
Recursion 1

An Introduction to
Using and Abusing Recursion

Charles Cusack

Google results for “recursion”

https://www.google.com/search?q=recursion

Recursion 2

Recursion in a Nutshell

• A function is called recursive if it calls itself.

• If a function simply called itself as a part of its execution, it
would result in infinite recursion. This is a bad thing.

• Therefore, when using recursion, one must ensure that at some
point, the function terminates without calling itself.

• Example: Compute
n∑

i=1

i = 1 + 2 + · · · + n using recursion.

i n t sum1ToN (i n t n) {
i f (n<=1)

return 1 ;

e l s e

re turn n + sum1ToN (n−1) ;
}

• What ensures that the function sum1ToN terminates?

Recursion 3

Where is Recursion Seen/Used?

• We occasionally see recursion in the “real” world:

– Russian Matryoshka (nested dolls)

– Two almost parallel mirrors

– A video camera pointed at the monitor

– Fractals

• In computer science, it is useful when working with certain
data structures and algorithms.

• Examples include

– Computing n!

– Binary Search

– Merge Sort, Quick Sort and many other divide-and-conquer
algorithms

– Algorithms on binary trees.

Recursion 4

Recursion in Art

• Two partial fractal Latin squares.

• Grayscale Fractal on Colored Background and GRBY Fractal
over GRAY Stripes, 2019, by Charles Cusack.

Recursion 5

Recursion in Art

• Textured Fractal Latin Square, 2018, by Charles Cusack.

Recursion 6

Recursion Example

• Suppose we want to implement a function CountDown(n)
which outputs the integers from n down to 1, where n > 0.

• Example: The call CountDown(5) results in output:

5 4 3 2 1

• The easiest way to implement this is probably a loop:

void CountDown (i n t n) {
f o r (i=n ; i>0 ; i−−)

print (i) ;

}

• This is (hopefully) nothing new or earth shattering.

• Let’s consider how to do it with recursion.

Recursion 7

Recursive CountDown(n)

• How can we think of this function recursively?

• CountDown(n) outputs n followed by the numbers from
n− 1 down to 1.

• But CountDown(n− 1) outputs numbers n− 1 down to 1.

• Thus, the output from CountDown(n) is n followed by the
output from CountDown(n− 1).

• Based on this, we can write the function recursively as follows:

void CountDown (i n t n) {
print (n) ;

CountDown (n−1) ;
}

• We are close, but something is wrong here. What is it?

Recursion 8

Recursive CountDown(n) Error

• The problem is, CountDown never stops:
Execute Output Then Execute

CountDown(3) 3 CountDown(2)

CountDown(2) 2 CountDown(1)

CountDown(1) 1 CountDown(0)

CountDown(0) 0 CountDown(-1)

CountDown(-1) -1 CountDown(-2)

.

.

.
.
.
.

.

.

.

• The problem is not with the recursion, but with our logic. We
are supposed to stop printing when n = 1, but we didn’t take
that into account.

• To fix this, we modify it so that a call to CountDown(0)
produces no output and does not call CountDown again.

• Calls to CountDown(n) when n < 0 should also produce no
output.

• We can take care of both of these problems at once.

Recursion 9

Recursive CountDown(n) Fixed

• The following version of CountDown(n) is correct:

void CountDown (i n t n) {
i f (n>0) {

print (n) ;

CountDown (n−1) ;
}

}

• Now CountDown(n) does exactly what we want when n > 0.

• When n ≤ 0, CountDown(n) does nothing (as it should).

Recursion 10

Making Recursion Work

• In order for a recursive function to work properly, it must be
defined so that it will eventually terminate.

• A proper recursive definition has both of the following:

– Base case(s): One or more cases which are solved
non-recursively.

∗ In other words, when a function gets to the base case, it
does not call itself again.

∗ This is also called a stopping case or terminating
condition.

– Inductive case(s): A recursive rule for all cases except the
base case(s).

∗ Inductive cases should always progress toward the base
case.

Recursion 11

CountDown Example Continued

• Recall the function CountDown(n)

void CountDown (i n t n) {
i f (n>0) {

print (n) ;

CountDown (n−1) ;
}

}

• Base case:
When n ≤ 0, CountDown(n) does nothing.

