
Recursion 1

Introduction to Recursion� A subroutine/function is called recursive if it calls
itself.� If a subroutine/function simply called itself as a
part of its execution, it would result in infinite
recursion. This is a bad thing.� Therefore, when using recursion, one must ensure
that at some point, the subroutine/function
terminates without calling itself.� Example: The factorial function � �

can be
implemented recursively.
int factorial(int n) {

if (n<=1)
return 1;

else
return n*factorial(n-1);

}� What ensures that the function factorial
terminates?

Recursion 2

Where is Recursion Seen/Used?� We occasionally see recursion in the “real” world:
– Russian Matryoshka (nested dolls)
– Two almost parallel mirrors
– A video camera pointed at the monitor� More importantly for us, it is useful for some data

structures and the associated algorithms.� Some problems can be solved by combining
solutions of smaller instances of the given
problem. Recursion can be useful in these cases.� Examples:
– Binary Search
– Mergesort
– Computing � �
– Many divide-and-conquer algorithms

Recursion 3

Recursion Example� Suppose we want to implement a subroutine
CountDown(�) which outputs the integers from� down to 1, where � � � .� Example: The call CountDown(5) results in
output ‘5 4 3 2 1’.� The best way to implement this is a loop:
void CountDown(int n) {

for (i=n;i>0;i--)
cout<<i<<" ";

cout<<"\n";
}� Of course, if we did this, we wouldn’t learn

anything about recursion. So, let’s consider how
to do it with recursion.

Recursion 4

Recursive CountDown(�)� How can we think of this subroutine recursively?� CountDown(�) outputs � followed by the
numbers from � � � down to � .� The numbers � � � down to � are the output from
CountDown(� � �).� Thus, the output from CountDown(�) is �
followed by the output from CountDown(� � �).� Thus, we can write the function recursively as
follows:
void CountDown(int n) {

cout<<n<<" ";
CountDown(n-1):
}� Nice, but something is wrong here. What is it?

Recursion 5

Recursive CountDown(�): Error� The problem is, CountDown never stops:
Execute Output Then Execute
CountDown(3) 3 CountDown(2)
CountDown(2) 2 CountDown(1)
CountDown(1) 1 CountDown(0)
CountDown(0) 0 CountDown(-1)
CountDown(-1) -1 CountDown(-2)

...
...

...� The problem is not with the recursion, but with
our logic. We are supposed to stop printing when� � � , but we didn’t take that into account.� To fix this, we modify it so that a call to
CountDown(0) produces no output and does not
call CountDown again.� Calls to CountDown(�) when � 	 � should
produce no output, either.� We can take care of both of these problems at
once.

Recursion 6

Recursive CountDown(�): Fixed� The following version of CountDown(�) is
correct:
void CountDown(int n) {

if(n>0) {
cout<<n<<" ";
CountDown(n-1):
}

}� Now, CountDown(�) does exactly what we want
when � � � .� It is not too difficult to see that if �
 � , the
subroutine CountDown(�) does nothing.

Recursion 7

Making Recursion Work� In order for a recursive routine to work properly, it
must be defined so that it will terminate
eventually.� Thus, a proper recursive definition has both of the
following:
– base case(s): A case which is solved

non-recursively. In other words, when a
routine gets to the base case, it does not call
itself again. This is also called a stopping case
or terminating condition.

– inductive case(s): A recursive rule for all cases
except the base case. An inductive case should
always progress toward the base case.� Example: For the routine CountDown(�):

– base case: When �
 � , CountDown(�) does
nothing.

– inductive case: When � � � , CountDown(�)
outputs � , and executes CountDown(� � �).
Notice, the second call is closer to the base
case.

Recursion 8

Example: Factorial� Recursive definition:

� � � � when � � �� � �� � ��� � otherwise

� Example:

� � � �� � � � � ����� � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �
� In general, when � � � ,

� � � � � ��� � ����� ��� � � ��� ��� � � ��� ������� �� In C++, we can implement this as:
int factorial(int n) {

if(n==1)
return 1;

else
return n*factorial(n-1);

}

Recursion 9

Recursive Problem Solving

In general, we can solve a problem with recursion if
we can:� Find one or more simple cases of the problem that

can be solved directly.� Find a way to break up the problem into smaller
instances of the same problem.� Find a way to combine the smaller solutions.

