
2.1 The derivative

Rates of change

1 The slope of a secant line is

msec =
∆y
∆x

=
f (b) − f (a)

b − a

and represents the average rate of change over [a, b].
Letting b = a + h, we can express the slope of the secant line as

msec =
∆y
∆x

=
f (a + h) − f (a)

h

2 The slope of the tangent line to y = f (x) at a is the limit of the
secant slopes

mtan = lim
∆x→0

∆y
∆x

= lim
h→0

f (a + h) − f (a)
h

and represents the instantaneous rate of change at a.



2.1 The derivative

Rates of change

Link: GeoGebra tangent line slope.ggb



2.1 The derivative

The derivative at a point

Definition
Let f be a continuous function on an open interval I and let c be in I.
The derivative of f at c is

f ′(c) = lim
h→0

f (c + h) − f (c)
h

provided the limit exists.
• If the limit exists we say that f is differentiable at c.
• If the limit does not exist, then f is not differentiable at c.
• If f is differentiable at every point in I, then f is differentiable on

I.
• If f is differentiable at c, then f ′(c) is the slope of the line that is

tangent to y = f (x) at c, and f ′(c) represents the instantaneous
rate of change in f at c.



2.1 The derivative

Example
Let f (x) = 2x2 − 3x + 1. Find

1 f ′(1) =

Tangent:

2 f ′(3) =

Tangent:

3 f ′(0) =

Tangent:

4 f ′(−2) =

Tangent:

and use your answer to write an equation for the tangent line to
y = f (x) at the given point.

Remark
An equation for a line of slope m through the point (x0, y0) may be
written in either
• Point-slope form: y − y0 = m(x − x0)
• Slope-intercept form: y = mx + b



2.1 The derivative

Example
Let f (x) = 2x2 − 3x + 1. Find

1 f ′(1) = 1

Tangent: y = x − 1

2 f ′(3) = 9

Tangent: y − 10 = 9(x − 3)

3 f ′(0) = −3

Tangent: y = −3x + 1

4 f ′(−2) = −11

Tangent: y− 15 = −11(x + 2)

and use your answer to write an equation for the tangent line to
y = f (x) at the given point.

Remark
An equation for a line of slope m through the point (x0, y0) may be
written in either
• Point-slope form: y − y0 = m(x − x0)
• Slope-intercept form: y = mx + b



2.1 The derivative

Normal lines

Remark
A line with slope m1 is perpendicular to another line with slope m2 if
and only if m1m2 = −1.

Definition
A normal line to y = f (x) at c is a line that is perpendicular to the
tangent line to y = f (x) at c.

Remark
If f ′(c) , 0, then the slope of the normal line is −1/f ′(c). If f ′(c) = 0,
then the normal line is the vertical line through (c, f (c)); that is, x = c.

Example
Find the normal lines to f (x) = 2x2 − 3x + 1 at

• x = 1:
• x = 3:

• x = 0:
• x = −2:



2.1 The derivative

Normal lines

Remark
A line with slope m1 is perpendicular to another line with slope m2 if
and only if m1m2 = −1.

Definition
A normal line to y = f (x) at c is a line that is perpendicular to the
tangent line to y = f (x) at c.

Remark
If f ′(c) , 0, then the slope of the normal line is −1/f ′(c). If f ′(c) = 0,
then the normal line is the vertical line through (c, f (c)); that is, x = c.

Example
Find the normal lines to f (x) = 2x2 − 3x + 1 at

• x = 1: y = −(x − 1)
• x = 3: y − 10 = − 1

9 (x − 3)

• x = 0: y − 1 = 1
3 x

• x = −2: y − 15 = 1
11 (x + 2)



2.1 The derivative

The derivative function
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f ′(x) = derivative function

f (x) = function
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The derivative function
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The derivative function
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The derivative function
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The derivative function
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2.1 The derivative

The derivative function
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2.1 The derivative

The derivative function
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2.1 The derivative

The derivative function
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2.1 The derivative

The derivative function

Example
Sketch the derivative of the following function.
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2.1 The derivative

The derivative function

Example
Sketch the derivative of the following function.

−3 −2 −1 1 2

−2

−1

1

2

3
y = f (x)

y = f ′(x)



2.1 The derivative

The derivative function

Definition
Let f be a differentiable function on an open interval I. The function

f ′(x) = lim
h→0

f (x + h) − f (x)
h

is the derivative of f .
If y = f (x), then the following notations all represent the derivative:

f ′(x) = y′ = y′(x)︸               ︷︷               ︸
Newton

=

Leibniz︷                             ︸︸                             ︷
dy
dx

=
df
dx

=
d
dx

(f ) =
d
dx

(y)

Remark
In Leibniz notation

dy
dx

= lim
h→0

∆y
∆x

.



2.1 The derivative

The derivative function

Example
Find the derivative of each of the following functions.

1 f (x) = 2x2 − 3x + 1
f ′(x) =

2 g(x) =
3

x + 2
g′(x) =

3 h(x) = 3x − 2

h′(x) =

4 k(x) =
√

3x

k′(x) =

Remark

1 Evaluating the derivative function f ′(x) at x = c gives us f ′(c),
which is the slope of the tangent line at c.

2 The line that is tangent to a linear function is the line itself. If
a(x) = |x|, what is a′(x)?



2.1 The derivative

The derivative function

Example
Find the derivative of each of the following functions.