• Inductive case:
When n > 0, CountDown(n) outputs n and calls
CountDown(n− 1).

– Notice, the recursive call is closer to the base case.

Recursion 12

Example: Factorial

• Recall that n! = 1 · 2 · 3 · · · (n− 1) · n.

• Example: 7! = 1 · 2 · 3 · 4 · 5 · 6 · 7 = 5040.

• We can also define n! recursively:

n! =

{
1 when n = 0, 1

n · (n− 1)! when n > 1

• Example:

1! = 1

2! = 2 · 1! = 2 · 1 = 2

3! = 3 · 2! = 3 · 2 = 6

4! = 4 · 3! = 4 · 6 = 24

5! = 5 · 4! = 5 · 24 = 120

Recursion 13

Computing Factorial

• We can compute n! iteratively:

i n t factorial (i n t n) {
i n t result=1;

whi l e (n>1) {
result = result ∗ n ;

n−−;
}
re turn result ;

}

• Or recursively:

i n t factorial (i n t n) {
i f (n<=1)

return 1 ;

e l s e

re turn n ∗ factorial (n−1) ;
}

Recursion 14

Factorial: Comparing Implementations

Iterative

i n t factorial (i n t n) {
i n t result=1;

whi le (n>1) {
result = result ∗n ;

n−−;
}
re turn result ;

}

Recursive

i n t factorial (i n t n) {
i f (n<=1)

return 1 ;

e l s e

re turn n∗ factorial (n−1) ;

}

• Notice that algorithms are about equally complicated.

• Both take on the order of n operations to compute n!.

• Is one clearly better?

• What about memory usage?

Recursion 15

Recursion and Memory

• Without digressing too much, it is important to understand a
little bit about memory use of recursive functions.

• When a function is called, a chunk of memory called an
activation record or stack frame is allocated for use by the
function.

• For simplicity, we will assume each activation record contains

– memory for each parameter

– memory for each local variable

– memory for the return value

• In order to support function calls, the run-time system treats
memory as a stack of activation records

• Thus, a recursive function that calls itself n times must allocate
n activation records.

• You can learn more about this in a programming languages
course.

Recursion 16

Example:

• factorial(4)

n
return value Activation record for factorial(4)

4

Recursion 17

Example:

• factorial(4): call to factorial(3)

return
n

valuereturn
n 3

Activation record for factorial(3)

value

4

Activation record for factorial(4)

Recursion 18

Example:

• factorial(4): call to factorial(2)

return value Activation record for factorial(4)

4n

Activation record for factorial(2)

2n
return value

return value
n

Activation record for factorial(3)

3

Recursion 19

Example:

• factorial(4): call to factorial(1)

return value

n
return value Activation record for factorial(4)

4

n

Activation record for factorial(1)

1n
return value

Activation record for factorial(2)

2

3n
return value Activation record for factorial(3)

Recursion 20

Example:

• factorial(4): factorial(1) is the base case, so it returns 1.

n
return value

n
return value Activation record for factorial(4)

2

1 Activation record for factorial(1)

1n
return value

Activation record for factorial(2)

4

3n
return value Activation record for factorial(3)

Recursion 21

Example:

• factorial(4): factorial(2) returns 2.

n
return value Activation record for factorial(4)

4

value 2 Activation record for factorial(2)

2n
return

return value
n

Activation record for factorial(3)

3

Recursion 22

Example:

• factorial(4): factorial(3) returns 6.

n

valuereturn
n 3

Activation record for factorial(3)6

return value Activation record for factorial(4)

4

Recursion 23

Example:

• factorial(4): returns 24.

• This was the original function call, so the execution is finished.

24
n

return value

4

Activation record for factorial(4)

Recursion 24

Memory Usage

return
n 1

Activation record for factorial(1)value

return
n 2

Activation record for factorial(2)

1
n
result

24

24

 return value

RECURSIVE VERSION ITERATIVE VERSION

value

3

Activation record for factorial(3)
n

valuereturn

Activation record for factorial(4)valuereturn
n 4

• For input n, the recursive implementation needs 2n integers

• The iterative implementation needs only 3 integers.

• In general, recursive algorithms use more memory than
equivalent iterative algorithms.

