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Elements of a Cryptosystem

• P = the set of possible plaintexts
• C = the set of possible ciphertexts
• K = the keyspace (the set of possible keys)
• For eack K ∈ K, there is an encryption function

eK : P→C
and a decryption function

dK : C→P
satisfying

dK (eK (x)) = x for all x ∈ P.
• Note that, for all K ∈ K, eK must be an injective function,

i.e.
x1 6= x2 ⇒ eK (x1) 6= eK (x2).
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Modular Arithmetic

• Let m be a positive integer. Given integers a and b, we say
a ≡ b (mod m) if b − a is divisible by m.
• Every integer a is equivalent (mod m) to precisely one

element r of {0,1, . . . ,m − 1}, and we refer to this element
r as a mod m.
• We set Zm = {0,1, . . . ,m − 1}, and we note that addition

and multiplication can be defined as operations on Zm.
• For example, working in Z26 we have

14 + 20 = 34 ≡ 8 (mod 26),

and
5 · 7 = 35 ≡ 9 (mod 26).

Therefore, in Z26, 14 + 20 = 8 and 5 · 7 = 9.
• Under these operations, Zm satisfies the properties

required to be an Abelian group (and, in fact, a
commutative ring).
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Shift Cipher

• P = C = K = Z26 (or Zm)
• For all K ∈ Z26 and x ∈ P, define

eK (x) = x + K mod 26
dK (x) = x − K mod 26

• We use the following text-to-numeric conversion:
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

• Suppose K = 7. The plaintext ‘ihavefoundthekey’ will yield
x 8 7 0 21 4 5 14 20 13 3 19 7 4 10 4 24

eK (x) 15 14 7 2 11 12 21 1 20 10 0 14 11 17 11 5

which yields the ciphertext ‘POHCLMVBUKAOLRLF’.
• To decrypt the message, we subtract 7 from each

character (mod 26, of course). Alternatively, you can add
19 to each character (again, mod 26).
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Cryptanalysis

• Cryptanalysis attempts to answer the question, “If Oscar is
allowed to see the ciphertext, can he use this information
to discover the plaintext?”
• For the shift cipher on Z26, there are only 26 possible keys,

and therefore the decryption key can be found quickly
using an exhaustive key search.
• The number of possible keys (i.e. the cardinality of the

keyspace K) becomes an important factor in constructing
secure cryptosystems.
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Substitution Cipher

• P = C = Z26

• K = the set of all permutations of {0,1, . . . ,25}.
• K ∈ K is chosen at random and used as the encryption

function.
• For example, one possible key is

a b c d e f g h i j k l m n o p q r s t u v w x y z
L T Y G N A O Q B W Z X D S I U E P H M C J V R F K

• Given this key, the string “thisistheinput” is encrypted as
“MQBHBHMQNBSUCM”
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Security of Substitution Cipher

• There are 26! ≈ 4.03× 1026 possible keys, making an
exhaustive key search infeasible.
• Unfortunately, simple techniques that do not need to

exhaust the keyspace can be employed to decrypt this
cipher so it is not secure.
• For instance, in English, e is the most common character,

followed by t, a, o, i, n, s, h, r. Thus, if Q is the most
common character in a ciphertext, it is probably the letter e.
• Further, the most common digrams in English are TH, HE,

IN, etc. and the most common trigrams are THE, ING,
AND, etc.
• This is precisely why the substitution cipher used in many

of the puzzles in newspapers.
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Exercise: Decrypting a Substitution Cipher

• Attempt to decode the following message that was
encoded using a substitution cipher. When you have
decrypted it, tell me what the plaintext message was.
onndtcn nk udikud nbd lkxxkawzp tdggopd nbon aog
dzikudu jgwzp o gjqgnwnjnwkz iwcbdh abdz mkj bovd
udihmcndu wn ndxx td abon nbd cxowzndfn tdggopd
aog Get the text here

• You may find this website helpful:
http://substitution.webmasters.sk/simple-substitution-cipher.php

• Check with me once you think you have it, but don’t spoil it
for anyone else by telling them the answer!
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Vigenère Cipher

• P = C = K = Zm
26

• The plaintext is arranged into ‘vectors’ of length m, and
then the chosen vector K is added to each vector.
• With m = 5 and K = (17,7,5,10,11) (or rhfkl), the

plaintext ‘ihavefoundtheproblem’ will produce
x 8 7 0 21 4 5 14 20 13 3 19 7 4 15 17 14 1 11 4 12

