Graphs

- A (simple) graph $G = (V, E)$ consists of
 - V, a nonempty set of vertices and
 - E, a set of unordered pairs of distinct vertices called edges.

Examples

$V = \{A, B, C, D, E\}$

$E = \{ (A, D), (A, E), (B, D), (B, E), (C, D), (C, E) \}$
Directed Graphs

- A directed graph (or digraph) $G = (V, E)$ consists of
 - V, a nonempty set of vertices and
 - E, a set of ordered pairs of distinct vertices called edges.

- Examples
Multigraphs

- A multigraph (directed multigraph)

 \[G = (V, E) \]

 consists of

 - \(V \), a set of vertices,

 - \(E \), a set of edges, and

 - a function \(f \) from \(E \) to \(\{ \{u, v\} : u \neq v \in V\} \)

 (function \(f \) from \(E \) to \(\{(u, v) : u \neq v \in V\} \)).

- Two edges \(e_1 \) and \(e_2 \) with \(f(e_1) = f(e_2) \) are called multiple edges.

- Put simply, a multigraph \(G = (V, E) \) is a graph in which multiple edges are allowed.

- Examples
Weighted Graphs

- A **weighted graph** is a graph (or digraph) with the additional property that each edge e has associated with it a real number $w(e)$ called it’s *weight*.

- A weighted digraph is often called a **network**.

- **Examples**

![Weighted Graphs Example Diagram]
Psuedographs

- A psuedograph $G = (V, E)$ consists of
 - V, a set of vertices,
 - E a set of edges, and
 - a function f from E to $\{\{u, v\} : u, v \in V\}$.

- Psuedo-multigraphs are defined similarly.

- Put another way, a psuedograph is a graph in which we allow loops, that is, edges from a vertex to itself.

Examples
Graph Definitions Summary

- There are several ways to categorize graphs:
 - Directed or undirected edges.
 - Weighted or unweighted edges.
 - Allow multiple edges or not.
 - Allow loops or not.

- Unless specified, you can usually assume a graph does not allow multiple edges and loops. These aren’t that common.

- For clarity, if a graph is not specified as weighted or directed, assume it isn’t.

- The most common graphs we’ll use are graphs, digraphs, weighted graphs, and networks.

- When writing graph algorithms, it is important to know what characteristics the graphs have. For instance, if a graph might have loops, the algorithm should be able to handle it.
Graph Terminology

Let u and v be vertices, and let $e = \{u, v\}$ be an edge in an undirected graph G.

- The vertices u and v are said to be **adjacent**
- The edge e is said to **incident with** u and v.
- The edge e is said to **connect** u and v.
- The vertices u and v are called the **endpoints** of the edge e.
- The **degree** of a vertex, denoted $deg(v)$, in an undirected graph is the number of edges incident with it (where loops are counted twice).
Examples

\[G_1 \]

\[G_2 \]

\[G_3 \]

<table>
<thead>
<tr>
<th></th>
<th>(G_1)</th>
<th>(G_2)</th>
<th>(G_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{deg}(u))</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(\text{deg}(v))</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(\text{deg}(w))</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(\text{deg}(x))</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>(\text{deg}(y))</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(\text{deg}(z))</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
More Graph Terminology

- A subgraph of a graph $G = (V, E)$ is a graph $G' = (V', E')$ such that $V' \subset V$ and $E' \subset E$.

- A path is a sequence of vertices v_1, v_2, \ldots, v_k such that consecutive vertices v_i and v_{i+1} are adjacent.
More Graph Terminology

- A **simple path** is a path with no repeated vertices.

![Diagram of simple path](image)

- A **cycle** is a simple path whose last vertex is the same as the first vertex.

![Diagram of cycle](image)
More Graph Terminology

- A graph is called **connected** if there is a path between every pair of distinct vertices.

