
Chapter 5: Factoring Algorithms

Math 495, Fall 2008

Hope College

October, 2008

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Square Roots Modulo n

Of interest here is how many solutions y the equation
y2 ≡ a mod n has, where gcd(a, n) = 1.
If n is prime, we previously saw that the answer is two if(a

n

)
= 1, and zero otherwise.

If n = pe, where p is prime the answer is the same.
If n =

∏`
i=1 pei

i , then there are 2` solutions (modulo n) iff(
a
pi

)
= 1 for all i ∈ {1, . . . , `}, and zero otherwise.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

More on Square Roots

Let x2 ≡ y2 ≡ a mod n, where gcd(a, n) = 1.
Define z = xy−1 mod n.
It is not hard to see that z2 ≡ 1 mod n.
On the other hand, notice that if z2 ≡ 1 mod n, then
(xz)2 ≡ x2 mod n for any x .
Thus, if x2 ≡ a mod n, then (xz)2 ≡ x2 ≡ a mod n, where
z is any square root of 1 modulo n.
Thus, the square roots of a modulo n can be computed by
finding 1 square root of a modulo n, and multiplying it by
each of the 2` square roots of 1 modulo n.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Factoring Algorithms

Trial division
Pollard’s p − 1 Algortihm
Pollard’s rho Algorithm
Random Squares Algorithm
Williams’s p + 1 algorithm
Continued fraction algorithm
Quadratic Sieve
Elliptic Curve Factoring Algorithm
Number Field Sieve
Shor’s Algorithm

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Trial Division

Recall that if n is composite, it has a factor less than
√

n.
Thus to factor n, we can divide n by every number between
2 and

√
n (or just the primes) and see if the remainder is 0.

This algorithm takes Ω(
√

n) operations.
Recall that Ω is a lower bound.
Unfortunately,

√
n is exponential in log n, making this

algorithm totally impractical for large numbers.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Pollard p − 1 Algorithm

Let p be a factor of n.
Assume that all prime factors of p − 1 are less than B.
Then clearly (p − 1)|B!, implying B! = (p − 1)r for some r .
Let a ≡ 2B! mod n
Then a ≡ 2B! ≡ 2(p−1)r ≡ 1r ≡ 1 (mod p)

So we have an a such that a ≡ 1 mod p.
Therefore a− 1 ≡ 0 mod p.
Thus, if a 6= 1, then a− 1 is a multiple of p.
Then d = gcd(a− 1, n) is a factor of n.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Pollard p − 1 Algorithm Analysis

To compute 2B!, we need B − 1 modular exponentiations.
Each exponentiation requires O(log B) modular
multiplication operations.
Each modular multiplication requires O((log n)2)
operations.
The gcd takes O((log n)3)

Thus, the algorithm requires time
O((B − 1) log B(log n)2 + (log n)3) operations.
If B = O((log n)i) for some constant i , the algorithm is
polynomial-time (in log n), but the chance of success is
small.
To increase the chance of success, B may need to be as
high as

√
n, at which point the algorithm is no better than

trial division.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Pollard p − 1 Algorithm can fail

The textbook claims that the algorithm is guaranteed to be
successful if B is chosen to be around

√
n

Let’s take a look at an example in Maple.
Notice that if B is greater than all of the prime factors of
p − 1 and q − 1, then it is possible that aB! ≡ 1 mod n.
There are various ways to fix this, but we will not discuss
them at length.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Pollard p − 1 algorithm and RSA

Let n = pq, for primes p and q.
We can choose p and q such that Pollard p − 1 Algorithm
will be totally ineffective.
Consider primes p and q such that

p = 2p1 + 1

q = 2q1 + 1

where p1 and q1 are prime.
We would need to choose B ≈ p1 ≈

√
n/4 for the algorithm

to succeed.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Pre-Pollard Rho Algorithm

Let n = pq as usual.
Let x , y ∈ Zn with x 6= y and x ≡ y mod p.
Then p ≤ gcd(x − y , n) < n, yielding a factor of n.
Of course we do not know p, so we cannot tell whether or
not x ≡ y mod p.
But we can pick a bunch of distinct random numbers, and
compute gcd(x − y , n) for each x 6= y until we get a factor.
The Birthday paradox implies that if we have about 1.17

√
p

numbers, there is a 50% chance of a collision.
Unfortunately, we cannot test for a collision, but only
compute the gcd for every pair in the set.

