Solving Recurrence Relations

Some Examples

1. Give an asymptotic upper bound for the recurrence T'(n) = 7T (n/2) + 15n2 /4.
Solution: We try the Master Theorem. We compute

log, a =log, 7 =log,(4(7/4)) = log4 + log(7/4) = 2 + log,(7/4).
Then 2 = log, 7 — log,(7/4). If we pick € = log,(7/4) > 0, then clearly
15”2/4 — O(n2) — O(nlog2 7—10g2(7/4)) — O(nlOgb a—e),
so case 1 applies, and T'(n) = O(n'°827) = O(n?#).

2. Give a tight bound for the recurrence T'(n) = T'(y/n) + 1
Solution: We can see that

T(n) = Tm'Y?) +1
= T +1+1
= T/ +1+1+1

= T@)+1+---+1+1.

We need to count the number of ‘1’s in the sum. Notice that when we have T (nl/ 21) in the sum,

there are 4 ones. Thus, the last line has i ones, where n'/ L Taking logs on both sides, we get
(1/2%)logn = 1, or 2¢ = logn. Again taking logs, we get i = loglogn. We assume that T'(2) = ¢ for
some constant ¢, so that T'(n) = ¢ + loglogn = O(loglogn).

3. Find a good bound for the recurrence T'(n) = 87'(n/4) + n?logn.
Solution: We will use the Master Theorem. We compute logya = logs8 = 1.5. It is clear that

n?logn = Qn*") = Q(n'52%),
so case 3 applies. We need to show that there is a ¢ < 1 such that
8(n/4)?log(n/4) < en?logn.

We can simplify this
(1/2)n*(logn — log4) < en’logn
(logn — 2) < 2clogn
(1-2c)logn <2

If we pick ¢ = .75, we have
—(1/2)logn < 2,

which is true if n > 1. Thus, by case 3, T'(n) = ©(n?logn).



4. Give a tight bound on the recurrence T'(n) = 4T'(n/2) + n?/ logn.
Solution:
We try the Master Theorem. We see that log, a = log, 2 = 2.

Is n%/logn = O(n? ¢) for some € > 0? Only if 1/logn = O(n"¢), which is true only if logn =
Q(n€), which isn’t true for any € > 0.

Is n?/logn = ©(n?)? Only if 1/ logn = O(1), which it certainly isn’t.

Is n?/logn = Q(n?*¢) for some € > 0? Only if 1/logn = Q(n€), which isn’t true for any € > 0.
Thus, the Master Theorem does not work here. After looking at it for a few minutes, though, it’s pretty
clear that T'(n) = O(n?loglogn) (O.K. maybe it’s not clear). We’ll prove this by induction. We

assume that T'(n) < cn?loglogn for some constance ¢ > 0. We assume this holds for n/2, and we
get

T(n) 4T (n/2) +n?/logn
4c(n/2)? loglog(n/2) +n?/logn
= cn®loglog(n/2) +n?*/logn

= n*(cloglog(n/2) + 1/ logn)

IA

It can be shown that cloglog(n/2) + 1/logn < cloglogn if ¢ > 2. (The details are omitted because
they are messy. Just assume this is true.) Then we have

T(n) n?(cloglog(n/2) + 1/ logn)

n’cloglogn

ININ A

en?loglogn

Now we only need to worry about the boundary condition. Notice that loglogn < 0 if n < 2, and
positive otherwise. Thus, we need to pick boundary conditions so that the recurrence does not depend
on T'(1) and T'(2) (You should understand why this is the case). If we use T'(3), T'(4), and T'(5) as our
boundary conditions, then all other cases depend on these, and not on T'(1) or T'(2).

From the recurrence, we see that 7'(3) =4 + 9/log3 < 10,7 (4) = 40, and T'(5) = 32+ 25/ log 5 <
45. It is not hard to see that if we pick ¢ > 3, the bound holds for the boundary conditions.

Now, we have shown that if ¢ > 3, T'(n) < cn? loglog n for the boundary conditions (n = 3, 4, and 5),
and we have proved that if it holds for n/2 it holds for n, as long as ¢ > 2. Therefore, for all n > 3,

T (n) < 3n®loglogn.

Thus T'(n) = O(n?loglogn).



