1. For each set of Polar coordinates (r, θ) , match the equivalent Cartesian coordinates (x, y).

$-1. (4, \frac{3\pi}{2})$	A. $(0, -4)$
<u>-2.</u> $(-2, \frac{-2\pi}{3})$	B. $(-2\sqrt{2}, -2\sqrt{2})$
<u>3.</u> $(4, \frac{-5\pi}{6})$	C. $(4\sqrt{3}, -4)$
<u>4.</u> $(-8, \frac{-7\pi}{6})$	D. $(-3.5, 3.5\sqrt{3})$
<u>5.</u> $(4, \frac{-3\pi}{4})$	E. $(1, 1\sqrt{3})$
<u>6.</u> $(7, \frac{2\pi}{3})$	F. $(-2\sqrt{3}, -2)$

2. You are given the point (1, π/2) in polar coordinates. (i) Find another pair of polar coordinates for this point such that r > 0 and 2π ≤ θ < 4π.
r = _____ θ = _____
(ii) Find another pair of polar coordinates for this point such that r < 0 and 0 ≤ θ < 2π.
r = _____ θ = _____

- 3. You are given the point $(-2, \pi/4)$ in polar coordinates.
 - (i) Find another pair of polar coordinates for this point such that r > 0 and $2\pi \le \theta < 4\pi$. $r = ___ \theta = ___$

(ii) Find another pair of polar coordinates for this point such that r < 0 and $-2\pi \le \theta < 0$. $r = ___= \theta = ___=$

- 4. Find a polar equation for the following Cartesian equations:
 - (a) x = 2 (c) $x^2 + y^2 = 10$ (e) $x^2 + xy + y^2 = 1$
 - (b) xy = 4 (d) $x^2 + (y-3)^2 = 9$ (f) y = 1
- 5. Find an equation in rectangular coordinates for the following polar equations:
 - (a) $r\cos(\theta) = 3$ (b) $r^2 = 4r\cos(\theta)$ (c) $r = \frac{4}{2\cos(\theta) - \sin(\theta)}$ (c) $r = 9\sin(\theta)$ (c) $r = 2\cos(\theta) + 2\sin(\theta)$
- 6. Sketch the following
 - (a) $r = 1 + \cos(\theta)$ (b) $r = 1 + 2\cos(\theta)$ (c) $r = 4\sin(2\theta)$
- 7. Sketch the following and find the intersection points
 - (a) $r = \sin(\theta); r = \cos(\theta)$ (c) $r = 2; r = 3 + 2\sin(\theta)$ (e) $r = \cos(\theta); r = 1 \cos(\theta)$
 - (b) $r = 2; r = 2\cos(2\theta)$ (d) $r = \sin(\theta); r = \sin(2\theta)$ (f) $r = \sin(3\theta); r = \cos(3\theta)$