
Chapter 5: RSA and Factorization

Math 495, Fall 2008

Hope College

October 20, 2008

Math 495, Fall 2008 Chapter 5: RSA and Factorization



RSA

Let p and q be distinct (odd) primes. Let n = pq.
We have φ(n) = (p − 1)(q − 1).
P = C = Zn.
K = {(n,p,q,a,b) : ab ≡ 1 (mod φ(n))}.
For x ∈ P and y ∈ C, define

eK (x) = xb mod n,

and
dK (y) = ya mod n.

Public key: n and b.
Private information: p, q, a.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



RSA

eK (x) = xb mod n where dK (y) = ya mod n, ab ≡ 1
(mod φ(n)).
We need to show that decryption “works,”, i.e. that for all x ,
dK (eK (x)) = x . This amounts to showing that

(xb)a ≡ x (mod n) for all x ∈ Zn.

If x ∈ Z∗
n, then, mod n,

(xb)a ≡ xab ≡ xφ(n)t+1 ≡ (xφ(n))tx ≡ 1tx ≡ x .

If x ∈ Zn \ Z∗
n and x 6≡ 0, then x has either p or q, but not

both, as a factor. Suppose x = pi r , where r is p - r and
q - r . Then, mod n,

((pi r)b)a ≡ (pi r)ab ≡ piabrab ≡ pi(φ(n)t+1)r ≡ pi(p−1)(q−1)tpi r ≡ pi r .

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Security of RSA

RSA is believed secure for large primes p and q.
eK (x) = xb mod n is believed to be a one-way function.
The trapdoor is the factorization of n as pq.
If someone knows p and q, they can compute
φ(n) = (p − 1)(q − 1), and thereby compute a using the
extended Euclidean algorithm.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Example of RSA

Suppose n = 98069 and b = 36119.
If the plaintext is x = 76111, then

eK (x) = 7611136119 mod 98069 = 91332.

With additional information n = 281 · 349, Bob can
compute φ(n) = 280 · 348 = 97440, and then compute

36119−1 mod 97440 = 839.

Then

dK (91332) = 91332839 mod 98069 = 76111.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Implementation

The primes p and q must be chosen large enough so that
factoring n is computationally infeasible. For safety, p and
q are typically primes that require 512 bits to represent
them in binary. We will discuss how to find large primes
and test their primality.
Let n be a k -bit integer. RSA requires modular addition
and subtraction mod n (O(k)), modular multiplication mod
n (O(k2)), and modular inversion mod n ((O(k3))).
Computing xc mod n can be done using c − 1 modular
multiplications, but this is very inefficient if c is large.
Instead, we use the SQUARE AND MULTIPLY ALGORITHM,
which runs in time O(k2 log c).

Math 495, Fall 2008 Chapter 5: RSA and Factorization



Repeated Squaring

The implementation of repeated squaring to compute xc

mod n is discussed in Algorithm 5.5 of the book.
Intuitively, we express c in binary as c`−1c`−2 · · · c1c0, then
compute xc mod n by computing

xc0(xc1(xc2(· · · (xc`−1)2 · · · )2)2)2.

For example, to compute 357 mod 7, we write
57 = 1110012. Then

357 = 3323163831 = 3(((3(3(3)2)2)2)2)2.

From this, we can see that 357 mod 7 = 6.

Math 495, Fall 2008 Chapter 5: RSA and Factorization



RSA Implementation and Parameter Generation

Choose two large primes p and q. Algorithms for doing this
will be discussed in the next section.
Set n = pq and φ(n) = (p − 1)(q − 1). This can be done in
time O((log n)2).
Choose a random b with gcd(b, φ(n)) = 1, and compute
a = b−1 (mod φ(n)). This can be done in time O((log n)2)
using the EXTENDED EUCLIDEAN ALGORITHM.
RSA encryption and decryption using the SQUARE AND

MULTIPLY ALGORITHM each take time O((log n)3).

Math 495, Fall 2008 Chapter 5: RSA and Factorization