- A **connected component** of a graph is a maximal connected subgraph. e.g. the graph below has 3 connected components.
Trees

- A **tree** (or **unrooted tree**) is a connected acyclic graph. That is, a graph with no cycles.

- A **forest** is a collection of trees.

- These trees are not to be confused with **rooted trees**, which we will see later.
Spanning Tree

• A spanning tree of G is a subgraph which is a tree and contains all of the vertices of G.

\[G \]

\[\text{spanning tree of } G \]
Some Special Graphs

- K_n: The complete graph on n vertices.

- C_n: The cycle of length n.
- Q_n: The n-cube.
• **Bipartite Graphs:** A simple graph G is called **bipartite** if the vertex set V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge connects a vertex in V_1 to a vertex in V_2.

Put another way, no edges in V_1 are connected to each other, and no edges in V_2 are connected to each other.
Some Theorems

- **Theorem 1:** Let $G = (V, E)$ be an undirected graph with e edges. Then

$$2e = \sum_{v \in V} \deg(v).$$

- **Proof:** Let $X = \{(e, v) : e \in E, v \in V, e$ and v are incident$\}$. We will compute $|X|$ in two ways. Each edge $e \in E$, is incident with exactly 2 vertices. Thus,

$$|X| = 2e.$$

Also, each vertex $v \in V$ is incident with $\deg(v)$ edges. Thus, we have that

$$|X| = \sum_{v \in V} \deg(v).$$

Setting these equal, we have the result.

- **Corollary 2:** An undirected graph has an even number of vertices of odd degree.
Examples

<table>
<thead>
<tr>
<th>Graph</th>
<th>G_1</th>
<th>G_2</th>
<th>G_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>E</td>
<td>$</td>
<td>9</td>
</tr>
<tr>
<td>(\sum_{v \in V} \deg(v))</td>
<td>18</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>
Directed Graph Terminology

Let u and v be vertices in a directed graph G, and let $e = (u, v)$ be an edge in G.

- u is said to be **adjacent to** v.
- v is said to be **adjacent from** u.
- u is called the **initial vertex** of (u, v).
- v is called the **terminal** or **end vertex** of (u, v).
- The **in-degree** of u, denoted by $deg^-(u)$, is the number of edges in G which have u as their terminal vertex.
- The **out-degree** of u, denoted by $deg^+(u)$, is the number of edges in G which have u as their initial vertex.

Theorem 3: Let $G = (V, E)$ be a directed graph. Then

$$\sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v) = |E|.$$
Examples

\begin{align*}
G_4 & :
\begin{array}{c}
\text{deg}^- (u) = 2 \\
\text{deg}^- (v) = 2 \\
\text{deg}^- (w) = 1 \\
\text{deg}^- (x) = 2 \\
\text{deg}^- (y) = 3 \\
\text{deg}^- (z) = 1
\end{array}
\quad
\begin{array}{c}
\text{deg}^+ (u) = 4 \\
\text{deg}^+ (v) = 2 \\
\text{deg}^+ (w) = 1 \\
\text{deg}^+ (x) = 3 \\
\text{deg}^+ (y) = 0 \\
\text{deg}^+ (z) = 1
\end{array}
\end{align*}

\begin{align*}
G_5 & :
\begin{array}{c}
\text{deg}^- (u) = 1 \\
\text{deg}^- (v) = 1 \\
\text{deg}^- (w) = 1 \\
\text{deg}^- (x) = 1 \\
\text{deg}^- (y) = 2 \\
\text{deg}^- (z) = 1
\end{array}
\quad
\begin{array}{c}
\text{deg}^+ (u) = 0 \\
\text{deg}^+ (v) = 2 \\
\text{deg}^+ (w) = 1 \\
\text{deg}^+ (x) = 1 \\
\text{deg}^+ (y) = 2 \\
\text{deg}^+ (z) = 2
\end{array}
\end{align*}