1 f (x) = 2x2 − 3x + 1

f ′(x) = 4x − 3

2 g(x) =
3

x + 2

g′(x) =
−3

(x + 2)2

3 h(x) = 3x − 2

h′(x) = 3

4 k(x) =
√

3x

k′(x) =
3

2
√

3x
Remark

1 Evaluating the derivative function f ′(x) at x = c gives us f ′(c),
which is the slope of the tangent line at c.

2 The line that is tangent to a linear function is the line itself. If
a(x) = |x|, what is a′(x)?



2.1 The derivative

Differentiability

y = f (x)

A function is not differentiable at a corner, where the one-sided
tangent lines have different slopes.



2.1 The derivative

Differentiability

y = f (x)

left tangent

A function is not differentiable at a corner, where the one-sided
tangent lines have different slopes.



2.1 The derivative

Differentiability

y = f (x)

right tangent

A function is not differentiable at a corner, where the one-sided
tangent lines have different slopes.



2.1 The derivative

Differentiability

y = f (x)

left tangent

right tangent

A function is not differentiable at a corner, where the one-sided
tangent lines have different slopes.



2.1 The derivative

Differentiability

y = f (x)

A function is not differentiable at a cusp, where the secant slopes
approach −∞ from one side and +∞ from the other.



2.1 The derivative

Differentiability

y = f (x)

left secants

tangent

A function is not differentiable at a cusp, where the secant slopes
approach −∞ from one side and +∞ from the other.



2.1 The derivative

Differentiability

y = f (x)

right secants

tangent

A function is not differentiable at a cusp, where the secant slopes
approach −∞ from one side and +∞ from the other.



2.1 The derivative

Differentiability

y = f (x)

left secants right secants

tangent

A function is not differentiable at a cusp, where the secant slopes
approach −∞ from one side and +∞ from the other.



2.1 The derivative

Differentiability

y = f (x)

A function is not differentiable at a vertical tangent, where the secant
slopes approach +∞ from both sides (or −∞ from both sides).



2.1 The derivative

Differentiability

y = f (x)

secants

tangent

A function is not differentiable at a vertical tangent, where the secant
slopes approach +∞ from both sides (or −∞ from both sides).



2.1 The derivative

Differentiability

y = f (x)

tangent

A function is not differentiable at a vertical tangent, where the secant
slopes approach +∞ from both sides (or −∞ from both sides).



2.1 The derivative

Differentiability

y = f (x)

A function is not differentiable at a jump discontinuity, where the
one-sided tangents have different (and possibly infinite) slopes



2.1 The derivative

Differentiability

y = f (x)

left tangent

A function is not differentiable at a jump discontinuity, where the
one-sided tangents have different (and possibly infinite) slopes



2.1 The derivative

Differentiability

y = f (x)

right tangent

A function is not differentiable at a jump discontinuity, where the
one-sided tangents have different (and possibly infinite) slopes



2.1 The derivative

Differentiability

y = f (x)

left tangent

right tangent

A function is not differentiable at a jump discontinuity, where the
one-sided tangents have different (and possibly infinite) slopes



2.1 The derivative

Differentiability

y = f (x)

A function is not differentiable at a removable discontinuity, where
the secant slopes approach +∞ from one side and −∞ from the other



2.1 The derivative

Differentiability

left secants

psuedo-tangenty = f (x)

A function is not differentiable at a removable discontinuity, where
the secant slopes approach +∞ from one side and −∞ from the other



2.1 The derivative

Differentiability

right secants

psuedo-tangenty = f (x)

A function is not differentiable at a removable discontinuity, where
the secant slopes approach +∞ from one side and −∞ from the other



2.1 The derivative

Differentiability

y = f (x)

A function is not differentiable at a removable discontinuity where
f (a) does not exist since f (a) is required for the tangent slope

computation lim
h→0

f (a + h) − f (a)
h

.



2.1 The derivative

Differentiability
• Find the x in [−5, 4] for which y = f (x) is not continuous.
• Find the x in [−5, 4] for which y = f (x) is not differentiable.
• Estimate f ′(3).

−6 −5 −4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4



2.1 The derivative

Differentiability implies continuity

Theorem
If f (x) has a derivative at x = a, then f (x) is continuous at x = a.

Note: the converse is not true. There are continuous functions that are
not differentiable.



2.1 The derivative

Differentiability implies continuity
Claim: If f ′(a) exists, then f is continuous at a.

Proof: For x , a,

f (x) = f (a) + (x − a) ·
f (x) − f (a)

x − a
.

Taking the limit as x→ a,

lim
x→a

f (x) = lim
x→a

(
f (a) + (x − a) ·

f (x) − f (a)
x − a

)
.



2.1 The derivative

Differentiability implies continuity
Claim: If f ′(a) exists, then f is continuous at a.

Proof: For x , a,

f (x) = f (a) + (x − a) ·
f (x) − f (a)

x − a
.

