1. For each set of Polar coordinates (r, θ), match the equivalent Cartesian coordinates (x, y).
_1. $\left(4, \frac{3 \pi}{2}\right)$
A. $(0,-4)$
2. $\left(-2, \frac{-2 \pi}{3}\right)$
B. $(-2 \sqrt{2},-2 \sqrt{2})$
3. $\left(4, \frac{-5 \pi}{6}\right)$
C. $(4 \sqrt{3},-4)$
—4. $\left(-8, \frac{-7 \pi}{6}\right)$
D. $(-3.5,3.5 \sqrt{3})$
_5. $\left(4, \frac{-3 \pi}{4}\right)$
E. $(1,1 \sqrt{3})$
-6. $\left(7, \frac{2 \pi}{3}\right)$
F. $(-2 \sqrt{3},-2)$
4. You are given the point $(1, \pi / 2)$ in polar coordinates. (i) Find another pair of polar coordinates for this point such that $r>0$ and $2 \pi \leq \theta<4 \pi$.
$r=$ \qquad $\theta=$ \qquad
(ii) Find another pair of polar coordinates for this point such that $r<0$ and $0 \leq \theta<2 \pi$.
$r=$ \qquad $\theta=$ \qquad
5. You are given the point $(-2, \pi / 4)$ in polar coordinates.
(i) Find another pair of polar coordinates for this point such that $r>0$ and $2 \pi \leq \theta<4 \pi$. $r=$ \qquad $\theta=$ \qquad
(ii) Find another pair of polar coordinates for this point such that $r<0$ and $-2 \pi \leq \theta<0$. $r=$ \qquad $\theta=$ \qquad
6. Find a polar equation for the following Cartesian equations:
(a) $x=2$
(c) $x^{2}+y^{2}=10$
(e) $x^{2}+x y+y^{2}=1$
(b) $x y=4$
(d) $x^{2}+(y-3)^{2}=9$
(f) $y=1$
7. Find an equation in rectangular coordinates for the following polar equations:
(a) $r \cos (\theta)=3$
(c) $r=\frac{4}{2 \cos (\theta)-\sin (\theta)}$
(d) $r=9 \sin (\theta)$
(b) $r^{2}=4 r \cos (\theta)$
(e) $r=2 \cos (\theta)+2 \sin (\theta)$
8. Sketch the following
(a) $r=1+\cos (\theta)$
(b) $r=1+2 \cos (\theta)$
(c) $r=4 \sin (2 \theta)$
9. Sketch the following and find the intersection points
(a) $r=\sin (\theta) ; r=\cos (\theta)$
(c) $r=2 ; r=3+2 \sin (\theta)$
(e) $r=\cos (\theta) ; r=1-\cos (\theta)$
(b) $r=2 ; r=2 \cos (2 \theta)$
(d) $r=\sin (\theta) ; r=\sin (2 \theta)$
(f) $r=\sin (3 \theta) ; r=\cos (3 \theta)$