\begin{align*}
G_6 & :
\begin{array}{c}
\text{deg}^- (u) = 1 \\
\text{deg}^- (v) = 2 \\
\text{deg}^- (w) = 2 \\
\text{deg}^- (x) = 1 \\
\text{deg}^- (y) = 2 \\
\text{deg}^- (z) = 1
\end{array}
\quad
\begin{array}{c}
\text{deg}^+ (u) = 1 \\
\text{deg}^+ (v) = 2 \\
\text{deg}^+ (w) = 2 \\
\text{deg}^+ (x) = 1 \\
\text{deg}^+ (y) = 2 \\
\text{deg}^+ (z) = 2
\end{array}
\end{align*}
Graph Representation

There are two common ways of representing G. Let $G = (V, E)$ be a graph with n vertices and m edges.

Adjacency Lists

- For each vertex v in G, we store a list of vertices adjacent to v.
- This is often implemented using linked lists.

For weighted graphs, an additional field can be stored in each node.

- The space required for storage is $\Theta(n + 2m) = \Theta(n + m)$ for graphs, and $\Theta(n + m) = \Theta(n + m)$ for digraphs.
Adjacency Matrix

- Number the vertices 1, 2, \ldots, n in some arbitrary order.

- We use a n by n matrix M defined as

\[
M(i, j) = \begin{cases}
1 & \text{if } (i, j) \text{ is an edge} \\
0 & \text{if } (i, j) \text{ is not an edge}
\end{cases}
\]

- If G is weighted, we store the weights in the matrix. For non-adjacent vertices, we store ∞, or MAX_INT.

- It is clear that this representation requires $\Theta(n^2)$ space.
Some Basic Graph Problems

- Is there a path from A to B?
- CYCLES: Does the graph contain a cycle?
- CONNECTIVITY (SPANNING TREE): Is there a way to connect the vertices?
- BICONNECTIVITY: Will the graph become disconnected if one vertex is removed?
- PLANARITY: Is there a way to draw the graph without edges crossing?
- SHORTEST PATH: What is the shortest way from A to B?
- LONGEST PATH: What is the longest way from A to B?
- MINIMAL SPANNING TREE: What is the best way to connect the vertices?
- TRAVELING SALESMAN: What is the shortest route to connect the vertices without visiting the same vertex twice?
(Rooted) Trees

- A **rooted tree** is a tree which has a specially designated vertex called the *root*.
- In rooted trees, vertices are called *nodes*.
- Each node contains some information and one or more links to other nodes further down the hierarchy. (Similar to nodes in a linked list.)
- For convenience, we can think of trees as acyclic digraphs in which every edge “points away from” the root.
Rooted Trees Terminology

A node that is *adjacent from* \(v \) is a **child** of \(v \).

A node that is *adjacent to* \(v \) is a **parent** of \(v \).

Two nodes who have the same parent are **siblings**.

A **leaf** or **external node** is a node with degree zero. (i.e. a node with no children)

An **internal node** is a nonleaf node. (i.e. a node with at least one child)

An **ancestor** of a node is any node on the path from the root to the node.

A **descendant** of a node \(v \) is any node which has \(v \) as an ancestor.
Rooted Trees Terminology

- The **degree of a node** is the number of children the node has.
- The **depth** of a node is the length of the path from the root to the node.
- The **height** of a node is the maximum length of a path from the node to a leaf.
- The **height or depth** of a tree is the maximum height of any node in the tree.
- The **subtree rooted at** x is the subtree consisting of x and all of its descendents.
Binary Tree

- A **binary tree** is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the *left subtree* and the *right subtree*.

- Put another way, a **binary tree** is a rooted tree such that each node has
 - no children,
 - a *right child*,
 - a *left child*, or
 - both a *right child* and a *left child*.

![Binary Tree Diagram]

Graphs and Trees
Binary Trees: Definitions

- A **full binary tree** is one in which internal nodes completely fill every level, except possibly the last.

- A **complete binary tree** is a full binary tree where the internal nodes on the bottom level all appear to the left of the external nodes on that level.