+ 17 7 5 10 11 17 7 5 10 11 17 7 5 10 11 17 7 5 10 11

eK (x) 25 14 5 5 15 22 21 25 23 14 10 14 9 25 2 5 8 16 14 23

which yields the ciphertext ‘ZOFFPWVZXOKOJZCFIQOX’.
• As with the substitution cipher, there are well-known

techniques to crack a Vigenère cipher so it is not secure.
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One-Time Pad

• A one-time pad is exactly like a Vigenère cipher except that
the length of the key is the same as the length of the
plaintext.
• As long as the key is not compromised, it is unbreakable

(unconditionally secure, provides perfect secrecy) since
every possible plaintext is equally likely to be correct.
• The downside is that a very lengthy key needs to be

exchanged and kept secret.
• Example: If you can decode this message, you will get an

A in this course: lcncwyyfhia.
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Public-key Cryptography

• So far, the cryptosystems we have seen use a secret key
K that is shared between those who wish to communicate.
• Another way to think about them is that if you know how a

message was encrypted, then you have enough
information to decrypt it.
• These are called private-key or symmetric

cryptosystems.
• In public-key (or asymmetric) cryptography, the full

details of the encryption function eK can be known publicly.
The cryptosystem is designed so that it is computationally
infeasible to determine dK from eK without additional
information.
• The clear advantage is that no key needs to be shared

between two people in order for them to communicate
securely.
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One-way Functions and Trapdoors

• An injective function f : P → C is called a one-way
function if it is easy to compute f (x) for all x , but, given y
it is hard to find x such that f (x) = y .
• For public-key cryptography, we need the encryption

function eK to be a a one-way function with a trapdoor.
• A trapdoor consists of secret information that makes

inversion of a one-way function easy.
• Thus, what is needed for public-key cryptography is a

trapdoor one-way function.
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Facts about Zn

• For a positive integer n, φ(n) is defined as the number of
integers in {0,1,2, . . . ,n − 1} that are relatively prime to n.
• An element a ∈ Zn is invertible under multiplication if and

only if gcd(a,n) = 1.
• The inverse of an element a ∈ Zn is the number b ∈ Zn

such that a · b mod n = 1. We denote the inverse of a as
a−1.
• Let

Z∗
n = {a ∈ Zn : a−1 exists in Zn}.

Then Z∗
n is a group under multiplication, and |Z∗

n| = φ(n).
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More about φ(n)

• If p is prime, then φ(p) = p − 1.
• If p is prime and e ≥ 2, then φ(pe) = p · φ(pe−1).
• If p is prime and e ≥ 1, then φ(pe) = pe − pe−1.
• If p and q are relatively prime, then φ(pq) = φ(p)φ(q).
• If n = pe1

1 pe2
2 · · · p

ek
k is a prime factorization,

φ(n) =
k∏

i=1

(pei
i − pei−1

i ).

• We will need this later:
Theorem: If b ∈ Z∗

n, then bφ(n) ≡ 1 (mod n).
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Euclidean Algorithm

• The Euclidean Algorithm solves two problems:
I Given positive integers a and b, find gcd(a,b).
I Given positive integers b and n with gcd(b,n) = 1, find b−1

in Zn.

• Example: Compute gcd(70,26).

70 = 2× 26 + 18
26 = 1× 18 + 8
18 = 2× 8 + 2

8 = 4× 2 + 0

When the remainder is 0, the GCD is the number on the
right side of the ×. Thus, gcd(70,26) = 2.
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Euclidean Algorithm to find a−1

Example: To find 11−1 in Z26.
• First, computer gcd(26,11) using Euclidean algorithm.

26 = 2× 11 + 4
11 = 2× 4 + 3

4 = 1× 3 + 1
3 = 3× 1 + 0

• Next, do substitutions backwards to find a−1.

