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RSA

Let p and q be distinct (odd) primes. Let n = pq.
We have φ(n) = (p − 1)(q − 1).
P = C = Zn.
K = {(n,p,q,a,b) : ab ≡ 1 (mod φ(n))}.
For x ∈ P and y ∈ C, define

eK (x) = xb mod n,

and
dK (y) = ya mod n.

Public key: n and b.
Private information: p, q, a.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



RSA

eK (x) = xb mod n where dK (y) = ya mod n, ab ≡ 1
(mod φ(n)).
We need to show that decryption “works,”, i.e. that for all x ,
dK (eK (x)) = x . This amounts to showing that

(xb)a ≡ x (mod n) for all x ∈ Zn.

If x ∈ Z∗
n, then, mod n,

(xb)a ≡ xab ≡ xφ(n)t+1 ≡ (xφ(n))tx ≡ 1tx ≡ x .

If x ∈ Zn \ Z∗
n and x 6≡ 0, then x has either p or q, but not

both, as a factor. Suppose x = pi r , where r is p - r and
q - r . Then, mod n,

((pi r)b)a ≡ (pi r)ab ≡ piabrab ≡ pi(φ(n)t+1)r ≡ pi(p−1)(q−1)tpi r ≡ pi r .
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Security of RSA

RSA is believed secure for large primes p and q.
eK (x) = xb mod n is believed to be a one-way function.
The trapdoor is the factorization of n as pq.
If someone knows p and q, they can compute
φ(n) = (p − 1)(q − 1), and thereby compute a using the
extended Euclidean algorithm.
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Example of RSA

Suppose n = 98069 and b = 36119.
If the plaintext is x = 76111, then

eK (x) = 7611136119 mod 98069 = 91332.

With additional information n = 281 · 349, Bob can
compute φ(n) = 280 · 348 = 97440, and then compute

36119−1 mod 97440 = 839.

Then

dK (91332) = 91332839 mod 98069 = 76111.
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Implementation

The primes p and q must be chosen large enough so that
factoring n is computationally infeasible. For safety, p and
q are typically primes that require 512 bits to represent
them in binary. We will discuss how to find large primes
and test their primality.
Let n be a k -bit integer. RSA requires modular addition
and subtraction mod n (O(k)), modular multiplication mod
n (O(k2)), and modular inversion mod n ((O(k3))).
Computing xc mod n can be done using c − 1 modular
multiplications, but this is very inefficient if c is large.
Instead, we use the SQUARE AND MULTIPLY ALGORITHM,
which runs in time O(k2 log c).

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Repeated Squaring

The implementation of repeated squaring to compute xc

mod n is discussed in Algorithm 5.5 of the book.
Intuitively, we express c in binary as c`−1c`−2 · · · c1c0, then
compute xc mod n by computing

xc0(xc1(xc2(· · · (xc`−1)2 · · · )2)2)2.

For example, to compute 357 mod 7, we write
57 = 1110012. Then

357 = 3323163831 = 3(((3(3(3)2)2)2)2)2.

From this, we can see that 357 mod 7 = 6.
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RSA Implementation and Parameter Generation

Choose two large primes p and q. Algorithms for doing this
will be discussed in the next section.
Set n = pq and φ(n) = (p − 1)(q − 1). This can be done in
time O((log n)2).
Choose a random b with gcd(b, φ(n)) = 1, and compute
a = b−1 (mod φ(n)). This can be done in time O((log n)2)
using the EXTENDED EUCLIDEAN ALGORITHM.
RSA encryption and decryption using the SQUARE AND

MULTIPLY ALGORITHM each take time O((log n)3).
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