Recursion 25

Limits of Recursion

• Clearly infinite recursion is bad:
i n t infiniteRecursion (i n t n) {

i f (n==0) return 1 ;

e l s e re turn infiniteRecursion (n) ;
}

Since n never reaches zero, the function is called and records
are pushed onto the stack until the system runs out of memory.

• Even if recursion is not infinite it can still run too deep since
computers only have a finite amount of memory.

• Languages/platforms often have some defined limit on how
deep recursive calls can go.

• On the other hand, it is rare that you run into this limit with
properly implemented recursive functions.

• One notable exception: some small embedded systems with
very limited memory can barely handle multiple function calls
and do not even support recursion.

Recursion 26

Recursive Problem Solving

• In general, we can solve a problem with recursion if we can:

– Find one or more simple cases of the problem that can be
solved directly.

– Find a way to break up the problem into smaller instances
of the same problem.

– Find a way to combine the smaller solutions.

• Classic examples of this include

– Binary Search (We’ll look at this next)

– Divide-and-conquer algorithms like Quick Sort and Merge
Sort

– Solving theTowers of Hanoi

– Working with binary trees

• Take a data structures and/or algorithms course to learn more
about these and other applications of recursion.

Recursion 27

Searching with Recursion: Binary Search

• If you need to search a list for some value, typically you need
to perform a linear search through the list.

• If the list is sorted, there is a much quicker algorithm.

• The binary search algorithm finds an item v on a sorted list
by repeatedly discarding half of the list.

• The algorithm works as follows.

– We compare the middle value m of the array to v.

– If the m = v, we are done.

– Else if m < v, we binary search the left half of the array.

– Else (m > v), we binary search the right half of the array.

• Although this can be implemented with iteration, it is more
natural to think recursively.

Recursion 28

Recursive Binary Search

i n t binarySearch (i n t [] a , i n t left , i n t right , i n t val) {
i f (right>=left) {

i n t middle = (left+right) /2 ;

i f (val==a [middle])

r e turn middle ;

e l s e i f (val<a [middle])

r e turn binarySearch (a , left , middle−1,val) ;
e l s e

re turn binarySearch (a , middle+1,right , val) ;

} e l s e {
re turn −1;

}
}

• Requires on the order of log2 n operations as opposed to n for
linear search. (Take a discrete math and/or algorithms course
to see why.)

Recursion 29

Fibonacci Numbers

• The Fibonacci numbers are a sequence of integers that are of
interest to mathematicians, computer scientists, artists, etc.

• They are given by the following recursive definition:

F(n) =


0 if n=0

1 if n=1

F(n− 1) + F(n− 2) if n > 1

• The first few are:
F(0) = 0
F(1) = 1
F(2) = F(0) + F(1) = 0 + 1 = 1
F(3) = F(1) + F(2) = 1 + 1 = 2
F(4) = F(2) + F(3) = 1 + 2 = 3
F(5) = F(3) + F(4) = 2 + 3 = 5
F(6) = F(4) + F(5) = 3 + 5 = 8

• We will consider both an iterative and a recursive algorithm to
calculate F(n)

Recursion 30

Fibonacci Numbers in Art

• The golden rectangle/spiral, based on Fibonacci numbers, is
often used in art.

Recursion 31

Fibonacci Numbers in Art

• Mondriacci, 2018, by Charles Cusack.

Recursion 32

Fibonacci Numbers in Art

• Increasing Asquareness, ArtPrize 2016, by Charles Cusack.

Recursion 33

Iterative Fibonacci Function

• Start with F (0) = 0 and F (1) = 1, then compute the next
number based on the previous two until we reach F (n).

• Since F (n) = F (n− 1) + F (n− 2), we must keep track of the
previous two numbers as we go.

i n t FibI (i n t n) {
i f (n <= 1) return (n) ;

e l s e {
i n t fib=0, fibm1=1, fibm2=0, index=1;

whi l e (index < n) {
fib = fibm1 + fibm2 ;

fibm2 = fibm1 ;

fibm1 = fib ;

index = index + 1 ;

}
re turn (fib) ;

}}

Recursion 34

Recursive Fibonacci Function

• While the iterative solution started from F (0) and F (1) and
worked forward, the recursive solution starts from n and works
backwards.

• We use F (n) = F (n− 1) + F (n− 2) as before.

i n t FibR (i n t n) {
i f (n <= 1)

return (n) ;

e l s e

re turn FibR (n−1) + FibR (n−2) ;
}

• As you can see, the recursive function is much simpler to
program.

