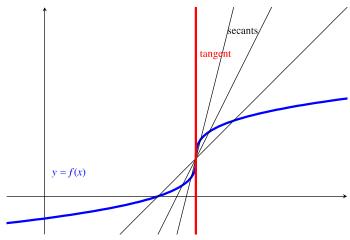
Differentiability



A function is not differentiable at a vertical tangent, where the secant slopes approach $+\infty$ from both sides (or $-\infty$ from both sides).

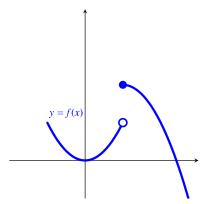
2.1 The derivative

Differentiability



A function is not differentiable at a vertical tangent, where the secant slopes approach $+\infty$ from both sides (or $-\infty$ from both sides).

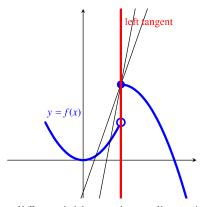
Differentiability



A function is not differentiable at a jump discontinuity, where the one-sided tangents have different (and possibly infinite) slopes

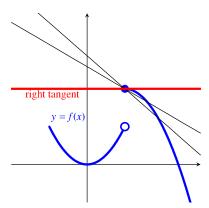
2.1 The derivative

Differentiability



A function is not differentiable at a jump discontinuity, where the one-sided tangents have different (and possibly infinite) slopes

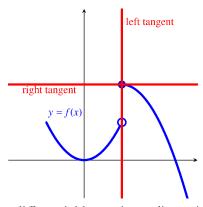
Differentiability



A function is not differentiable at a jump discontinuity, where the one-sided tangents have different (and possibly infinite) slopes

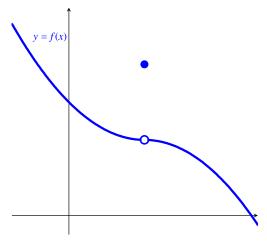
2.1 The derivative

Differentiability



A function is not differentiable at a jump discontinuity, where the one-sided tangents have different (and possibly infinite) slopes

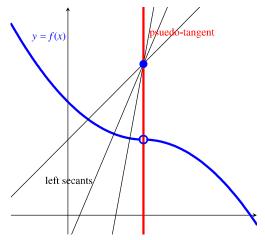
Differentiability



A function is not differentiable at a removable discontinuity, where the secant slopes approach $+\infty$ from one side and $-\infty$ from the other

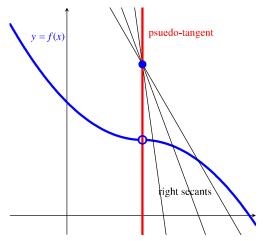
2.1 The derivative

Differentiability



A function is not differentiable at a removable discontinuity, where the secant slopes approach $+\infty$ from one side and $-\infty$ from the other

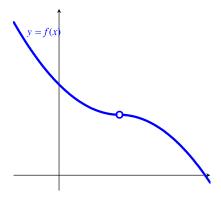
Differentiability



A function is not differentiable at a removable discontinuity, where the secant slopes approach $+\infty$ from one side and $-\infty$ from the other

2.1 The derivative

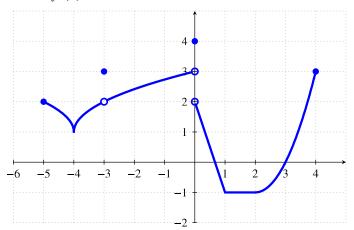
Differentiability



A function is not differentiable at a removable discontinuity where f(a) does not exist since f(a) is required for the tangent slope computation $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$.

Differentiability

- Find the x in [-5, 4] for which y = f(x) is **not** continuous.
- Find the x in [-5, 4] for which y = f(x) is **not** differentiable.
- Estimate f'(3).



2.1 The derivative

Differentiability implies continuity

Theorem

If f(x) has a derivative at x = a, then f(x) is continuous at x = a.

Note: the converse is **not** true. There are continuous functions that are not differentiable.

Differentiability implies continuity

Claim: If f'(a) exists, then f is continuous at a.

Proof: For $x \neq a$,

$$f(x) = f(a) + (x - a) \cdot \frac{f(x) - f(a)}{x - a}.$$

Taking the limit as $x \to a$,

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left(f(a) + (x - a) \cdot \frac{f(x) - f(a)}{x - a} \right).$$

2.1 The derivative

Differentiability implies continuity

Claim: If f'(a) exists, then f is continuous at a.

Proof: For $x \neq a$,

$$f(x) = f(a) + (x - a) \cdot \frac{f(x) - f(a)}{x - a}.$$

Taking the limit as $x \to a$,

$$\lim_{x \to a} f(x) = f(a) + \lim_{x \to a} (x - a) \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Differentiability implies continuity

Claim: If f'(a) exists, then f is continuous at a.

