Section 1.1: Some Simple Cryptosystems Part 2

Math 495, Fall 2008

Hope College

September 1, 2008

Math 495, Fall 2008 Section 1.1: Some Simple Cryptosystems Part 2

A E > A E >

< 🗇 🕨

3

•
$$\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_{26}^m$$

- The plaintext is arranged into 'vectors' of length *m*, and then the chosen vector *K* is added to each vector.
- With m = 5 and K = (17, 7, 5, 10, 11), the plaintext 'ihavefoundtheproblem' will produce

х	8	7	0	21	4	5	14	20	13	3	19	7	4	15	17	14	1	11	4	12
+	17	7	5	10	11	17	7	5	10	11	17	7	5	10	11	17	7	5	10	11
e _K (x)	25	14	5	5	15	22	21	25	23	14	10	14	9	25	2	5	8	16	14	23

which yields the ciphertext 'ZOFFPWVZXOKOJZCFIQOX'.

個 とくき とくき とう

Hill (Matrix Block) Cipher

- *P* = *C* = ℤ^m₂₆, and *K* is the set of *m* × *m* invertible matrices with entries in ℤ₂₆.
- The plaintext is arranged into 'vectors' or 'blocks' of length *m*. For a chosen key matrix *K*, each block is encrypted using a matrix product y = xK (computing mod 26).
- For example, let m = 2 and $K = \begin{pmatrix} 5 & 9 \\ 5 & 10 \end{pmatrix}$. The matrix K is invertible since the determinant of K is relatively prime to 26.
- The plaintext 'danger' leads to the blocks 3 0|13 6|4 17. Multiplying each block by *K* yields 15 1|17 21|1 24, leading to the ciphertext 'PBRVBY'.
- We'll illustrate in class how to compute the matrix K^{-1} .

ヘロン ヘアン ヘビン ヘビン

Permutation Cipher

- $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}^m$, and \mathcal{K} is the set of permutations of $\{1, 2, \dots, m\}$.
- The key is a permutation π. The plaintext is divided into blocks x₁x₂...x_m of length m, and the ciphertext for that block is x_{π(1)}x_{π(2)}...x_{π(m)}.
- Let m = 5, and let π be the following permutation of $\{1, 2, 3, 4, 5\}$:

x
1
2
3
4
5

$$\pi(x)$$
3
5
4
2
1

 If the plaintext is 'iliketoeatapplesandbananasandgrapes', we have

i I i ke|toeat|appIe|sandb|anana|sandg|rapes IEKLIETAOT|PELPA|NBDAS|AANNA|NGDAS|PSEAR

ヘロン 人間 とくほ とくほ とう

- \mathcal{P}, \mathcal{C} , and \mathcal{K} are defined as before.
- *L* represents the keystream alphabet
- *g* is a keystream generator, i.e. *g* takes the key *K* as input and produces a stream *z*₁*z*₂*z*₃... where each *z_i* ∈ *L*.
- For each z ∈ L, there is an encrypting function e_z : P→C and a corresponding decrypting function d_z : C→P.
- Here, 'synchronous' means that the value of the stream depends only on *K* and not on the plaintext.
- The Vigenère Cipher can be thought of as an example of a synchronous stream cipher.

イロン 不良 とくほう 不良 とうほ

Non-synchronous Stream Ciphers

- $\mathcal{P}, \mathcal{C}, \mathcal{K}$, and \mathcal{L} are defined as before.
- In this case, the stream z₁z₂z₃... can depend on K and on the plaintext used.
- In the Autokey Cipher, one takes $\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathcal{L} = \mathbb{Z}_{26}$. If the plaintext is

 $x_1 x_2 x_3 \dots$

then the stream used for encryption is

 $(K, x_1, x_2, x_3, \ldots).$

• The encryption function in the Autokey Cipher is compontentwise modular addition.

イロト イポト イヨト イヨト 三日

Example of the Autokey Cipher

•
$$\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathcal{L} = \mathbb{Z}_{26}$$
.

• Suppose that K = 7 and the plaintext is 'meetatfour'.

We have

	m	е	е	t	а	t	f	0	u	r
х	12	4	4	19	0	19	5	14	20	17
z	7	12	4	4	19	0	19	5	14	20
$e_z(x)$	19	16	8	23	19	19	24	19	8	11
	Т	Q	Ι	Х	Т	Т	Υ	Т	Ι	L

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()