
Data Structures 1

Common Data Structures
� Arrays (single and multiple dimensional)
� Linked Lists
� Stacks
� Queues
� Trees
� Graphs

You should already be familiar with arrays, so they
will not be discussed. Trees and Graphs will be
discussed later.

Data Structures 2

Linked Lists

A linked list is a linear set of nodes with the following
properties:
� Each node has at least two fields, the key and the

next.
� The next field of the

�
th element “points to” the� ��� ���

th element of the list.
� The first element of the linked list is called the

head, and the last element the tail. The head
contains no data, and the next field of the tail
points to NULL.

� The key field contains the data we are actually
interested in.

� What exactly is meant by things like “points to”
and “NULL” depends on the implementation used.

head
A TSIL

Data Structures 3

Linked List Operations

There are several operations that we must be able to do
on a linked list:
� Insert a node
� Delete a node
� Find an element with key �

There are other operations which might be useful:
� Move an element
� Swap two elements

We will talk about a few of these next, and give one
possible way to implement a linked list (in part,
anyway).

Data Structures 4

Linked List: C++ Declaration

struct node
{ char key;

struct node *next; }
struct node *head;
head = new node;
head->next = NULL;

� This creates an empty linked list.
� In this implementation, we have the tail point to

NULL, which is usually defined to be ‘0’. Thus, if
the next field of an element is ‘0’, we know we
have reached the tail.

� Here “point to” means that. We really used
pointers. We will see shortly that we don’t need to
use actual pointers to implement a linked list.

Data Structures 5

Linked List: JAVA Declaration
� The JAVA implementation is similar to the C++

one.

public class node {
public char key;
public node next;
}

node head = new node();
head.next = NULL;

Data Structures 6

Linked List: Insert
� The simplest insert would always place the new

item at the front (or back) of the list. One may
also want to insert elements in the middle of the
list.

� To insert X between I and S:
//C++ //JAVA
struct node *A; node A;
A=new node; A=new node();
A->key = X; A.Key=X;
A->next = I->next; A.next=I.next;
I->next = A; I.next=A;

S TI X
head

LA

I

X

S

� Only two references need to be changed no matter
how long the list is. How does this compare with
arrays?

Data Structures 7

Linked List: Delete
� Deleting a node is very simple. We just need to

change one pointer.
� However, we need to know which node points to

the node we wish to delete.
� Assuming we know that node

�
points to node 	 ,

we can delete 	 by:
// C++ // JAVA
i->next = x->next; i.next=x.next;

XI TS
head

A L

� Only one reference needs to be changed, no
matter how long the list is. How does this
compare with an array?

� Note: There is a slight problem with the C++
code. What is it?

Data Structures 8

Linked List: Moving a node
� Moving a node consist of a delete operation

follow by an insert operation.
� Example: Move T from the end of the list to the

beginning:

A
head

head
A TSIL

TSIL

head
T A L I S

� Again, this requires changing only 3 references,
no matter how long the list is. What about with
arrays?

Data Structures 9

Comparison:
Linked Lists and Arrays

� A linked list can grow and shrink during its
lifetime, and its maximum size doesn’t need to be
specified in advance. In contrast, arrays are
always of fixed size.

� We can rearrange, add, and delete items from a
linked list with only a constant number of
operations. With arrays, these operations are
generally linear in the size of the array.

� To find the
�
th entry of a linked list, we need to

follow
�

pointers, which requires
�

operations.
With an array, this takes only one operation.

� Similarly, it may not be obvious how large a
linked list is, whereas we always know the size of
an array. (This problem can be eliminated very
easily. How?)

Data Structures 10

Other Linked Lists
� A doubly linked list is like a linked list, but each

node also has a previous field, which points to the
nodes predecessor.

TSIL
head

A

� This can simplify searching, and makes the
deletion operation (potentially) easier.

� There is obviously added storage cost, and the
number of instructions needed for the various
operations approximately doubles.

� Circular-linked list:
– The last node points to the first node.
– It can be single or doubly linked list.
– It can be implemented with a fixed or moving

“head.”
head

L I S TA

Data Structures 11

Linked Lists without Pointers
� Instead of using pointer to implement linked lists,

we can use arrays.
� We won’t look at this in depth, but it is not too

hard to imagine how we could do it.
� There are a few complications in this type of

implementation, but they can easily be worked
around.