Taking the limit as x→ a,

lim
x→a

f (x) = f (a) + lim
x→a

(x − a) · lim
x→a

f (x) − f (a)
x − a

.



2.1 The derivative

Differentiability implies continuity
Claim: If f ′(a) exists, then f is continuous at a.

Proof: For x , a,

f (x) = f (a) + (x − a) ·
f (x) − f (a)

x − a
.

Taking the limit as x→ a,

lim
x→a

f (x) = f (a) + 0 · f ′(a).



2.1 The derivative

Differentiability implies continuity
Claim: If f ′(a) exists, then f is continuous at a.

Proof: For x , a,

f (x) = f (a) + (x − a) ·
f (x) − f (a)

x − a
.

Taking the limit as x→ a,

lim
x→a

f (x) = f (a).



2.1 The derivative

Continuous but not differentiable
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f (x) = |x|

Corner at x = 0.



2.1 The derivative

Continuous but not differentiable
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f (x) = |x|

f ′(x) =
|x|
x

Corner at x = 0.



2.1 The derivative

Continuous but not differentiable
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f (x) = x1/3

Vertical tangent at x = 0.



2.1 The derivative

Continuous but not differentiable

−4 −3 −2 −1 1 2 3
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3

f (x) = x1/3

f (x) = 1
3x2/3

Vertical tangent at x = 0.



2.1 The derivative

Continuous but not differentiable
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f (x) = x2/3

Cusp and vertical tangent at x = 0.



2.1 The derivative

Continuous but not differentiable

−4 −3 −2 −1 1 2 3
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f (x) = x2/3

f (x) = 2
3x1/3

Cusp and vertical tangent at x = 0.



2.1 The derivative

Weierstrass Function Karl Weierstrass constructed a function that is
continuous everywhere but differentiable nowhere.

Plot of a Weierstrass Function over the interval [−2, 2]. Like fractals,
the function exhibits self-similarity: every zoom (red circle) is similar
to the global plot.

http://en.wikipedia.org/wiki/File:WeierstrassFunction.svg


2.1 The derivative

Weierstrass Function Karl Weierstrass constructed a function that is
continuous everywhere but differentiable nowhere.

f (x) =

∞∑
n=0

an cos(bnπx)

where 0 < a < 1, b is an odd integer and ab > 1 + 3π/2.

http://en.wikipedia.org/wiki/File:WeierstrassFunction.svg


2.1 The derivative

Basic trig derivatives

Remark
Recall the angle addition formulas from trigonometry:

sin(α ± β) = sinα cos β ± cosα sin β
cos(α ± β) = cosα cos β ∓ sinα sin β

and the limits we encountered in chapter 1:

lim
x→0

sin x
x

= 1 lim
x→0

cos x − 1
x

= 0

These are the key ingredients in the proof of the following theorem.

Theorem

•
d
dx

(sin x) = cos x •
d
dx

(cos x) = − sin x



2.1 The derivative

Example

Find the derivative of f (x) =

{
cos x x ≥ 0
1 x < 0

Remark

1 A continuous function can be described as one whose graph we
could sketch without lifting our pencil.

2 A differentiable function can be described as a continuous
function that does not have any “sharp corners.”



2.1 The derivative

Just checking. . . .

1 Find the derivative of f (x) =
1
x

.

2 Find equations of the tangent and normal lines to y = 1/x at
(2, 1/2).

3 Approximate the value of the derivative

f ′(0) = lim
h→0

f (0 + h) − f (0)
h

for f (x) = ex by taking h = 0.1.

4 The approximation above is an [ overestimate | underestimate ]
of the true value of f ′(0) for f (x) = ex. (Hint: think graphically)

5 Sketch the graph of the
derivative of the function
shown at right.



2.2 Interpretations of the derivative

A. Instantaneous rate of change

Example

1 Let P(t) represent the world population t minutes after midnight
on January 1, 2012. Given that P(0) = 7, 028, 734, 178 and that
P′(0) = 156, estimate the population at the end of the month.

2 Let M(v) represent the mileage (in mpg) of a car traveling at
speed v (in mi/h). If M(55) = 28 and M′(55) = −0.2, estimate
M(65).

Remark
These examples utilize the approximation

f ′(c) ≈
f (c + h) − f (c)

h
⇐⇒ f (c + h) ≈ f (c) + f ′(c) · h



2.2 Interpretations of the derivative

A. Instantaneous rate of change

Remark
Let s(t) represent the position s of an object moving in a straight line
at time t.

1 The velocity of the object is v(t) = s′(t).

2 The acceleration of the object is a(t) = v′(t) = s′′(t).

Example
Let s(t) = t2 − 3t describe the position (in m) of an object moving
along a straight line as a function of time (in sec).

1 What is its position at t = 2?

2 What is its velocity at t = 2?

3 What is its acceleration at t = 2?

4 When is the object moving forward?



2.2 Interpretations of the derivative

A. Instantaneous rate of change

Remark
Let s(t) represent the position s of an object moving in a straight line
at time t.

