Introduction to Recursion

- A subroutine/function is called \textit{recursive} if it calls itself.
- If a subroutine/function simply called itself as a part of its execution, it would result in infinite recursion. This is a bad thing.
- Therefore, when using recursion, one must ensure that at some point, the subroutine/function terminates without calling itself.
- \textbf{Example:} The factorial function $n!$ can be implemented recursively.

```c
int factorial(int n) {
    if (n<=1)
        return 1;
    else
        return n*factorial(n-1);
}
```
- What ensures that the function \textit{factorial} terminates?
Where is Recursion Seen/Used?

- We occasionally see recursion in the “real” world:
 - Russian Matryoshka (nested dolls)
 - Two almost parallel mirrors
 - A video camera pointed at the monitor
- More importantly for us, it is useful for some data structures and the associated algorithms.
- Some problems can be solved by combining solutions of smaller instances of the given problem. Recursion can be useful in these cases.

- **Examples:**
 - Binary Search
 - Mergesort
 - Computing $n!$
 - Many *divide-and-conquer* algorithms
Recursion Example

- Suppose we want to implement a subroutine \texttt{CountDown(n)} which outputs the integers from \(n \) down to 1, where \(n > 0 \).

- \textbf{Example:} The call \texttt{CountDown(5)} results in output ‘5 4 3 2 1’.

- The best way to implement this is a loop:

  ```
  void CountDown(int n) {
    for (i=n; i>0; i--)
      cout<<i<<" ";
    cout<<"\n";
  }
  ```

- Of course, if we did this, we wouldn’t learn anything about recursion. So, let’s consider how to do it with recursion.
Recursive CountDown(n)

- How can we think of this subroutine recursively?
- **CountDown(n)** outputs n followed by the numbers from $n - 1$ down to 1.
- The numbers $n - 1$ down to 1 are the output from **CountDown($n - 1$)**.
- Thus, the output from **CountDown(n)** is n followed by the output from **CountDown($n - 1$)**.
- Thus, we can write the function recursively as follows:

```cpp
void CountDown(int n) {
    cout<<n<<" ";
    CountDown(n-1);
}
```

- Nice, but something is wrong here. What is it?
Recursive CountDown(\(n\)): Error

- The problem is, CountDown never stops:

<table>
<thead>
<tr>
<th>Execute</th>
<th>Output</th>
<th>Then Execute</th>
</tr>
</thead>
<tbody>
<tr>
<td>CountDown(3)</td>
<td>3</td>
<td>CountDown(2)</td>
</tr>
<tr>
<td>CountDown(2)</td>
<td>2</td>
<td>CountDown(1)</td>
</tr>
<tr>
<td>CountDown(1)</td>
<td>1</td>
<td>CountDown(0)</td>
</tr>
<tr>
<td>CountDown(0)</td>
<td>0</td>
<td>CountDown(-1)</td>
</tr>
<tr>
<td>CountDown(-1)</td>
<td>-1</td>
<td>CountDown(-2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The problem is not with the recursion, but with our logic. We are supposed to stop printing when \(n = 1\), but we didn’t take that into account.

- To fix this, we modify it so that a call to CountDown(0) produces no output and does not call CountDown again.

- Calls to CountDown(\(n\)) when \(n < 0\) should produce no output, either.

- We can take care of both of these problems at once.
Recursive CountDown(n): Fixed

- The following version of \texttt{CountDown(n)} is correct:

```c
void CountDown(int n) {
    if(n>0) {
        cout<<n<<" ";
        CountDown(n-1):
    }
}
```

- Now, \texttt{CountDown(n)} does exactly what we want when $n > 0$.

- It is not too difficult to see that if $n \leq 0$, the subroutine \texttt{CountDown(n)} does nothing.
Making Recursion Work

- In order for a recursive routine to work properly, it must be defined so that it will terminate eventually.

- Thus, a proper recursive definition has both of the following:
 - *base case(s)*: A case which is solved non-recursively. In other words, when a routine gets to the base case, it does not call itself again. This is also called a *stopping case* or *terminating condition*.
 - *inductive case(s)*: A recursive rule for all cases except the base case. An inductive case should always progress toward the base case.