� Example:

L I S T
head z

A

4

 key S L A I T

 next 1 6 5 2 13

Data Structures 12

Linked Lists Summary
� Linked lists are data structures that are in many

ways similar to arrays.
� Inserting, deleting or accessing items in linked

lists are operations which can be performed.
� Insertion and deletion can be done in constant

time.
� Finding an element in a linked list generally takes

linear time. This is true whether we are trying to
find an element whose value is 	 , or we are trying
to find the

�
th element on the list.

� It is this last fact that can limit the usefulness of
linked lists.

Data Structures 13

Stacks
� A Stack is a sequential organization of items in

which the last element inserted is the first element
removed. They are often referred to as LIFO,
which stands for “last in first out.”

� Examples: letter basket, stack of trays, stack of
plates.

� The only element of a stack that may be accessed
is the one that was most recently inserted.

� There are only two basic operations on stacks, the
push (insert), and the pop (read and delete).

Stack

push pop

Data Structures 14

Stacks: Push and Pop
� The operation push() places the item 	 onto the

top of the stack.
� The operation pop() removes the top item from

the stack, and returns that item.
� We need some way of detecting an empty stack

(This is an underfull stack).
– In some cases, we can have pop() return some

value that couldn’t possibly be on the stack.
– Example: If the items on the stack are

positive integers, we can return “-1” in case of
underflow.

– In other cases, we may be better off simply
keeping track of the size of the stack.

� In some cases, we will also have to worry about
filling the stack (called overflow). One way to do
this is to have push() return “1” if it is
successful, and “0” if it fails.

Data Structures 15

An Example Stack Operations

Assume we have a stack of size 3 which holds integers
between -100 and 100. Here is a series of operations,
and the results.

Operation Stack Contents Return

create ()
push(55) (55) 1
push(-7) (-7,55) 1
push(16) (16,-7,55) 1
pop (-7,55) 16
push(-8) (-8,-7,55) 1
push(23) (-8,-7,55) 0
pop (-7,55) -8
pop (55) -7
pop () 55
pop () 101

Data Structures 16

Implementing Stacks: Array
� Stacks can be implemented with an array and an

integer
��� that stores the array index of the top of
the stack.

� Empty stack has
��� � � � , and a full stack has

��� � � � � , where � is the size of the array.

� To push, increment the
��� counter, and write in
the array position.

� To pop, decrement the
��� counter.

Data Structures 17

Example of Array Implementation of
Stack

� We use an array � ����������� to store the elements and
a variable to keep track of the top. The last
column, labeled “R” is the result of the function
call.

Operation p E0 E1 E2 E3 E4 R
create -1 ? ? ? ? ?
push(55) 0 55 ? ? ? ? 1
push(-7) 1 55 -7 ? ? ? 1
push(16) 2 55 -7 16 ? ? 1
pop 1 55 -7 16 ? ? 16
push(-8) 2 55 -7 -8 ? ? 1
pop 1 55 -7 -8 ? ? -8
pop 0 55 -7 -8 ? ? -7

� Notice that some values are still in the array, but
are no longer considered to be in the stack. In
general, elements � � � � are “garbage” if

� � .
Why don’t we erase the element (i.e. set it to
some default value.)?

Data Structures 18

Example Application of Stacks
� Stacks can be used to check a program for

balanced symbols (such as !#" ,(),[]).
� Example: ! () " is legal, as is ! ()(!$") " , whereas
! ((" and ! (") are not (so simply counting symbols
does not work).

� If the symbols are balanced correctly, then when a
closing symbol is seen, it should match the “most
recently seen” unclosed opening symbol.
Therefore, a stack will be appropriate.

The following algorithm will do the trick:
� While there is still input:% = next symbol

if (% is an opening symbol) push(%)
else // % is a closing symbol

if (Stack.Empty) report an error
else & = pop()
if(! Match(% , &)) report an error

� If (! Stack.Empty) report an error

Data Structures 19

Examples

1. Input: ! () "
� Read ! , so push !
� Read (, so push (. Stack has ! (
� Read), so pop. popped item is (which matches).

