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Levels of Security

@ Computational Security: Breaking the cryptosystem
requires N operations, where N is some specified very
large number.

@ Provable Security: It can be proven that breaking the
cryptosystem requires solving some other problem in
mathematics, which is believed to be difficult.

@ Unconditional Security: The cryptosystem cannot be
broken, even with unlimited computational resources.
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Probability

@ A discrete random variable (RV) X consists of a finite set X
with a probability distribution defined on X. The probability
that X takes on a value x € X is written Pr[X = x] or Pr[x].
We must have

e Pr[x] > Oforall x € X.

o Y Prix]=1.

xeX
@ A subset E C X is called an event, and

PriX € E] = Prlx].
xeE

@ If Pr[x] is the same for all x € X, then we say X has
equally likely outcomes, and for all x,

Pr(x] = \1X|
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Examples of Probability

@ A 6-sided die is called ‘fair’ if the six faces are equally likely
to appear. Let X be the outcome of one roll of a fair die,
and let E be the event “the roll is 3 or lower.”

@ Inthis case, X = {1,2,3,4,5,6}, and for each x € X,

1
P = —.
=g
@ We have

S 51 3 1
Pr[XeE]:ZPr[x]:Zé:E:E.
x=1 x=1

@ Note that, in the case of equally likely outcomes, for any

event E C X, we have
E|
PriXe E] = ——.
[ ] X

The quantity Pr[X € E] is sometimes written as Pr[E].

Math 495, Fall 2008 Chapter 2: Perfect Secrecy, Product Cryptosystems



Examples of Probability

@ Two fair 6-sided dice are rolled, and Z denotes the sum of
the numbers appearing. We have outcome set

{2,3,4,5,6,7,8,9,10,11,12}

but these outcomes are not equally likely.

@ Instead, we consider outcomes as (equally likely) ordered
pairs (a, b), where 1 < a,b < 6. That s,

Z=1{1,2,3,4,56} x{1,2,3,4,5,6},

with each pair (a, b) having probability 1/36.
@ Now, for example,

PrZ = 5] = Pr{(1,4),(2,3),(3,2), (4,1)}] = % = %.
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Joint and Conditional Probability

e If X and Y are two RVs defined on sets X and Y, we define
the joint probability Pr[x, y| to be the probability that
X=xand¥Y=y.

@ We define the conditional probability Pr[x|y] to be the
probability that X = x given that we know Y = y. The
quantity Pr[y|x] is defined similarly.

@ Joint and conditional probabilities are related by the
formula

Pr[x, y] = Pr[x|y]Pr[y] forallx e X,y €Y.

@ The RVs X and Y are said to be independent if
Pr[x, y] = Pr[x]Pr[y] forall x € Xand y € Y, (or,
equivalently, Pr[x|y] = Pr[x] for all x € X and y € Y).

Math 495, Fall 2008 Chapter 2: Perfect Secrecy, Product Cryptosystems



Examples of Joint Probability

@ A fair 6-sided red die and blue die are rolled. Let X be the
number on the red die and Y the number on the blue die.
Then, for example,

PrIX = 5,Y = 4] = Prl{(5,4)}] = .
and
L
66 36
@ The same is true for any outcomes x of X and y of Y, and
therefore X and Y are independent.

@ We can also say that

PrX = 5]Pr[Y = 4] =

PriX=5|Y =4| = % = Pr[X = 5],
since the number on the blue die will not affect the roll of

the red die.
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Examples of Joint Probability

@ Suppose we roll a fair red die and a fair blue die and X is
the number showing on the red die, but Z is the sum of the
dice.

@ Notice that

PrX=4,Z=5] = PriZ=5X = 4PPrX =4] = L. 1= I

and 11 1

Therefore, X and Z are not independent.

@ How could we compute a ‘reverse’ conditional probability,
such as
PriX=4|Z2=5]7
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Examples of Joint Probability

@ With X and Z as in the previous slide, we compute
Pr[X = 4| Z = 5]. We could do this directly: if we know
Z = 5, that restricts our outcomes (x, y) to

{(1,4),(2,3),(3,2), (4, 1)}
Since X = 4 in only one of these, PrX =4|Z =5] = 1/4.
@ Instead, we could use
Pr[x|z]Pr[z] = Pr|x, z] = Pr[z|x]Pr[x]
and solve for Pr[x|Zz].

@ This results in Bayes’ Theorem: If Pr[z] > 0, then

Pr{z|x]Pr[x]

Pr[x|z] = Prlz]
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@ Using the notation of the previous examples, let W be the
difference of the two dice. Suppose we want to find the
probability of the event E = “W is a multiple of 4”. One way
to do this would be to look at all 36 ordered pairs and
decide how many have differences that are multiples of 4.

@ Another method, which is used liberally in the book, is to
condition on some other variable (in this case, X).

6 6
PriE] = Y PrlE,X=x]=> Pr[E|X=X]Pr[X = x]
x=1 x=1
21 21 11 11 21 21
~ 66 66 66 6666 66
105
~ 36 18
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Perfect Secrecy

@ A cryptosystem (P,C, K, £, D) has perfect secrecy if
Pr[x|y] = Pr[x] forall x e Pand y € C.

@ Forall y € C, assuming K and X are independent,

PrlY = y] = > PriK = KIPr[X = dk(y)].
{K:y€ex(P)}
@ ForallyeCand x € P,
PrlY =y X =x] = > PriK = K].
{K:x=dk(y)}

@ If the preceding quantities are known, we can compute
Pr[x|y] by Bayes’ formula and compare to Pr|[x].
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An Example

@ Suppose P ={a,b,c,d},C={A,B,C,D}, and
K = {Kj, Ko, K3} with encryptions as defined below:

la b c d
K,|D C B A
KB C D A
Ks|B A D C

Suppose that the probabilities on the plaintexts {a, b, ¢, d}
are {2/5,1/5,1/5,1/5}, respectively, and that the key
probabilities on {Kj, Ko, K3} are {1/4,1/4,1/2}.

@ Find Pr[y|x] forevery y € Cand x € P.
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