1 The velocity of the object is v(t) = s′(t).

2 The acceleration of the object is a(t) = v′(t) = s′′(t).

Example
Let s(t) = t2 − 3t describe the position (in m) of an object moving
along a straight line as a function of time (in sec).

1 What is its position at t = 2? s(2) = −2 m

2 What is its velocity at t = 2? v(2) = 1 m/s

3 What is its acceleration at t = 2? a(2) = 2 m/s2

4 When is the object moving forward? (1.5,∞)



2.2 Interpretations of the derivative

B. Slope of the tangent line
Thinking of the derivative as the slope of a tangent line allows us to:

1 Compare (instantaneous) rates of change
• e.g. How much faster is x2 + 1 changing at x = 2 than at x = 1?

2 Sketch a graph of the derivative given a graph of the function
• e.g. Suppose the graph of the function is

3 Approximate the value of functions
• e.g. Estimate

√
5



2.2 Interpretations of the derivative

B. Slope of the tangent line
Thinking of the derivative as the slope of a tangent line allows us to:

1 Compare (instantaneous) rates of change
• e.g. How much faster is x2 + 1 changing at x = 2 than at x = 1?

2 Sketch a graph of the derivative given a graph of the function
• e.g. Suppose the graph of the function is

3 Approximate the value of functions
• e.g. Estimate

√
5



2.2 Interpretations of the derivative

Just checking. . . .

1 What functions have a constant rate of change?

2 Given f (5) = 9 and f ′(5) = −0.3, approximate f (6).

3 The height H (in feet) of Lake Macatawa is is recorded t hours
after midnight on May 1. What are the units of H′(t)? What does
H′(17) = −1/120 mean?

4 Numerically approximate the value of f ′(4) for f (x) = ln x.

5 Use the definition of the derivative to compute f ′(x) for
f (x) = (x − 2)3.



2.3 Differentation rules!

Example
Using a graph of the function (whenever possible) or the defintion of
the derivative (whenever necesary), find the derivatives of the
following functions.

1 f (x) = x0

f ′(x) =

2 f (x) = x

f ′(x) =

3 f (x) = x2

f ′(x) =

4 f (x) = x3

f ′(x) =

5 f (x) = 1/x

f ′(x) =

6 f (x) = 3x

f ′(x) =

7 f (x) = 3x + 1

f ′(x) =

8 f (x) = e

f ′(x) =



2.3 Differentation rules!

Example
Using a graph of the function (whenever possible) or the defintion of
the derivative (whenever necesary), find the derivatives of the
following functions.

1 f (x) = x0

f ′(x) = 0

2 f (x) = x

f ′(x) = 1

3 f (x) = x2

f ′(x) = 2x

4 f (x) = x3

f ′(x) = 3x2

5 f (x) = 1/x

f ′(x) = −1/x2

6 f (x) = 3x

f ′(x) = 3

7 f (x) = 3x + 1

f ′(x) = 3

8 f (x) = e

f ′(x) = 0



2.3 Differentation rules!

Theorem
Basic differentiation rules

1
d
dx

(c) = 0

2
d
dx

(
xn) = nxn−1

3
d
dx

(sin x) = cos x

4
d
dx

(cos x) = − sin x

5
d
dx

(
ex) = ex

6
d
dx

(ln x) =
1
x

Theorem
Basic differentiation properties

1
d
dx

[
f (x) ± g(x)

]
= f ′(x) ± g′(x)

2
d
dx

[
c · f (x)

]
= c · f ′(x)



2.3 Differentation rules!

Remark
Differentiation respects addition and constant multiples because
derivatives are limits (of difference quotients) and limits respect
addition and constant multiples:
• lim

x→a

[
f (x) ± g(x)

]
= lim

x→a
f (x) ± lim

x→a
g(x)

• lim
x→a

c · f (x) = c · lim
x→a

f (x)

But derivatives do not inherit all the properties of limits (as we’ll see
in the next section) because those limit laws concerned limits of
functions, whereas derivatives are limits of difference quotients. For
instance, the limit of a product (or quotient) is the product (or
quotient) of the limits, but the derivative of a product (or quotient) is
not the product (or quotient) of the derivatives (as we’ll see in the next
section).



2.3 Differentation rules!

Example
Find the derivatives of the following functions.

1 f (x) = 2x2 − 3x + 1

f ′(x) =

2 g(x) = 3ex + 2 sin x

g′(x) =

Find an equation for the line tangent to

1 f at x = 3 2 g at x = 0

Now

1 Without using any calculus approximate g(0.1) ≈

2 Approximate g(0.1) by using an appropriate tangent line.

g(0.1) ≈



2.3 Differentation rules!

Example
Find the derivatives of the following functions.

1 f (x) = 2x2 − 3x + 1

f ′(x) = 4x − 3

2 g(x) = 3ex + 2 sin x

g′(x) = 3ex + 2 cos x

Find an equation for the line tangent to

1 f at x = 3

y − 10 = 9(x − 3)

2 g at x = 0

y − 3 = 5x

Now

1 Without using any calculus approximate g(0.1) ≈ g(0) = 3

2 Approximate g(0.1) by using an appropriate tangent line.

g(0.1) ≈ 3.5 (Cf. g(0.1) = 3.515)



2.3 Differentation rules!

Example
Let f (x) = cos x + x/2 − 1.