Proof: For $x \neq a$,

$$f(x) = f(a) + (x - a) \cdot \frac{f(x) - f(a)}{x - a}.$$

Taking the limit as $x \to a$,

$$\lim_{x \to a} f(x) = f(a) + 0 \cdot f'(a).$$

2.1 The derivative

Differentiability implies continuity

Claim: If f'(a) exists, then f is continuous at a.

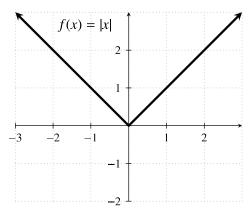
Proof: For $x \neq a$,

$$f(x) = f(a) + (x - a) \cdot \frac{f(x) - f(a)}{x - a}.$$

Taking the limit as $x \to a$,

$$\lim_{x \to a} f(x) = f(a).$$

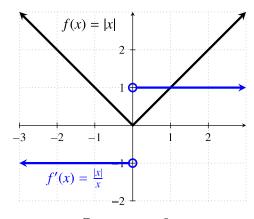
Continuous but not differentiable



Corner at x = 0.

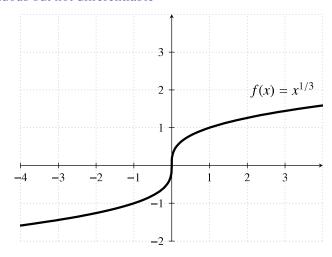
2.1 The derivative

Continuous but not differentiable



Corner at x = 0.

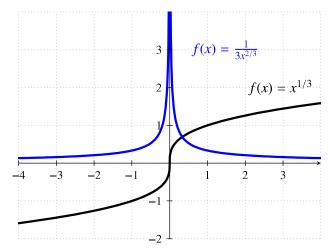
Continuous but not differentiable



Vertical tangent at x = 0.

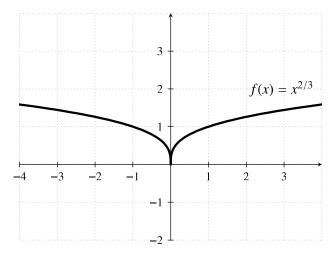
2.1 The derivative

Continuous but not differentiable



Vertical tangent at x = 0.

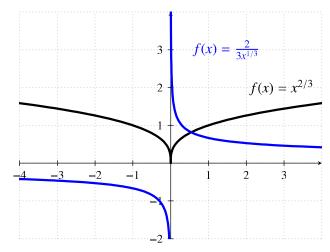
Continuous but not differentiable



Cusp and vertical tangent at x = 0.

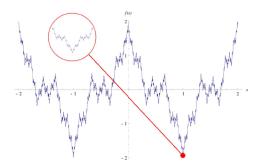
2.1 The derivative

Continuous but not differentiable



Cusp and vertical tangent at x = 0.

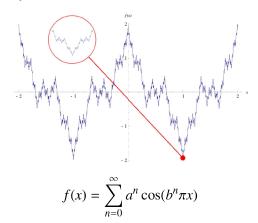
Weierstrass Function Karl Weierstrass constructed a function that is continuous everywhere but differentiable nowhere.



Plot of a Weierstrass Function over the interval [-2, 2]. Like fractals, the function exhibits self-similarity: every zoom (red circle) is similar to the global plot.

2.1 The derivative

Weierstrass Function Karl Weierstrass constructed a function that is continuous everywhere but differentiable nowhere.



where 0 < a < 1, b is an odd integer and $ab > 1 + 3\pi/2$.

Basic trig derivatives

Remark

Recall the angle addition formulas from trigonometry:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

and the limits we encountered in chapter 1:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

These are the key ingredients in the proof of the following theorem.

Theorem

•
$$\frac{d}{dx}(\sin x) = \cos x$$
 • $\frac{d}{dx}(\cos x) = -\sin x$

2.1 The derivative

Example

Find the derivative of
$$f(x) = \begin{cases} \cos x & x \ge 0 \\ 1 & x < 0 \end{cases}$$

Remark

- 1 A continuous function can be described as one whose graph we could sketch without lifting our pencil.
- 2 A differentiable function can be described as a continuous function that does not have any "sharp corners."

Just checking. . . .

 Find the derivative of f(x) = 1/x.
 Find equations of the tangent and normal lines to y = 1/x at (2, 1/2).

3 Approximate the value of the derivative $f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} \text{ for } f(x) = e^x \text{ by taking } h = 0.1.$ **1** The approximation above is an [overestimate | underestimate]

of the true value of f'(0) for $f(x) = e^x$. (Hint: think graphically)

5 Sketch the graph of the derivative of the function shown at right.