There are
(1.17

√
p

2

)
> p/2 pairs.

Thus we need to consider about p/2 ≈
√

n pairs
(assuming p and q are close to the same length).

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Pollard Rho Insights

Let f be some polynomial with integer coefficients.
Define a sequence of numbers by letting x1 ∈ Zn, and
defining xi = f (xi−1) mod n for i > 1.
Pick an integer m and define X = {x1, . . . , xm}.
We assume that X is a random sampling from Zn.
We do not want to compute gcd(xi − xj , n) for every pair of
numbers from X .
We will look at an example in Maple and this will give us
some insight into how to avoid looking at all pairs, and
demonstrate why this is called the Pollard Rho Algorithm.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Pollard Rho Algorithm

f = x2 + a for some a 6= 0,−2.
Define a sequence of numbers by letting x1 ∈ Zn, and
defining xi = f (xi−1) mod n.
The Pollard Rho algorithm computes p = gcd(x2i − xi , n)
for i = 1, . . . , until p 6= 1.
Then p = n or is a non-trivial factor of n.
We’ll look at an example in Maple.
What if it fails?

Choose new value for x1 and try again
Choose a new value for a and try again

Expected number of iterations is about
√

p,
Running time is about O(

√
p) ≈ O(4

√
n) = O(n1/4).

Why can we restrict our attention to pairs xi and x2i?
Start by considering the diagram on the board based on
the Maple example.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Pollard Rho Algorithm: Why it works

Let xi ≡ xj mod p, where i < j .
Then f (xi) ≡ f (xj) mod p.
Further, xk+1 mod p = (f (xk) mod n) mod p = f (xk) mod p
Therefore xi+1 ≡ xj+1 mod p
In general then, xi+δ ≡ xj+δ mod p
Let ` = j − i . Then notice that xi ′ ≡ xj ′ mod p as long as
j ′ > i ′ ≥ i and j ′ − i ′ ≡ 0 mod `. (See diagram on board)
Let xi , xj be the first pair with i < j such that xi ≡ xj mod p.
Let k be some integer with i ≤ k < j that is divisible by `.
(why is there one?)
Then xk ≡ x2k mod p, since k ≥ i , and k and 2k are some
multiple of ` apart.
Thus, we can restrict our attention to pairs xk , x2k .

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Dixon’s Random Squares Algorithm

Suppose x2 ≡ y2 mod n, where x 6= ±y mod n.
Then n|(x − y)(x + y), so we have two factors of n:
gcd(x − y , n) and gcd(x + y , n).
The only problem: How do we find such values?
Let B be a set of prime numbers (the smallest k) and -1.
Compute a set of values Z such that for each z ∈ Z , all
factor of z2 mod n occur in the set B.
Find a subset of Y ⊆ Z such that each number in B occurs
an even number of times as a factor of z2 mod n.
How do we pick the values of z?

Choose numbers like j +
⌈√

kn
⌉

and
⌊√

kn
⌋
, for small

values of j and k .
Why do these values work well?

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Dixon’s Algorithm Example

We will see an example of factoring 30049 using Maple.
You can read your textbook for the details.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Dixon’s Algorithm Analysis

If we have at least as many congruences as we have
elements in the base, there is a linear dependence.
There is at least a 50% chance that a given solution will
yield a factorization.
Clearly there is a trade-off here: larger factor base means
higher chance of success, but also more computation and
storage.

If n ≈ 2r , then a good size for a factor base is 2
√

r log2 r .
Waiving hands a bit, throwing in some fairy dust and an act
of God, we arrive at the fact that if we choose a factor base
of optimal size, the algorithm has an expected running time
of O(e(1+o(1))

√
ln n ln ln n)

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

Shor’s Algorithm

We will look at Shor’s algorithm when we discuss quantum
cryptography and algorithms.
For now, I’ll just say that is it a polynomial-time factoring
algorithm.
What are the implications of this?
What aren’t the implications of this?
We will briefly discuss P, NP, NP-Complete, and what these
have to do with cryptography and factoring numbers.

Math 495, Fall 2008 Chapter 5: Factoring Algorithms