1 Approximate f (3) without using any calculus.

f (3) ≈

2 Now approximate f (3) by using an appropriate tangent line.

f (3) ≈

3 Find the value(s) of x, if any, where f has a horizontal tangent.

x =



2.3 Differentation rules!

Example
Let f (x) = cos x + x/2 − 1.

1 Approximate f (3) without using any calculus.

f (3) ≈ f (π) = π/2 − 2 ≈ −0.43

2 Now approximate f (3) by using an appropriate tangent line.

f (3) ≈ −0.5 (Cf. f (3) = −0.490)

3 Find the value(s) of x, if any, where f has a horizontal tangent.

x = . . . ,−7π/6, π/6, 5π/6, . . . (i.e. whenever sin x = 1/2)



2.3 Differentation rules!

Higher order derivatives

Definition
Let y = f (x) be differentiable on an interval I.

1 The second derivative of f is

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(dy
dx

)
=

d2y
dx2 = y′′

2 The third derivative of f is

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(d2y
dx2

)
=

d3y
dx3 = y′′′

3 The nth derivative of f is

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(d(n−1)y
dx

)
=

dny
dxn = y(n)



2.3 Differentation rules!

Higher order derivatives

Example
Find the first four derivatives of the following functions.

1 f (x) = 3x2 − 2x

f ′(x) =

f ′′(x) =

f ′′′(x) =

f (4)(x) =

2 f (x) = 3ex

f ′(x) =

f ′′(x) =

f ′′′(x) =

f (4)(x) =

3 f (x) = cos x

f ′(x) =

f ′′(x) =

f ′′′(x) =

f (4)(x) =



2.3 Differentation rules!

Higher order derivatives

Example
Find the first four derivatives of the following functions.

1 f (x) = 3x2 − 2x

f ′(x) = 6x − 2

f ′′(x) = 6

f ′′′(x) = 0

f (4)(x) = 0

2 f (x) = 3ex

f ′(x) = 3ex

f ′′(x) = 3ex

f ′′′(x) = 3ex

f (4)(x) = 3ex

3 f (x) = cos x

f ′(x) = − sin x

f ′′(x) = − cos x

f ′′′(x) = sin x

f (4)(x) = cos x



2.3 Differentation rules!

Higher order derivatives

Remark
The second derivative is the rate of change of the rate of change of the
function; or, put geometrically, the rate of change of the slope of
tangent lines.
• The sign of the first derivative tells us whether the function is

changing positively (i.e. increasing) or negatively
(i.e. decreasing). So, the sign of the first derivative tells us
whether the function is increasing or decreasing.

• The sign of the second derivative tells us whether the tangent
slopes are changing positively (i.e increasing) or negatively
(i.e. decreasing). So, the sign of the first derivative tells us how
the function is increasing or decreasing.



2.3 Differentation rules!

Just checking. . . .

1 Differentiate whichever functions you can using the
differentiation rules we’ve discussed so far.

a. f (x) = 3/x2

b. g(x) = 3/(x + 1)2

c. h(x) = (3x2 + 1)/x3

d. i(x) = 3x3/(x3 + 2)
e. j(x) = 3

√
x

f. k(x) =
√

x + 1
g. `(x) = 4

√
x + 3

h. m(x) = 2ex

i. n(x) = e2x

j. p(x) = xe2

k. q(x) = ln(x2)
l. r(x) = 2 sin x

m. s(x) = sin(2x)
n. t(x) = sin x cos x

2 Where does the line that is tangent to f (x) = ex + 3 at x = 0
intersect the x-axis?

3 Approximate e0.1 using an appropriate tangent line.



2.4 The product and quotient rules

Theorem
(The Product Rule)
Let f and g be differentiable functions on an open interval I. Then fg
is a differentiable function on I, and

d
dx

(f (x)g(x)) = f ′(x)g(x) + f (x)g′(x)

Example
Find the derivatives of the following functions.

1 f (x) = 3x sin x

f ′(x) =

2 f (x) = xex

f ′(x) =

3 f (x) = x ln x − x

f ′(x) =

4 f (x) = (x + 1)(3x2 − 2)

f ′(x) =



2.4 The product and quotient rules

Theorem
(The Product Rule)
Let f and g be differentiable functions on an open interval I. Then fg
is a differentiable function on I, and

d
dx

(f (x)g(x)) = f ′(x)g(x) + f (x)g′(x)

Example
Find the derivatives of the following functions.

1 f (x) = 3x sin x

f ′(x) = 3 sin x + 3x cos x

2 f (x) = xex

f ′(x) = ex + xex

3 f (x) = x ln x − x

f ′(x) = ln x

4 f (x) = (x + 1)(3x2 − 2)

f ′(x) = 9x2 + 6x − 2



2.4 The product and quotient rules

Theorem
(The Quotient Rule)
Let f and g be differentiable functions on an open interval I, and
suppose g(x) , 0 for all x in I. Then f /g is differentiable on I and

d
dx

(
f (x)
g(x)

)
=

g(x)f ′(x) − f (x)g′(x)
[g(x)]2

Example
Find the derivatives of the following functions.