• True or False: The recursive algorithm to compute the nth
Fibonacci number is an example of an algorithm that is both
elegant and efficient.

Recursion 35

Iterative versus Recursive Fibonacci

n FibI FibR

1 1.4 0.8

2 1.1 0.4

3 1.1 0.5

4 0.9 0.7

5 1.4 0.9

6 1.0 1.2

7 1.0 1.6

8 0.8 3.5

9 1.0 10.3

10 1.0 7.5

11 1.2 9.1

12 1.1 2.9

13 1.1 5.6

14 1.3 6.1

15 0.9 7.6

16 0.9 23.5

17 1.0 15.6

18 0.9 25.1

• Let’s compare the running times (in mi-
croseconds).

• So far they are both pretty fast, al-
though the recursive one seems to be
taking a little bit longer as n increases.

• But how bad can it get? It’s probably
just a little overhead due to recursion.

Recursion 36

Iterative versus Recursive Fibonacci

n FibI FibR

1 1.4 0.8

2 1.1 0.4

3 1.1 0.5

4 0.9 0.7

5 1.4 0.9

6 1.0 1.2

7 1.0 1.6

8 0.8 3.5

9 1.0 10.3

10 1.0 7.5

11 1.2 9.1

12 1.1 2.9

13 1.1 5.6

14 1.3 6.1

15 0.9 7.6

16 0.9 23.5

17 1.0 15.6

18 0.9 25.1

n FibI FibR

19 2.0 55.7

20 1.0 63.8

21 2.4 173.0

22 2.3 255.4

23 1.0 119.1

24 0.9 192.4

25 6.6 311.5

26 1.4 529.0

27 1.5 880.0

28 1.4 1417.0

29 1.5 2432.8

30 1.7 3626.4

31 1.7 7230.0

32 2.2 9696.3

33 4.0 17492.1

34 2.4 26544.4

35 1.6 40849.3

36 1.7 85165.4

• It is looking like this
might be more than
just a little recursive
overhead.

• But let’s see some
more data before we
jump to a conclusion.

Recursion 37

Iterative versus Recursive Fibonacci

• O.K., maybe FibR is a really bad algorithm. But why?

n FibI FibR

1 1.4 0.8

2 1.1 0.4

3 1.1 0.5

4 0.9 0.7

5 1.4 0.9

6 1.0 1.2

7 1.0 1.6

8 0.8 3.5

9 1.0 10.3

10 1.0 7.5

11 1.2 9.1

12 1.1 2.9

13 1.1 5.6

14 1.3 6.1

15 0.9 7.6

16 0.9 23.5

17 1.0 15.6

18 0.9 25.1

n FibI FibR

19 2.0 55.7

20 1.0 63.8

21 2.4 173.0

22 2.3 255.4

23 1.0 119.1

24 0.9 192.4

25 6.6 311.5

26 1.4 529.0

27 1.5 880.0

28 1.4 1417.0

29 1.5 2432.8

30 1.7 3626.4

31 1.7 7230.0

32 2.2 9696.3

33 4.0 17492.1

34 2.4 26544.4

35 1.6 40849.3

36 1.7 85165.4

n FibI FibR

37 4.5 106568.8

38 1.5 172959.0

39 1.5 282319.0

40 1.7 447233.6

41 1.5 725519.9

42 1.8 1182831.5

43 1.6 1885098.2

44 1.9 3076539.2

45 1.4 4922548.0

46 7.3 8006058.3

47 1.5 12873996.6

48 1.6 20800990.7

49 1.9 33745830.4

50 1.9 55031994.2

51 1.9 84096872.3

52 5.2 135878807.6

53 1.7 218251652.5

54 1.7 355260801.8

Recursion 38

Recursive Fibonacci Problem

n F(n) FibR Time Ratio

37 24157817 106568.8 226.69

38 39088169 172959.0 226.00

39 63245986 282319.0 224.02

40 102334155 447233.6 228.82

41 165580141 725519.9 228.22

42 267914296 1182831.5 226.50

43 433494437 1885098.2 229.96

44 701408733 3076539.2 227.99

45 1134903170 4922548.0 230.55

46 1836311903 8006058.3 229.37

47 2971215073 12873996.6 230.79

48 4807526976 20800990.7 231.12

49 7778742049 33745830.4 230.51

50 12586269025 55031994.2 228.71

51 20365011074 84096872.3 242.16

52 32951280099 135878807.6 242.50

53 53316291173 218251652.5 244.29

54 86267571272 355260801.8 242.83

• Notice that the ratio
of F (n) and the time
it takes to compute
F (n) is approximately
constant (or increases
very slowly).

