Chapter 5: Factoring Algorithms

Math 495, Fall 2008

Hope College

October, 2008

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ∽ � � �

- Of interest here is how many solutions *y* the equation $y^2 \equiv a \mod n$ has, where gcd(a, n) = 1.
- If *n* is prime, we previously saw that the answer is two if $\left(\frac{a}{n}\right) = 1$, and zero otherwise.
- If $n = p^e$, where p is prime the answer is the same.
- If $n = \prod_{i=1}^{\ell} p_i^{e_i}$, then there are 2^{ℓ} solutions (modulo *n*) iff $\left(\frac{a}{p_i}\right) = 1$ for all $i \in \{1, \dots, \ell\}$, and zero otherwise.

イロン 不良 とくほう 不良 とうほ

More on Square Roots

- Let $x^2 \equiv y^2 \equiv a \mod n$, where gcd(a, n) = 1.
- Define $z = xy^{-1} \mod n$.
- It is not hard to see that $z^2 \equiv 1 \mod n$.
- On the other hand, notice that if $z^2 \equiv 1 \mod n$, then $(xz)^2 \equiv x^2 \mod n$ for any x.
- Thus, if $x^2 \equiv a \mod n$, then $(xz)^2 \equiv x^2 \equiv a \mod n$, where *z* is any square root of 1 modulo *n*.
- Thus, the square roots of a modulo n can be computed by finding 1 square root of a modulo n, and multiplying it by each of the 2^l square roots of 1 modulo n.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Factoring Algorithms

- Trial division
- Pollard's p 1 Algortihm
- Pollard's rho Algorithm
- Random Squares Algorithm
- Williams's p + 1 algorithm
- Continued fraction algorithm
- Quadratic Sieve
- Elliptic Curve Factoring Algorithm
- Number Field Sieve
- Shor's Algorithm

(雪) (ヨ) (ヨ)

3

- Recall that if *n* is composite, it has a factor less than \sqrt{n} .
- Thus to factor *n*, we can divide *n* by every number between 2 and \sqrt{n} (or just the primes) and see if the remainder is 0.
- This algorithm takes $\Omega(\sqrt{n})$ operations.
- Recall that Ω is a lower bound.
- Unfortunately, \sqrt{n} is exponential in log *n*, making this algorithm totally impractical for large numbers.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- Let *p* be a factor of *n*.
- Assume that all prime factors of *p* − 1 are less than *B*.
- Then clearly (p-1)|B!, implying B! = (p-1)r for some r.
- Let $a \equiv 2^{B!} \mod n$
- Then $a \equiv 2^{B!} \equiv 2^{(p-1)r} \equiv 1^r \equiv 1 \pmod{p}$
- So we have an *a* such that $a \equiv 1 \mod p$.
- Therefore $a 1 \equiv 0 \mod p$.
- Thus, if $a \neq 1$, then a 1 is a multiple of p.
- Then d = gcd(a 1, n) is a factor of n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pollard p-1 Algorithm Analysis

- To compute $2^{B!}$, we need B 1 modular exponentiations.
- Each exponentiation requires $O(\log B)$ modular multiplication operations.
- Each modular multiplication requires $O((\log n)^2)$ operations.
- The gcd takes $O((\log n)^3)$
- Thus, the algorithm requires time $O((B-1)\log B(\log n)^2 + (\log n)^3)$ operations.
- If B = O((log n)ⁱ) for some constant i, the algorithm is polynomial-time (in log n), but the chance of success is small.
- To increase the chance of success, *B* may need to be as high as \sqrt{n} , at which point the algorithm is no better than trial division.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- The textbook claims that the algorithm is guaranteed to be successful if *B* is chosen to be around \sqrt{n}
- Let's take a look at an example in Maple.
- Notice that if *B* is greater than all of the prime factors of p-1 and q-1, then it is possible that $a^{B!} \equiv 1 \mod n$.
- There are various ways to fix this, but we will not discuss them at length.

< 回 > < 回 > < 回 > … 回

- Let n = pq, for primes p and q.
- We can choose p and q such that Pollard p 1 Algorithm will be totally ineffective.
- Consider primes *p* and *q* such that

$$p = 2p_1 + 1$$

$$q = 2q_1 + 1$$

where p_1 and q_1 are prime.

• We would need to choose $B \approx p_1 \approx \sqrt{n}/4$ for the algorithm to succeed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pre-Pollard Rho Algorithm

- Let n = pq as usual.
- Let $x, y \in \mathbb{Z}_n$ with $x \neq y$ and $x \equiv y \mod p$.
- Then $p \leq \operatorname{gcd}(x y, n) < n$, yielding a factor of n.
- Of course we do not know *p*, so we cannot tell whether or not *x* ≡ *y* mod *p*.
- But we can pick a bunch of distinct random numbers, and compute gcd(x − y, n) for each x ≠ y until we get a factor.
- The *Birthday paradox* implies that if we have about $1.17\sqrt{p}$ numbers, there is a 50% chance of a collision.
- Unfortunately, we cannot test for a collision, but only compute the gcd for every pair in the set.
- There are $\binom{1.17\sqrt{p}}{2} > p/2$ pairs.
- Thus we need to consider about p/2 ≈ √n pairs (assuming p and q are close to the same length).