1 f (x) = (x2 + 3)/x

2 f ′(x) =

3 f (x) = (x2 + 3)/(x + 1)

4 f ′(x) =

5 f (x) = x2/(x + 1)

6 f ′(x) =

7 f (x) = tan x

8 f ′(x) =



2.4 The product and quotient rules

Theorem
(The Quotient Rule)
Let f and g be differentiable functions on an open interval I, and
suppose g(x) , 0 for all x in I. Then f /g is differentiable on I and

d
dx

(
f (x)
g(x)

)
=

g(x)f ′(x) − f (x)g′(x)
[g(x)]2

Example
Find the derivatives of the following functions.

1 f (x) = (x2 + 3)/x

2 f ′(x) = 1 − 3/x2

3 f (x) = (x2 + 3)/(x + 1)

4 f ′(x) = x2+2x−3
(x+1)2

5 f (x) = x2/(x + 1)

6 f ′(x) = x2+2x
(x+1)2

7 f (x) = tan x

8 f ′(x) = sec2 x



2.4 The product and quotient rules

Theorem
Derivatives of trigonometric functions

1
d
dx

(
sin x

)
= cos x

2
d
dx

(
tan x

)
= sec2 x

3
d
dx

(
sec x

)
= sec x tan x

4
d
dx

(
cos x

)
= − sin x

5
d
dx

(
cot x

)
= − csc2 x

6
d
dx

(
csc x

)
= − csc x cot x



2.4 The product and quotient rules

Just checking. . . .

1 True or false. The derivatives of the trigonometric “co-”
functions (i.e. the ones that start with “co-”) have minus signs in
them.

2 Find the values of x in [−1, 1] where the tangent line to
f (x) = x sin x is horizontal.

3 Find an equation of the normal line to f (x) = x2

x−1 at (2, 4).

4 Find the derivative of xex sin x.

5 Find the derivative of sin x csc x.



2.5 The chain rule

Example
Find the derivatives of the following functions.

1 F2(x) = (1 − x)2. F′2(x) =

2 F3(x) = (1 − x)3. F′3(x) =

3 F4(x) = (1 − x)4. F′4(x) =

Remark
Notice that each of the functions is a composition Fn(x) = fn(g(x)),
where the “inner piece” is g(x) = 1 − x and the “outer piece” is
fn(x) = xn (for n = 2, 3, 4). Notice, too, that we can differentiate each
“piece.” The chain rule tells us how to put the derivatives of these
pieces together to get the derivative of a composition.



2.5 The chain rule

Example
Find the derivatives of the following functions.

1 F2(x) = (1 − x)2. F′2(x) = −2(1 − x)

2 F3(x) = (1 − x)3. F′3(x) = −3(1 − x)2

3 F4(x) = (1 − x)4. F′4(x) = −4(1 − x)3

Remark
Notice that each of the functions is a composition Fn(x) = fn(g(x)),
where the “inner piece” is g(x) = 1 − x and the “outer piece” is
fn(x) = xn (for n = 2, 3, 4). Notice, too, that we can differentiate each
“piece.” The chain rule tells us how to put the derivatives of these
pieces together to get the derivative of a composition.



2.5 The chain rule

Theorem
(The Chain Rule)

Let y = f (u) be a differentiable
function of u, and let u = g(x) be
a differentiable function of x.

Then y = f (g(x)) is a
differentiable function of x and

dy
dx

=
dy
du
·

du
dx

or in Newton’s notation(
f (g(x))

)′
= f ′(g(x)) · g′(x)



2.5 The chain rule

Example
Find the derivatives of the following functions.

1 y = cos(3x)

dy/dx =

2 y = sin17 x

dy/dx =

3 y = ln(x−2)

dy/dx =

4 y = ex2

dy/dx =

Theorem
Let u = u(x) be a differentiable function of x. Then:

1 d
dx (un) = nun−1 · (du/dx)

2 d
dx (eu) = eu · (du/dx)

3 d
dx (ln u) = 1

u · (du/dx)

4 d
dx (sin u) = cos u · (du/dx)

5 d
dx (cos u) = − sin u · (du/dx)

6 d
dx (tan u) = sec2 u · (du/dx)



2.5 The chain rule

Example
Find the derivatives of the following functions.

1 y = cos(3x)

dy/dx = −3 sin(3x)

2 y = sin17 x

dy/dx = 17 sin16 x cos x

3 y = ln(x−2)

dy/dx = −2x

4 y = ex2

dy/dx = 2xex2

Theorem
Let u = u(x) be a differentiable function of x. Then:

1 d
dx (un) = nun−1 · (du/dx)

2 d
dx (eu) = eu · (du/dx)

3 d
dx (ln u) = 1

u · (du/dx)

4 d
dx (sin u) = cos u · (du/dx)

5 d
dx (cos u) = − sin u · (du/dx)

6 d
dx (tan u) = sec2 u · (du/dx)



2.5 The chain rule

Example
Find the derivatives of the following functions.