• In other words, the time
it takes to compute F (n)
is proportional to F (n).

• Since F (n) grows expo-
nentially (take a discrete
math course for more de-
tails), the running time
of FibR(n) is exponen-
tial.

Recursion 39

Recursive Fibonacci Problem

• The recursive calls in FibR(n) look something like the following

F(n)

F(n-1) F(n-2)

F(n-3)

F(n-4) F(n-5) F(n-6)

F(n-2) F(n-3)

F(n-3)

F(n-4)

F(n-4) F(n-4) F(n-5) F(n-5)

where the leaves are all F (0) and F (1).

• Recall that F (0) = 0 and F (1) = 1.

• Thus, FibR(n) is computing F (n) by adding F (n) 1s and
about that many 0s. That does not seem like an efficient way
to compute F (n)!

Recursion 40

Recursive Fibonacci Solution

• We could certainly make FibR faster if we added F (2) = 1 as a
base case.

– That way we don’t add a bunch of 0s which is really stupid.

– But that would only give us a small amount of speedup.

• If you want to see how to fix this algorithm, take an algorithms
course and learn about dynamic programming, memoization,
and space-time tradeoffs.

• Briefly, it can be fixed by using an array to store computed
values of F (n) and looking up values that have already been
computed rather than computing them again.

• The fixed algorithm performs about as well as the iterative one.

Recursion 41

Common Recursion Errors

Forgetting or having incomplete base cases

• Example: This function goes into infinite recursion if given a
negative number for N.

void Sum1toN (i n t N)

{
i f (N == 0)

return (0) ;

e l s e

re turn (N + Sum1toN (N−1)) ;
}

Recursion 42

Common Recursion Errors

Getting things backwards

• Example: One of these functions prints from 1 up to n, the
other from n down to 1. Which is which?

void Count1 (i n t n) {
i f (n > 0) {

Count1 (n−1) ;

print (n) ;

}
}

void Count2 (i n t n) {
i f (n > 0) {

print (n) ;

Count2 (n−1) ;

}
}

Recursion 43

Recursion: Advantages

• Recursion mimics the way we think about some problems.

– For example, binary search is very similar to the way we
search through the index of a book (sort of).

• Recursive solutions can be very intuitive to program.

• Often recursive functions to solve problems can be much
shorter than iterative (non-recursive) functions. This can make
the code easier to understand, modify, and/or debug.

• Many of the ‘best’ known algorithms for many problems are
based on a divide-and-conquer approach:

– Divide the problem into a set of smaller problems.

– Solve each small problem separately.

– Put the results back together for the overall solution.

• These divide-and-conquer techniques are often thought of in
terms of recursive functions. (e.g. Quick Sort and Merge Sort)

Recursion 44

Recursion: Disadvantages

• Each time one function calls another, the computer’s operating
system must take care of a number of things:

– Recording how to re-start the calling function later on.

– Passing the parameters from the calling function to the
called function (often by pushing the parameters onto a
stack).

– Setting up space for the called function’s local variables.

– Recording where the calling function’s local variables are
stored.

• Doing all this requires time and memory.

• Thus a function which makes many recursive calls can require a
lot of extra time and memory—more than a non-recursive
solution might.

• Sometimes an obvious recursive solution to a problem can be
inherently inefficient (e.g. FibR(n)).

Recursion 45

Recursion: Conclusion

• A recursive function is one that invokes another instance of
itself.

• Recursive functions have base cases and recursive cases.

• Base cases solve the problem directly.

• Recursive cases need to get closer to base cases.

• Recursion can often provide a more elegant solution than
iteration.

• Each instance of a function has its own set of local variables
and parameters.

• Recursive solutions are often less efficient, in terms of time and
space, than an equivalent iterative solution.

• Some problems are difficult to solve without recursion
(particularly when the data structure is defined recursively).

