
Stacks 1

Stacks

• A Stack is a sequential organization of items in which the last
element inserted is the first element removed. They are oftenreferred
to as LIFO, which stands for “last in first out.”

• Examples: letter basket, stack of trays, stack of plates.

• Theonlyelement of a stack that may be accessed is the one that was
most recently inserted.

• There are only two basic operations on stacks, thepush(insert), and
thepop(read and delete).

Stack

push pop

Stacks 2

Stacks: Push and Pop

• The operationpush(x) places the itemx onto the top of the stack.

• The operationpop() removes the top item from the stack, and returns
that item.

• We need some way of detecting an empty stack (This is anunderfull
stack).

– In some cases, we can havepop() return some value that couldn’t
possibly be on the stack.

– Example: If the items on the stack are positive integers, we can
return “-1” in case of underflow.

– In other cases, we may be better off simply keeping track of the
size of the stack.

• In some cases, we will also have to worry about filling the stack
(calledoverflow). One way to do this is to havepush(x) return “1” if
it is successful, and “0” if it fails.

Stacks 3

An Example Stack Operations

Assume we have a stack of size 3 which holds integers between -100 and
100. Here is a series of operations, and the results.

Operation Stack Contents Return

create ()

push(55) (55) 1

push(-7) (-7,55) 1

push(16) (16,-7,55) 1

pop (-7,55) 16

push(-8) (-8,-7,55) 1

push(23) (-8,-7,55) 0

pop (-7,55) -8

pop (55) -7

pop () 55

pop () 101

Stacks 4

Implementing Stacks: Array

• Stacks can be implemented with an array and an integertop that
stores the array index of the top of the stack.

• Empty stack hastop = −1, and a full stack hastop = n− 1, wheren
is the size of the array.

• To push, increment thetop counter, and write in the array position.

• To pop, decrement thetop counter.

Stacks 5

Example of Array Implementation of Stack

• We use an arrayE[0..4] to store the elements and a variablep to keep
track of the top. The last column, labeled “R” is the result ofthe
function call.

Operation p E0 E1 E2 E3 E4 R

create -1 ? ? ? ? ?
push(55) 0 55 ? ? ? ? 1
push(-7) 1 55 -7 ? ? ? 1
push(16) 2 55 -7 16 ? ? 1
pop 1 55 -7 16 ? ? 16
push(-8) 2 55 -7 -8 ? ? 1
pop 1 55 -7 -8 ? ? -8
pop 0 55 -7 -8 ? ? -7

• Notice that some values are still in the array, but are no longer
considered to be in the stack. In general, elementsE[i] are “garbage”
if i > p. Why don’t we erase the element (i.e. set it to some default
value.)?

Stacks 6

Example Application of Stacks

• Stacks can be used to check for balanced symbols (such as{},(),[]).

• Example: {()} is legal, as is{()({})}, whereas{((} and{(}) are not.

• If the symbols are balanced correctly, then when a closing symbol is
seen, it should match the “most recently seen” unclosed opening
symbol. Therefore, a stack will be appropriate.

The following algorithm will do the trick:

• While there is still input:

s = next symbol

if (s is an opening symbol) push(s)

else //s is a closing symbol
if (Stack.Empty) report an error
elser = pop()
if(! Match(s,r)) report an error

• If (! Stack.Empty) report an error

Stacks 7

Examples

1. Input:{ () }

• Read{, so push{

• Read (, so push (. Stack has{ (

• Read), so pop. popped item is (which matches). Stack has now{.

• Read}, so pop; popped item is{ which matches}.

• End of file; stack is empty, so the string is valid.

2. Input:{ () ({) } } (This will fail.)

3. Input:{ ({ }){ } () } (This will succeed.)

4. Input:{ () }) (This will fail.)

Stacks 8

Stack: C++ Array Implementation

• The following is a C++ stack that holds items of typeItemType

class Stack {
private:

ItemType * stack;
int p;

public:
Stack(int max=100)

{stack = new ItemType[max];
p = 0; }

˜Stack()
{delete stack; }

void push(ItemType v)
{ stack[p++] = v; }

ItemType pop()
{return stack[--p]; }

int empty()
{return !p; }

};

Stacks 9

Stack: JAVA Array Implementation

• The following is a JAVA stack that holds items of typeItemType

public class Stack {
private ItemType[] stack;
private int p;
public Stack(int max) {

stack = new ItemType[max];
p = 0;

}
public void push(ItemType v) {

stack[p++] = v;
}
public ItemType pop() {

return stack[--p];
}
public int empty() {

return !p;
}

}

Stacks 10

Operator Precedence Parsing

• We can use the stack class we just defined to parse and evaluate
mathematical expressions like:5 ∗ (((9 + 8) ∗ (4 ∗ 6)) + 7)

• First, we transform it to postfix notation (How would you do this?):

5 9 8 + 4 6∗ ∗ 7 + ∗

• The following code uses a stack to perform this evaluation:

while ((c = nextChar()) !=null) {
x = 0;
while (c == ’ ’) c = nextChar();
if (c == ’+’) x = stack.pop() + stack.pop();
if (c == ’ * ’) x = stack.pop() * stack.pop();
while (c>=’0’ && c<=’9’)

{x = 10 * x + (c-’0’); c = nextChar(); }
stack.push(x);

}
print(stack.pop());

Stacks 11

Stack Implementation:
C++ Linked Lists

• We can use linked lists to implement stacks.

• The head of the list represents the top of the stack.

• ExampleAfter push(D), push(C), push(B), push(A), we have:

DCBA

Head

• ItemType pop () {
ItemType x = head->key;
head=head->next;
return x; }

• void push(ItemType x) {
node * x;
x=new node;
x->key = X;
insert(x); }

• Note: Slight error inpop . What is it?

Stacks 12

Stack Implementation:
JAVA Linked Lists

We assumeheadpoints to the first element of the list, and is the top of the
stack.

• public ItemType pop () {
ItemType x = head.key;
head=head.next;
return x;

}

• public void push(ItemType x) {
node A=new node();
A.key = x;
A.next=head;
head=A;

}

Stacks 13

Stack Implementation:
Array or Linked List?

Linked Lists

• Use 1 pointer extra memory per item. If an item is an integer, that
means twice as much space is used. If an item is a structure/class
consisting of many objects, it is only a small price to pay.

• Are unlimited in size.

Arrays

• Allocate a constant amount of space, some of which may never be
used. The amount of wasted memory is the number of unused
elements times the size of the item, which could be large in some
cases.

• The maximum size is determined when the stack is created.

Which is better? Why?

Stacks 14

Stack Applications

• Recursion removal can be done with stacks.

• Reversing things is easily done with stacks.

• Procedure call and procedure return is similar to matching symbols:

– When a procedure returns, it returns to the most recently active
procedure.

– When a procedure call is made, save current state on the stack.
On return, restore the state by popping the stack.