1 f (x) = x5 sin(3x)
f ′(x) =

2 f (x) =
3x + 1
sin3 x

f ′(x) =

3 f (x) = cos(
√

1 − 2x)

f ′(x) =

4 f (x) = ln(2esin x)

f ′(x) =

Remark
Recall that eln u = u. So ax = eln ax

= ex ln a.



2.5 The chain rule

Example
Find the derivatives of the following functions.

1 f (x) = x5 sin(3x)
f ′(x) =

5x4 sin(3x) + 3x5 cos(3x)

2 f (x) =
3x + 1
sin3 x

f ′(x) =

3 sin3 x − 3x sin3 x − sin3 x

sin6 x

3 f (x) = cos(
√

1 − 2x)

f ′(x) =
sin
√

1 − 2x
√

1 − 2x

4 f (x) = ln(2esin x)

f ′(x) = cos x

Remark
Recall that eln u = u. So ax = eln ax

= ex ln a.



2.5 The chain rule

Theorem
Let a > 0 (and a , 1). Then

d
dx

(
ax) = ax(ln a)

More generally, if u = u(x) is a differentiable function of x, then

d
dx

(
au) = au(ln u) ·

du
dx

Also,
d
dx

(
loga x

)
=

1
x ln a

and more generally

d
dx

(
loga u

)
=

1
u ln a

·
du
dx



2.5 The chain rule

Just checking. . . .

1 Compute d
dx (ln(kx)) in two ways: (a) by using the chain rule, and

(b) by using laws of logs first, and then differentiating.

2 Compute d
dx

(
ln(xk)

)
in two ways: (a) by using the chain rule, and

(b) by using laws of logs first, and then differentiating.

3 True or false. d
dx (3x) ≈ (1.1)3x.

4 Compute d
dx

(
cos(1/x)e5x2)

.

5 Find equations for the tangent and normal lines to
g(x) = (sin x + cos x)3 at x = π/2.



2.6 Implicit differentiation

Example

1 If y = x, what is d
dx

(
y3

)
?

2 If y = cos x, what is d
dx

(
y3

)
?

3 If y = y(x), what is d
dx

(
y3

)
?

Remark

• When we know how y is related to x, we can differentiate any
function of y with respect to x using the chain rule.

• When we do not know how y is related to x, we can still
differentiate any function of y with respect to x using the chain
rule – but the exact dependence of y on x (i.e. dy/dx) will remain
implicit, since we can’t determine explicitly what dy/dx is.



2.6 Implicit differentiation

Example
Any equation in x and y determines a curve in the xy-plane: the graph
of an equation in x and y is just the set of points (x, y) that satisfy the
equation. For example, the graph of the equation x3 + y3 = 9xy is
shown below at right.

1 Verify that (2, 4) lies on the
curve x3 + y3 = 9xy.

2 Use the graph to estimate
dy
dx

∣∣∣
(2,4).

3 Treating y as an unknown
function of x locally, which
we write as [y = y(x)],
compute dy

dx

∣∣∣
(2,4).

x3 + y3 = 9xy



2.6 Implicit differentiation

Example
Find dy/dx for the following curves.

1 x2/5 + y2/5 = 1

dy/dx =

2
x2 + y
x + y2 = 17

dy/dx =

3 ln(x2 + xy + y2) = 1

dy/dx =

4
cos(x2y2) + y3

x + y
= 1

dy/dx =

Example
Find an equation for the line tangent to the circle
(x − 1)2 + (y + 2)2 = 1 at the point (3/2,

√
3/2 − 2) in two ways:

• by using implicit differentiation
• by first solving for y as a function of x and then differentiating



2.6 Implicit differentiation

Example
Find dy/dx for the following curves.

1 x2/5 + y2/5 = 1

dy/dx = −
y3/5

x3/5

2
x2 + y
x + y2 = 17

dy/dx =
2x − 17
34y − 1

3 ln(x2 + xy + y2) = 1

dy/dx = −(2x + y)/(x + 2y)

4
cos(x2y2) + y3

x + y
= 1

dy/dx =

−
2xy2 sin(x2y2) + 1

2x2y sin(x2y2) − 3y + 1
Example
Find an equation for the line tangent to the circle
(x − 1)2 + (y + 2)2 = 1 at the point (3/2,

√
3/2 − 2) in two ways:

• by using implicit differentiation
• by first solving for y as a function of x and then differentiating



2.6 Implicit differentiation

Theorem
Let r be a real number. Then

d
dx

(
xr) = rxr−1

Implicit differentiation and second derivatives

Example
Find d2y/dx2 where x2 + y2 = 4.
Logarithmic differentiation

Example
Find dy/dx for the following functions.

1 y =
(x − 2)3

√
3x + 1

(2x + 5)4
2 y = xsin x



2.6 Implicit differentiation

Just checking. . . .

1 Find dy/dx for the following implicitly defined functions.

a. xy = 1
b. x2y2 = 1

c. sin(xy) = 1
d. ln(xy) = 1

2 Find dy/dx for x2 tan y = 50.

3 Find an equation for the line tangent to y = (2x)x2
at x = 1.

4 Find d2y/dx2 for cos x + sin y = 1.

5 Using the defintion of the derivative, compute f ′(x) for
f (x) =

√
3x + 1, and write an equation for the line tangent to

y = f (x) at (1, 2).