Stack has now ! .
� Read " , so pop; popped item is ! which matches " .
� End of file; stack is empty, so the string is valid.

2. Input: ! () (!) " " (This will fail.)

2. Input: ! (! ") ! " () " (This will succeed.)

3. Input: ! () ") (This will fail.)

Data Structures 20

Stack: C++ Array Implementation
� The following is a C++ stack that holds items of

type ItemType

class Stack
{
private:

ItemType *stack;
int p;

public:
Stack(int max=100)

{stack = new ItemType[max];
p = 0; }

˜Stack()
{delete stack; }

void push(ItemType v)
{ stack[p++] = v; }

ItemType pop()
{return stack[--p]; }

int empty()
{return !p; }

};

Data Structures 21

Stack: JAVA Array Implementation
� The following is a JAVA stack that holds items of

type ItemType

public class Stack {
private ItemType[] stack;
private int p;

public Stack(int max) {
stack = new ItemType[max];
p = 0;

}
public void push(ItemType v) {

stack[p++] = v;
}
public ItemType pop() {

return stack[--p];
}
public int empty() {

return !p;
}

};

Data Structures 22

Operator Precedence Parsing
� We can use the stack class we just defined to parse

and evaluate mathematical expressions like:
' (�����*) � +,�-(� � (/.0���1� 2#�

� First, we transform it to postfix notation (How
would you do this?):

5 9 8 + 4 6
((

7 +
(

� Then, the following C++ routine uses a stack to
perform this evaluation:

char c; Stack acc(50); int x;
while (cin.get(c))

{
x = 0;
while (c == ’ ’) cin.get(c);
if (c == ’+’) x = acc.pop() + acc.pop();
if (c == ’*’) x = acc.pop() * acc.pop();
while (c>=’0’ && c<=’9’)

{x = 10*x + (c-’0’); cin.get(c); }
acc.push(x);

}
cout << acc.pop() << ’\n’;

Data Structures 23

Stack Implementation:
C++ Linked Lists

� We can use linked lists to implement stacks.
� The head of the list represents the top of the stack.
� Example After 43 %�5 �76 � , 83 %95 �;: � , 83 %95 �*< � ,
43 %�5 �7= � , we have:

DCBA

Head

� ItemType pop () {
ItemType x = head->key;
head=head->next;
return x; }

� void push(ItemType x) {
node *x;
x=new node;
x->key = X;
insert(x); }

� Note: Slight error in pop. What is it?

Data Structures 24

Stack Implementation:
JAVA Linked Lists

We assume head points to the first element of the list,
and is the top of the stack.
� public ItemType pop () {

ItemType x = head.key;
head=head.next;
return x;

}

� public void push(ItemType x) {
node A=new node();
A.key = x;
A.next=head;
head=A;

}

Data Structures 25

Stack Implementation:
Array or Linked List?

Linked Lists
� Use 1 pointer extra memory per item. If an item is

an integer, that means twice as much space is
used. If an item is a structure/class consisting of
many objects, it is only a small price to pay.

� Are unlimited in size.

Arrays
� Allocate a constant amount of space, some of

which may never be used. The amount of wasted
memory is the number of unused elements times
the size of the item, which could be large in some
cases.

� The maximum size is determined when the stack
is created.

Which is better? Why?

Data Structures 26

Stack Applications
� Recursion removal can be done with stacks.
� Reversing things is easily done with stacks.
� Procedure call and procedure return is similar to

matching symbols:
– When a procedure returns, it returns to the

most recently active procedure.
– When a procedure call is made, save current

state on the stack. On return, restore the state
by popping the stack.

Data Structures 27

Queues
� A Queue is a sequential organization of items in

which first element entered is first removed. They
are often referred to as FIFO, which stands for
“first in first out.”

� Examples: standing in a line, printer queue.
� The basic operations are:

– insert() places 	 at the beginning of the
queue.

– remove() returns and deletes the item at the
end of the queue.