白マ イビマ イビン 一切

- Let f be some polynomial with integer coefficients.
- Define a sequence of numbers by letting x₁ ∈ Z_n, and defining x_i = f(x_{i-1}) mod n for i > 1.
- Pick an integer *m* and define $X = \{x_1, \ldots, x_m\}$.
- We assume that X is a random sampling from \mathbb{Z}_n .
- We do not want to compute gcd(x_i x_j, n) for every pair of numbers from X.
- We will look at an example in Maple and this will give us some insight into how to avoid looking at all pairs, and demonstrate why this is called the Pollard *Rho* Algorithm.

<ロ> (四) (四) (三) (三) (三) (三)

Pollard Rho Algorithm

- $f = x^2 + a$ for some $a \neq 0, -2$.
- Define a sequence of numbers by letting x₁ ∈ Z_n, and defining x_i = f(x_{i-1}) mod n.
- The Pollard Rho algorithm computes p = gcd(x_{2i} − x_i, n) for i = 1,..., until p ≠ 1.
- Then p = n or is a non-trivial factor of n.
- We'll look at an example in Maple.
- What if it fails?
 - Choose new value for x₁ and try again
 - Choose a new value for *a* and try again
- Expected number of iterations is about \sqrt{p} ,
- Running time is about $O(\sqrt{p}) \approx O(\sqrt[4]{n}) = O(n^{1/4})$.
- Why can we restrict our attention to pairs x_i and x_{2i}?
- Start by considering the diagram on the board based on the Maple example.

Pollard Rho Algorithm: Why it works

- Let $x_i \equiv x_j \mod p$, where i < j.
- Then $f(x_i) \equiv f(x_j) \mod p$.
- Further, $x_{k+1} \mod p = (f(x_k) \mod n) \mod p = f(x_k) \mod p$
- Therefore $x_{i+1} \equiv x_{j+1} \mod p$
- In general then, $x_{i+\delta} \equiv x_{j+\delta} \mod p$
- Let $\ell = j i$. Then notice that $x_{i'} \equiv x_{j'} \mod p$ as long as $j' > i' \ge i$ and $j' i' \equiv 0 \mod \ell$. (See diagram on board)
- Let x_i , x_j be the first pair with i < j such that $x_i \equiv x_j \mod p$.
- Let k be some integer with i ≤ k < j that is divisible by ℓ.
 (why is there one?)
- Then x_k ≡ x_{2k} mod p, since k ≥ i, and k and 2k are some multiple of ℓ apart.
- Thus, we can restrict our attention to pairs x_k , x_{2k} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Dixon's Random Squares Algorithm

- Suppose $x^2 \equiv y^2 \mod n$, where $x \neq \pm y \mod n$.
- Then n|(x y)(x + y), so we have two factors of *n*: gcd(x y, n) and gcd(x + y, n).
- The only problem: How do we find such values?
- Let *B* be a set of prime numbers (the smallest *k*) and -1.
- Compute a set of values Z such that for each z ∈ Z, all factor of z² mod n occur in the set B.
- Find a subset of Y ⊆ Z such that each number in B occurs an even number of times as a factor of z² mod n.
- How do we pick the values of *z*?
- Choose numbers like $j + \lfloor \sqrt{kn} \rfloor$ and $\lfloor \sqrt{kn} \rfloor$, for small values of *j* and *k*.
- Why do these values work well?

イロン 不良 とくほう 不良 とうほ

- We will see an example of factoring 30049 using Maple.
- You can read your textbook for the details.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Dixon's Algorithm Analysis

- If we have at least as many congruences as we have elements in the base, there is a linear dependence.
- There is at least a 50% chance that a given solution will yield a factorization.
- Clearly there is a trade-off here: larger factor base means higher chance of success, but also more computation and storage.
- If $n \approx 2^r$, then a good size for a factor base is $2^{\sqrt{r \log_2 r}}$.
- Waiving hands a bit, throwing in some fairy dust and an act of God, we arrive at the fact that if we choose a factor base of optimal size, the algorithm has an expected running time of $O(e^{(1+o(1))\sqrt{\ln n \ln \ln n}})$

ヘロン 人間 とくほ とくほ とう

- We will look at Shor's algorithm when we discuss quantum cryptography and algorithms.
- For now, I'll just say that is it a polynomial-time factoring algorithm.
- What are the implications of this?
- What aren't the implications of this?
- We will briefly discuss P, NP, NP-Complete, and what these have to do with cryptography and factoring numbers.

ヘロン 人間 とくほ とくほ とう