1 = 4− (1× 3)
1 = 4− (1× (11− 2× 4)) = 3× 4− 11
1 = 3× (26− 2× 11)− 11 = 3× 26− 7× 11

Thus, −7× 11 ≡ 1 mod 26, so
11−1 mod 26 = (26− 7) = 19.
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RSA

• Let p and q be distinct odd primes. Let n = pq.
• We have φ(n) = (p − 1)(q − 1).
• P = C = Zn.
• K = {(n,p,q,a,b) : ab ≡ 1 (mod φ(n))}.
• For x ∈ P and y ∈ C, define

eK (x) = xb mod n,

and
dK (y) = ya mod n.

• Public key: n and b.
• Private information: p, q, a.
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Why RSA works

• eK (x) = xb mod n where dK (y) = ya mod n and ab ≡ 1
(mod φ(n)).
• We need to show that decryption “works,”, i.e. that for all x ,

dK (eK (x)) = x . This amounts to showing that

(xb)a ≡ x (mod n) for all x ∈ Zn.

• If x ∈ Z∗
n, then

(xb)a ≡ xab ≡ xφ(n)t+1 ≡ (xφ(n))tx ≡ 1tx ≡ x (mod n).

• If x ∈ Zn \ {Z∗
n ∪ 0} (That is, x has either p or q as a

factor), then it can also be shown that (xb)a ≡ x (mod n),
but it is more complicated.
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Example of RSA

• Suppose n = 98069 and b = 36119.
• If the plaintext is x = 76111, then

eK (x) = 7611136119 mod 98069 = 91332.

• With the additional information that n = 98069 = 281 · 349,
Bob can compute φ(n) = 280 · 348 = 97440, and then
compute

36119−1 mod 97440 = 839.

Then

dK (91332) = 91332839 mod 98069 = 76111.
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RSA Excercise

• Assume you know the following

n = 42876092449717
b = 33389740312697 (encryption key)

ek (x) = 37247990695057 (cipher text)

Find the plaintext x . Get the values here

• Hint: Factor n, compute φ(n), compute a = b−1

(mod φ(n)), and finally compute x .
• You may use WolframAlpha or similar tool for your

computations.
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Security of RSA

• RSA is believed to be secure for large primes p and q.
• eK (x) = xb mod n is believed to be a one-way function.
• The trapdoor is the factorization of n as pq.
• If someone knows p and q, they can compute
φ(n) = (p − 1)(q − 1), and thereby compute a using the
extended Euclidean algorithm.
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Implementation

• The primes p and q must be chosen large enough so that
factoring n is computationally infeasible. For safety, p and
q are typically primes that require 512 bits to represent
them in binary.
• Let n be a k -bit integer. RSA requires

I modular addition and subtraction mod n (takes O(k) time),
I modular multiplication mod n (takes O(k2) time), and
I modular inversion mod n (takes (O(k3)) time).

• Computing xc mod n can be done using c − 1 modular
multiplications, but this is very inefficient if c is large.
• Instead, we use the SQUARE AND MULTIPLY ALGORITHM,

which runs in time O(k2 log c).
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Repeated Squaring

• Computing xc mod n using square and multiply algorithm
is pretty straightforward.
• Intuitively, we express c in binary as c`−1c`−2 · · · c1c0, then

compute xc mod n by computing

xc0(xc1(xc2(· · · (xc`−1)2 · · · )2)2)2.

• For example, to compute 357 mod 7, we write
57 = 1110012. Then

357 = 3323163831 = 3(((3(3(3)2)2)2)2)2.

From this, we can see that 357 mod 7 = 6.
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RSA Implementation and Parameter Generation

• Choose two large primes p and q.
• Set n = pq and φ(n) = (p − 1)(q − 1). This can be done in

time O((log n)2).
• Choose a random b with gcd(b, φ(n)) = 1, and compute

a = b−1 (mod φ(n)). This can be done in time O((log n)2)
using the EXTENDED EUCLIDEAN ALGORITHM.
• RSA encryption and decryption using the SQUARE AND

MULTIPLY ALGORITHM each take time O((log n)3).
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Related Topics

• Hashing (How do you store passwords so that they cannot
be retrieved? )
• Digital Signatures (How can you authenticate the sender of

a message?)
• Key Distribution (How do you exchange private keys over a

public channel?)
• Identification Schemes (How do you prove you are who

you say you are?)
• Secrete Sharing Schemes (How do you require that (for

instance) two of three people be present to open a safe?)
• Zero Knowledge Proofs (How do you convince someone

that a statement is true without revealing any information
beyond the fact that the statement is true?)
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