- **Example:** A full binary tree

```
  1
 /   \
2     3
 / \\
4   5
 / \  /\n8   9 11
   /   /\
  13 14 15
```


Binary Tree Examples

- **Example:** A complete binary tree

- **Example:** A totally complete binary tree
Properties of Binary Trees

- The maximum number of nodes on level i of a binary tree is 2^i, $i \geq 1$.
- The maximum number of nodes in a binary tree of depth k is $2^{k+1} - 1$, $k \geq 1$.
- There is exactly one path connecting any two nodes in a tree.
- A tree with n nodes has $n - 1$ edges.
- The height of a full binary tree with n internal nodes is about $\log_2 n$.
Binary Tree Representation: Arrays

Let G be a tree of height $\log_2 n$ with m nodes, where $m \leq n$. We can represent G with an array A of size n. $A[1]$ is the root, and given a node with index i, we can find the index of parents and children as follows:

- $parent(i) = \begin{cases} \lfloor i/2 \rfloor & \text{if } i \neq 1 \\ \text{undefined} & \text{if } i = 1 \end{cases}$
- $left(i) = \begin{cases} 2i & \text{if } 2i \leq n \\ \text{undefined} & \text{if } 2i > n \end{cases}$
- $right(i) = \begin{cases} 2i + 1 & \text{if } 2i + 1 \leq n \\ \text{undefined} & \text{if } 2i + 1 > n \end{cases}$
Binary Tree Representation: Linked Lists

- We define a tree node by

  ```
  struct treenode{
      int data;
      treenode *left_child;
      treenode *right_child;
  };
  ```

- We find children by following the pointers.

- Parents are harder to find, unless we use doubly linked lists.
Binary Tree Traversals

- When we visit each node in the tree exactly once, we say we have **Traversed** the tree.
- A full traversal produces a linear order of the information in a tree.
- There are several ways to traverse a tree.
 - **preorder**: visit a node, then traverse its left subtree, and then traverse its right subtree.
 - **inorder**: traverse the left subtree, visit the node and then traverse its right subtree
 - **postorder**: first traverse the left subtree, traverse the right subtree, and then visit the node.
- There is a natural correspondence between these traversals and producing the prefix, infix and postfix form of an expression.
Tree Traversal

- **preorder**: visit a node, then traverse its left subtree, and then traverse its right subtree.

- **inorder**: traverse the left subtree, visit the node and then traverse its right subtree.

- **postorder**: first traverse the left subtree, traverse the right subtree.

Preorder: $+$ $*$ $*$ / A B C D E

Infix form of the expression

Inorder: A / B * C * D + E

Postorder: A B / C * D * E +
Tree Traversal: Implementation

- Assume we have used a linked list to implement a tree.

```c
struct tree_node{
    int data;
    tree_node *left_child;
    tree_node *right_child;
};
```

- Assume we have a pointer to the root node.
- From this, we can traverse the tree with any of the methods.
Preorder Traversal

Visit a node, then traverse its left subtree, and then traverse its right subtree.

```c
void PreOrderTraversal(treenode *ptr) {
    if (ptr!=0) {
        cout << ptr->data;
        PreOrderTraversal(ptr->left);
        PreOrderTraversal(ptr->right);
    }
}
```
Postorder Traversal

First traverse the left subtree, traverse the right subtree, and finally visit the node.

```c
void PostOrderTraversal(treenode *ptr) {
    if (ptr!=0) {
        PostOrderTraversal(ptr->left);
        PostOrderTraversal(ptr->right);
        cout << ptr->data;
    }
}
```
Inorder Traversal

Traverse the left subtree, visit the node and then traverse its right subtree.

```cpp
void InOrderTraversal(treenode *ptr) {
    if (ptr != 0) {
        InOrderTraversal(ptr->left);
        cout << ptr->data;
        InOrderTraversal(ptr->right);
    }
}
```