2.7 Derivatives of inverse functions

Background

Definition
Two functions f and g are inverses of each other provided

f (g(x)) = x and g(f (x)) = x

We write f −1(x) for the inverse of f .

Remark

If g is the inverse of f , then g
“undoes” whatever f does: if
f (a) = b, then g(b) = a. A
consequence of this is that the
graph of the inverse function
y = f −1(x) is the reflection of the
graph of the function y = f (x)
through the line y = x.



2.7 Derivatives of inverse functions

Background

Remark
A function takes each input to a single output: f (a) = b. Since the
inverse function will take b back to a, we need f to take only one input
to b; otherwise, an inverse function cannot be defined.

Definition
A function f is injective (or one-to-one) if distinct inputs get sent to
distinct outputs:
• If a , b, then f (a) , f (b)

– or equivalently –
• If f (a) = f (b), then a = b.



2.7 Derivatives of inverse functions

Background

Theorem
A function f has an inverse if and only if f is injective.

Remark
If f is injective, then a horizontal line will intersect the graph of f at
most once, and vice versa.

Example

Given that y =
2x − 3
x + 1

is injective, find the inverse function. (Can you
show that this function is injective?)



2.7 Derivatives of inverse functions

Remark

Recall that a function and its
inverse are reflections of each
other through the line y = x. A
consequence of this is that the
derivative of the inverse at a point
is the reciprocal of the derivative
of the function at the
corresponding point.



2.7 Derivatives of inverse functions

Theorem
Let f be a differentiable and injective function, and let g = f −1 be the
inverse of f . Suppose f (a) = b so that g(b) = a. Then(

f −1
)′

(b) = g′(b) =
1

f ′(a)

and more generally (
f −1

)′
(x) = g′(x) =

1
f ′(g(x))

Example
g(x) = arcsin x and f (x) = sin x are inverses, and so the theorem above
gives

(arcsin x)′ =
1

cos(arcsin x)
(???)



2.7 Derivatives of inverse functions

Inverse trig functions
Inverse trig functions (sans domain restriction) are defined by:

y = arcsin(x) ⇔ sin(y) = x.
y = arccos(x) ⇔ cos(y) = x.
y = arctan(x) ⇔ tan(y) = x.

Caution: Inverse trig functions are not reciprocal functions.

arcsin(x) = asin(x) = sin−1(x) , 1
sin(x) = csc(x).

arccos(x) = acos(x) = cos−1(x) , 1
cos(x) = sec(x).

arctan(x) = atan(x) = tan−1(x) , 1
tan(x) = cot(x).



2.7 Derivatives of inverse functions

Arcsine

−3 −2 −1 1 2 3
−1

1 −1 1

−3

−2

−1

1

2

3

y = sin(x) y = arcsin(x)
−π/2 ≤ x ≤ π/2 −1 ≤ x ≤ 1
−1 ≤ y ≤ 1 −π/2 ≤ y ≤ π/2



2.7 Derivatives of inverse functions

Arccosine

−3 −2 −1 1 2 3
−1

1 −1 1

−3

−2

−1

1

2

3

y = cos(x) y = arccos(x)
0 ≤ x ≤ π −1 ≤ x ≤ 1
−1 ≤ y ≤ 1 0 ≤ y ≤ π



2.7 Derivatives of inverse functions

Arctangent

−4 −3 −2 −1 1 2 3 4

−4
−3
−2
−1

1
2
3
4

−4 −3 −2 −1 1 2 3 4

−4
−3
−2
−1

1
2
3
4

y = tan(x) y = arctan(x)
−π/2 < x < π/2 −∞ < x < ∞
−∞ < y < ∞ −π/2 < y < π/2



2.7 Derivatives of inverse functions

Derivatives of inverse trig functions

Example
Find d

dx (arccos(3x)).

Example
Find d

dx

(
arcsin(2x3)

)
=

Remark
This technique can be used to show d

dx (ln x) = 1
x .



2.7 Derivatives of inverse functions

Derivatives of inverse trig functions

Example
Find d

dx (arccos(3x)).

Example

Find d
dx

(
arcsin(2x3)

)
=

6x2
√

1 − 4x6

Remark
This technique can be used to show d

dx (ln x) = 1
x .



2.7 Derivatives of inverse functions

Just checking. . . .

1 If (3, 4) lies on the graph of y = f (x) and f ′(3) = −5, what can be
said about the graph of y = f −1(x)?

2 Find an equation of the line that is tangent to x2 + y2 + xy = 7 at
the point (1, 2).

3 Compute the derivative of the function f (x) = sin(cos−1 x) in two
ways:

a. by using the chain rule first, and then simplifying
b. by simplifying first, and then taking the derivative

4 Find an equation of the line that is tangent to the function
f (x) = sin−1(2x) at x = 1/4.

5 Find the derivative of y =
(x + 3)7(x − 2)3

3√2x − 5
.