� Example:

Operation Queue Return

CreateQueue ()
insert(7) (7)
insert(8) (7,8)
insert(5) (7,8,5)
remove() (8,5) 7
remove() (5) 8

Data Structures 28

Queue Applications
� Operating systems:

– Queue of jobs or processes ready to run
(waiting for CPU):

– Queues of processes waiting for I/O.
– Files sent to printer

� Simulation of real-world queuing systems:
– Customers in a grocery store, bank, etc.
– Orders in a factory
– Hospital emergency room or doctor’s office
– Telephone calls for airline reservations,

customer orders, information, etc.
� Problem applications:

– Topological ordering: given a sequence of>@?A> �B
 % , and pairs
�7CED�F �

indicating that event
C

should occur prior to
F
, provide a schedule.

Data Structures 29

Queues: Naive Implementation
� Using array:

– Store items in an array. The head it the first
element, and the tail is indicated by a variable
tail.

– insert() is easy: increment
 C �HG , and insert
element.

– remove() is inefficient: all elements have to be
shifted. Thus, remove is I � � � .

c d

tail

b

ba

c

tail

tail = 3

= 3

= 2

d

dremove a

update tail b c

� How can we improve this?

Data Structures 30

Queues: A Better Implementation
� Keep track of both the head and the tail.
� To remove, increment JE&K���B
 .

a b c d

remove a b c d

tail = 3

b c d

tail = 3

tail = 3

head = 0

head = 1

update head

� There is still a problem. What is it, and how can
we fix it?

Data Structures 31

Queues: Circular Array Implementation
� Previous implementation is I � �L� per operation,

which is great.
� However, after � inserts (where � is the size of the

array), the array is full even if the queue is
logically nearly empty.

� Solution: Use wraparound to reuse the cells at the
start of the array. To

� �1M�& >@N > �B
 , add one, but if
that goes past end, reset to zero.

� How do you detect a full or empty queue?
� We will give a simplified implementation for the

queue data structure. A better implementation
would detect an empty (full) queue before
performing a dequeue (enqueue) operation.

Data Structures 32

Queue C++ Declaration
� Here is a C++ declaration of an integer queue

using a “circular” array:

class Queue {
private:

int *queue;
int cap,head,tail;

public:
Queue(int s=100) {

cap= s;
queue = new int[cap];
head = 0; tail = 0; }

˜Queue() { delete queue; }
void Enqueue(int v) {

queue[tail] = v;
tail = (tail+1) % cap;

}
int Dequeue() {

int t = queue[head];
head = (head + 1) % cap;
return t;

}
int Empty() {return (head == tail); }
int Full() {return (head == ((tail+1)%cap)); }
};

Data Structures 33

Queue JAVA Declaration

public class Queue {
private int[] queue;
private int cap,head,tail;

public Queue(int s) {
cap=s;
queue = new int[cap];
head = 0;
tail = 0; i
}

public void Enqueue(int v) {
queue[tail] = v;
tail = (tail+1) % cap;
}

public int Dequeue() {
int t = queue[head];
head = (head + 1) % cap;
return t;
}

public int Empty() {
return (head == tail); }

public int Full() {
return (head == ((tail+1)%cap)); }

};

Data Structures 34

Example of Queue Using Circular Array
� Here we use an array � �O�����QP9� to store the elements

and the variables 5 (head) and
 (tail) to keep
track of the beginning and end of the queue. The
value R is the return value of the operation.

Operation h t E0 E1 E2 E3 R
create 0 0 ? ? ? ?
insert(55) 0 1 55 ? ? ?
insert(-7) 0 2 55 -7 ? ?
insert(16) 0 3 55 -7 16 ?
remove() 1 3 55 -7 16 ? 55
insert(-8) 1 0 55 -7 16 -8
remove() 2 0 55 -7 16 -8 -7
remove() 3 0 55 -7 16 -8 16
insert(11) 3 1 11 -7 16 -8

� Note that some of the values remain physically in
the array, but are logically no longer in the queue.

Data Structures 35

Queues: Linked List Implementation
� We can maintain JR&$���S
 and
 C �HG pointers.
� & >@N � ?A> : advance JE&$�L�B
 .
� � � %�> &�
 : add to end of list and adjust
 C �HG .

DC

tailfront

A B

� The details are not very hard to work out, so will
not be presented.