Example: For the routine $\text{CountDown}(n)$:
 - *base case*: When $n \leq 0$, $\text{CountDown}(n)$ does nothing.
 - *inductive case*: When $n > 0$, $\text{CountDown}(n)$ outputs n, and executes $\text{CountDown}(n - 1)$. Notice, the second call is closer to the base case.
Example: Factorial

- Recursive definition:

\[n! = \begin{cases}
 1 & \text{when } n = 1 \\
 n \times (n - 1)! & \text{otherwise}
\end{cases} \]

- Example:

\[
\begin{align*}
1! &= 1 \\
2! &= 2 \times (1)! = 2 \times 1 = 2 \\
3! &= 3 \times (2)! = 3 \times 2 = 6 \\
4! &= 4 \times (3)! = 4 \times 6 = 24
\end{align*}
\]

- In general, when \(n > 1 \),

\[n! = n \times (n - 1) \times (n - 2) \times (n - 3) \times \ldots \times 1 \]

- In C++, we can implement this as:

```cpp
int factorial(int n) {
    if(n==1)
        return 1;
    else
        return n*factorial(n-1);
}
```
Recursive Problem Solving

In general, we can solve a problem with recursion if we can:

- Find one or more simple cases of the problem that can be solved directly.
- Find a way to break up the problem into smaller instances of the same problem.
- Find a way to combine the smaller solutions.
Recursion and Memory

• Each call of a function generates an instance of that function

• An instance of a function contains
 – memory for each parameter (input)
 – memory for each local variable
 – memory for the return value

This chunk of memory is referred to as an activation record.

• Thus, a recursive function that calls itself \(n \) times must allocate \(n \) activation records.

• Usually, an iterative implementation will require on the order of one activation record, plus a constant amount of space.

• This is the reason recursion is avoided when possible. In fact, good compilers remove recursion whenever possible.
Example:

- **factorial(4)**

 \[
 \begin{array}{c}
 n \\
 \text{return value}
 \end{array}
 \]

 Activation record for factorial(4)

- **factorial(4): call to factorial(3)**

 \[
 \begin{array}{c}
 n \\
 \text{return value}
 \end{array}
 \]

 Activation record for factorial(3)

 \[
 \begin{array}{c}
 n \\
 \text{return value}
 \end{array}
 \]

 Activation record for factorial(4)
- **factorial(4):** call to factorial(2)

```
  n  2
  return value
```

Activation record for factorial(2)

```
  n  3
  return value
```

Activation record for factorial(3)

```
  n  4
  return value
```

Activation record for factorial(4)

- **factorial(4):** call to factorial(1)

```
  n  1
  return value
```

Activation record for factorial(1)

```
  n  2
  return value
```

Activation record for factorial(2)

```
  n  3
  return value
```

Activation record for factorial(3)

```
  n  4
  return value
```

Activation record for factorial(4)
• **factorial(4):** factorial(1) is the base case, so it returns ‘1’.

```
      n  4
    return value  1
          Activation record for factorial(4)

      n  3
    return value  2
          Activation record for factorial(2)

      n  2
    return value  3
          Activation record for factorial(3)

      n  1
    return value  1
          Activation record for factorial(1)
```
- **factorial(4):** factorial(2) now returns ‘2’.

```
   n   return value
     2   2

Activation record for factorial(2)
```

```
   n   return value
     3

Activation record for factorial(3)
```

```
   n   return value
     4

Activation record for factorial(4)
```
• **factorial(4):** factorial(3) now returns ‘6’.

```
   n  3
   return value  6
```

Activation record for factorial(3)

```
   n  4
   return value
```

Activation record for factorial(4)

• **factorial(4):** returns ‘24’. This was the original function call, so the execution is finished.

```
   n  4
   return value  24
```

Activation record for factorial(4)
The Run-Time Stack

- In order to support recursive function calls, the run-time system treats memory as a stack of activation records.

- Computing $\text{factorial}(n)$ recursively requires the allocation of n activation records on the stack.

- What if we have infinite recursion:

  ```
  int infiniteRecursion(int n) {
      if (n==0) return 1;
      else return infiniteRecursion(n);
  }
  ```

 The value of n never reaches zero, so the function is called, and records are pushed onto the stack, until the system runs out of memory.

- Even if our recursion is not infinite, it is possible that the recursion runs too deep, since computers only have a finite amount of memory.
Recursion and Iteration

Recursive functions can be translated to functions that use loops.

- **Recursive:**
  ```c
  int factorial(int n) {
    if(n==1)
      return 1;
    else
      return n*factorial(n-1);
  }
  ```

- **Iterative:**
  ```c
  int factorial (int n) {
    int result=1;
    while (n>1) {
      result = result * n;
      n--;}
    return result;
  }
  ```
Memory Usage?

Notice that for input n, the recursive implementation needs to allocate $2n$ integers, while the iterative implementation needs only 3.
Recursion: Advantages

- Recursion often mimics the way we think about a problem, thus the recursive solutions can be very intuitive to program. For example, binary search is very similar to the way we search through the phone book.

- Often recursive routines to solve problems can be much shorter than iterative (non-recursive) routines. This can make the code easier to understand, modify, and/or debug.

