Chapter 5: RSA and Factorization

Math 495, Fall 2008

Hope College

October 20, 2008

Math 495, Fall 2008 Chapter 5: RSA and Factorization



RSA

@ Let p and g be distinct (odd) primes. Let n = pq.
@ We have ¢(n)=(p—1)(g—1).

@ P=C=1Zp

@ K={(np,q,ab):ab=1 (mod ¢(n))}.

@ For x e P and y € C, define

b

ex(x) =x" mod n,

and
dk(y) =y? mod n.

@ Public key: nand b.
@ Private information: p, g, a.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



RSA

@ ex(x) = x® mod nwhere dy(y) = y? mod n, ab = 1
(mod ¢(n)).

@ We need to show that decryption “works,”, i.e. that for all x,
dk(ek(x)) = x. This amounts to showing that

(xP)@=x (mod n) for all x € Zp.
@ If x € Zj, then, mod n,
(xP)2 = x = x? (M1 = (x2(Mlx = {1y = x,

@ If x € Zp \ Z}, and x # 0, then x has either p or g, but not
both, as a factor. Suppose x = p'r, where ris pt r and
gt r. Then, mod n,

(P'1)P)2 = (p/r)2 = plabrab = pi(eMt+1)p = pile=D(@Dtpiy = piy.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Security of RSA

@ RSA is believed secure for large primes p and q.
@ ex(x) = x* mod nis believed to be a one-way function.
@ The trapdoor is the factorization of n as pq.

@ If someone knows p and q, they can compute
o(n)=(p—1)(g— 1), and thereby compute a using the
extended Euclidean algorithm.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Example of RSA

@ Suppose n = 98069 and b = 36119.
@ If the plaintext is x = 76111, then

ex(x) = 76111%¢11%  mod 98069 = 91332.

@ With additional information n = 281 - 349, Bob can
compute ¢(n) = 280 - 348 = 97440, and then compute

361191 mod 97440 = 839.
Then

dk(91332) = 91332%3%° mod 98069 = 76111.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Implementation

@ The primes p and g must be chosen large enough so that
factoring n is computationally infeasible. For safety, p and
q are typically primes that require 512 bits to represent
them in binary. We will discuss how to find large primes
and test their primality.

@ Let nbe a k-bit integer. RSA requires modular addition
and subtraction mod n (O(k)), modular multiplication mod
n (O(k?)), and modular inversion mod n ((O(k®))).

@ Computing x¢ mod n can be done using ¢ — 1 modular
multiplications, but this is very inefficient if ¢ is large.

@ Instead, we use the SQUARE AND MULTIPLY ALGORITHM,
which runs in time O(k? log ¢).

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Repeated Squaring

@ The implementation of repeated squaring to compute x°
mod n is discussed in Algorithm 5.5 of the book.

@ Intuitively, we express ¢ in binary as ¢,_1¢,_» - - - €1 Cg, then
compute x¢ mod n by computing

XCO(XC1 (XCZ(- . (XCZ” )2 . )2)2)2.

@ For example, to compute 3%’ mod 7, we write
57 =1110015. Then

357 _ 3323163831 — 3(((3(3(3)2)2)2)2)2

From this, we can see that 3° mod 7 = 6.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



RSA Implementation and Parameter Generation

@ Choose two large primes p and q. Algorithms for doing this
will be discussed in the next section.

@ Setn=pqgand ¢(n) = (p—1)(q — 1). This can be done in
time O((log n)?).

@ Choose a random b with gcd(b, ¢(n)) = 1, and compute
a=b~" (mod ¢(n)). This can be done in time O((log n)?)
using the EXTENDED EUCLIDEAN ALGORITHM.

@ RSA encryption and decryption using the SQUARE AND
MULTIPLY ALGORITHM each take time O((log n)3).

Math 495, Fall 2008 Chapter 5: RSA and Factorization



