
Linked Lists 1

Linked Lists

A linked list is a linear set ofnodes with the following properties:

• Each node has at least two fields, thekey and thenext.

• The next field of theith element “points to” the(i+ 1)th element of
the list.

• The first element of the linked list is called thehead, and the last
element thetail. The head contains no data, and the next field of the
tail points toNULL.

• Thekey field contains the data we are actually interested in.

• What exactly is meant by things like “points to” and “NULL”
depends on the implementation used.

head
A TSIL

Linked Lists 2

Linked List Operations

There are several operations that wemust be able to do on a linked list:

• Insert a node

• Delete a node

• Find an element with keyk

There are other operations which might be useful:

• Move an element

• Swap two elements

We will talk about a few of these next, and give one possible way to
implement a linked list (in part, anyway).

Linked Lists 3

Linked List: C++ Declaration

struct node
{ char key;

struct node *next; }
struct node *head;
head = new node;
head->next = NULL;

• This creates an empty linked list.

• In this implementation, we have the tail point to NULL, whichis
usually defined to be ‘0’. Thus, if the next field of an element is ‘0’,
we know we have reached the tail.

• Here “point to” means that. We really used pointers. We will see
shortly that we don’t need to use actual pointers to implement a
linked list.

Linked Lists 4

Linked List: JAVA Declaration

• A JAVA implementation is similar to the C++ one.

public class Node {
public Node next;
public char key;

}

public class LinkedList {
private Node head;
public LinkedList() {

head = new Node();
head.next = NULL;

}
// more methods

}

Linked Lists 5

Linked List: Insert

• The simplest insert would place new items at the head or tail.One
may also want to insert elements in the middle of the list.

• To insert X between I and S:
//C++ //JAVA
struct node *A; node A;
A=new node; A=new node();
A->key = X; A.Key=X;
A->next = I->next; A.next=I.next;
I->next = A; I.next=A;

S TI X
head

LA

I

X

S

• Only two references need to be changed no matter how long the list
is. How does this compare with arrays?

Linked Lists 6

Linked List: Delete

• Deleting a node is very simple. We just need to change one pointer.

• However, we need to know which node points to the node we wish to
delete.

• Assuming we know that nodei points to nodex, we can deletex by:

// C++ // JAVA
i->next = x->next; i.next=x.next;

XI TS
head

A L

• Only one reference needs to be changed, no matter how long thelist
is. How does this compare with an array?

• Note: There is a slight problem with the C++ code. What is it?

Linked Lists 7

Linked List: Moving a node

• Moving a node consist of a delete operation follow by an insert
operation.

• Example: Move T from the end of the list to the beginning:

A
head

head
A TSIL

TSIL

head
T A L I S

• Again, this requires changing only 3 references, no matter how long
the list is. What about with arrays?

Linked Lists 8

Comparison:
Linked Lists and Arrays

• A linked list can grow and shrink during its lifetime, and its
maximum size doesn’t need to be specified in advance. In contrast,
arrays are always of fixed size.

• We can rearrange, add, and delete items from a linked list with only a
constant number of operations. With arrays, these operations are
generally linear in the size of the array.

• To find theith entry of a linked list, we need to followi pointers,
which requiresi operations. With an array, this takes only one
operation.

• Similarly, it may not be obvious how large a linked list is, whereas
we always know the size of an array. (This problem can be
eliminated very easily. How?)

Linked Lists 9

Other Linked Lists

• A doubly linked list is like a linked list, but each node also has a
previous field, which points to the nodes predecessor.

TSIL
head

A

• This can simplify searching, and makes the deletion operation
(potentially) easier.

• There is obviously added storage cost, and the number of instructions
needed for the various operations approximately doubles.

• Circular-linked list :

– The last node points to the first node.

– It can be single or doubly linked list.

– It can be implemented with a fixed or moving “head.”
head

L I S TA

Linked Lists 10

Linked Lists without Pointers

• Instead of using pointer to implement linked lists, we can use arrays.

• We won’t look at this in depth, but it is not too hard to imaginehow
we could do it.

• There are a few complications in this type of implementation, but
they can easily be worked around.

• Example:

L I S T
head z

A

4

 key S L A I T

 next 1 6 5 2 13

Linked Lists 11

Linked Lists Summary

• Linked lists are data structures that are in many ways similar to
arrays.

• Inserting, deleting or accessing items in linked lists are operations
which can be performed.

• Insertion and deletion can be done in constant time.

• Finding an element in a linked list generally takes linear time. This is
true whether we are trying to find an element whose value isx, or we
are trying to find theith element on the list.

• It is this last fact that can limit the usefulness of linked lists.