- Many of the ‘best’ known algorithms for many problems are based on a divide-and-conquer approach:
 - Divide the problem into a set of smaller problems
 - Solve each small problem separately
 - Put the results back together for the overall solution

- These divide-and-conquer techniques are often best thought of in terms of recursive functions. (e.g. Quicksort and Mergesort)
Recursion: Disadvantages

- Each time one subroutine calls another, the computer’s operating system must take care of a number of things:
 - Recording how to re-start the calling subroutine later on,
 - Passing the parameters from the calling subroutine to the called subroutine (often by pushing the parameters onto a stack controlled by the system)
 - Setting up space for the called subroutine’s local variables
 - Recording where the calling subroutine’s local variables are stored
- Doing all this requires time and memory.
- Thus a routine which makes many recursive calls can require a lot of time and memory - more than a non-recursive solution might.
Common Recursion Errors

- Forgetting or having incomplete base cases.
- **Example:** This routine goes into infinite recursion if given a negative number for N.

  ```cpp
  void Sum1toN(int N) {
    if (N == 0) return(0);
    else return(N + Sum1toN(N-1));
  }
  
  void PrintN(int N) {
    if (N > 0) {
      PrintN(N-1);
      cout << N << ", ";
    }
  }
  
  void NPrint(int N) {
    if (N > 0) {
      cout << N << "", ";
      NPrint(N-1);
    }
  }
  ```

- Getting things backwards.
- **Example:** One of these routines prints from 1 up to N, the other from N down to 1. Which is which?
Example 2: Fibonacci Numbers

- The Fibonacci numbers are a sequence of integers which are of interest in mathematical and computing applications.

- They are given by:

\[
Fib(n) = \begin{cases}
0 & \text{if } n=0 \\
1 & \text{if } n=1 \\
Fib(n - 1) + Fib(n - 2) & \text{if } n > 1
\end{cases}
\]

- Thus, the first few are:

\[
\begin{align*}
Fib(0) &= 0 \\
Fib(1) &= 1 \\
Fib(2) &= Fib(0) + Fib(1) = 0 + 1 = 1 \\
Fib(3) &= Fib(1) + Fib(2) = 1 + 1 = 2 \\
Fib(4) &= Fib(2) + Fib(3) = 1 + 2 = 3 \\
Fib(5) &= Fib(3) + Fib(4) = 2 + 3 = 5 \\
Fib(6) &= Fib(4) + Fib(5) = 3 + 5 = 8 \\
Fib(7) &= Fib(5) + Fib(6) = 5 + 8 = 13 \\
\text{etc.}
\end{align*}
\]

- We will consider one iterative solution and one recursive solution to calculate Fib(N).
Iterative Fibonacci Routine

- We can calculate the Fibonacci numbers iteratively by starting with Fib(0)=0 and Fib(1)=1, and then working forward until we reach Fib(N).

- Since Fib(x) = Fib(x-1) + Fib(x-2), we must keep track of the previous two numbers as we go.

```c
int Fib(int N) {
    int fib, fibm1, fibm2, index;
    if (N <= 1) return (N);
    else {
        fibm2 = 0;
        fibm1 = 1;
        index = 1;
        while (index < N) {
            fib = fibm1 + fibm2;
            fibm2 = fibm1;
            fibm1 = fib;
            index = index + 1;
        }
        return (fib);
    }
}
```
Recursive Fibonacci Solution

- While the iterative solution started from Fib(0) and Fib(1) and worked forward, the recursive solution starts from N and works backward.
- We use Fib(N) = Fib(N-1) + Fib(N-2) as before.

```c
int Fib(int N) {
    if (N <= 1)
        return(N);
    else
        return(Fib(N-1) + Fib(N-2));
}
```

- As you can see, the recursive routine is much simpler to program.
- If you try both programs for assorted values of N, however, you will also see that the iterative routine is much more efficient.
Recursion: Conclusion (1)

- A recursive function is one that invokes another instance of itself.
- Recursion is an alternative to iteration.
- Recursion can often provide a more elegant solution than iteration.
- Each instance of a function has its own set of local variables and parameters.
- Recursive solutions are often less efficient, in terms of time and space, than an iterative solution.
- Some data structure problems are difficult to solve without recursion. (particularly when the data structure is recursive in its definition).
Recursion: Conclusion (2)

- Recursion can be used when all of the following conditions can be satisfied:
 - There exists one or more simple solutions to the problem.
 - Other cases of the problem can be expressed in terms of one or more reduced cases of the problem (which are closer to the known simple solutions).
 - Eventually the problem can be reduced to one of the simple solutions.

- When designing a recursive algorithm it is important to ensure that the recursion will eventually reach a terminating condition and stop.