Recursion 10

Recursion and Memory� Each call of a function generates an instance of
that function� An instance of a function contains
– memory for each parameter (input)
– memory for each local variable
– memory for the return value

This chunk of memory is referred to as an
activation record.� Thus, a recursive function that calls itself � times
must allocate � activation records.� Usually, an iterative implementation will require
on the order of one activation record, plus a
constant amount of space.� This is the reason recursion is avoided when
possible. In fact, good compilers remove
recursion whenever possible.

Recursion 11

Example:� factorial(4)

n
return value Activation record for factorial(4)

4

� factorial(4): call to factorial(3)

return
n

valuereturn
n 3

Activation record for factorial(3)

value

4

Activation record for factorial(4)

Recursion 12

� factorial(4): call to factorial(2)

return value Activation record for factorial(4)

4n

Activation record for factorial(2)

2n
return value

return value
n

Activation record for factorial(3)

3

� factorial(4): call to factorial(1)

return value

n
return value Activation record for factorial(4)

4

n

Activation record for factorial(1)

1n
return value

Activation record for factorial(2)

2

3n
return value Activation record for factorial(3)

Recursion 13

� factorial(4): factorial(1) is the base case, so it
returns ‘1’.

n
return value

n
return value Activation record for factorial(4)

2

1 Activation record for factorial(1)

1n
return value

Activation record for factorial(2)

4

3n
return value Activation record for factorial(3)

Recursion 14

� factorial(4): factorial(2) now returns ‘2’.

n
return value Activation record for factorial(4)

4

value 2 Activation record for factorial(2)

2n
return

return value
n

Activation record for factorial(3)

3

Recursion 15

� factorial(4): factorial(3) now returns ‘6’.

n

valuereturn
n 3

Activation record for factorial(3)6

return value Activation record for factorial(4)

4

� factorial(4): returns ‘24’. This was the original
function call, so the execution is finished.

24
n

return value

4

Activation record for factorial(4)

Recursion 16

The Run-Time Stack� In order to support recursive function calls, the
run-time system treats memory as a stack of
activation records� Computing factorial(�) recursively requires the
allocation of � activation records on the stack.

� What if we have infinite recursion:
int infiniteRecursion(int n) {

if (n==0) return 1;
else return infiniteRecursion(n);

}

The value of � never reaches zero, so the function
is called, and records are pushed onto the stack,
until the system runs out of memory.� Even if our recursion is not infinite, it is possible
that the recursion runs too deep, since computers
only have a finite amount of memory.

Recursion 17

Recursion and Iteration

Recursive functions can be translated to functions that
use loops.� Recursive:

int factorial(int n) {
if(n==1)

return 1;
else

return n*factorial(n-1);
}� Iterative:
int factorial (int n) {

int result=1;
while (n>1) {

result = result * n;
n--;

}
return result;

}

Recursion 18

Memory Usage?

return
n 1

Activation record for factorial(1)value

return
n 2

Activation record for factorial(2)

1
n
result

24

24

 return value

RECURSIVE VERSION ITERATIVE VERSION

value

3

Activation record for factorial(3)
n

valuereturn

Activation record for factorial(4)valuereturn
n 4

Notice that for input � , the recursive implementation
needs to allocate

� � integers, while the iterative
implementation needs only 3.

Recursion 19

Recursion: Advantages� Recursion often mimics the way we think about a
problem, thus the recursive solutions can be very
intuitive to program. For example, binary search
is very similar to the way we search through the
phone book.� Often recursive routines to solve problems can be
much shorter than iterative (non-recursive)
routines. This can make the code easier to
understand, modify, and/or debug.� Many of the ‘best’ known algorithms for many
problems are based on a divide-and-conquer
approach:
– Divide the problem into a set of smaller

problems
– Solve each small problem separately
– Put the results back together for the overall

solution� These divide-and-conquer techniques are often
best thought of in terms of recursive functions.
(e.g. Quicksort and Mergesort)

Recursion 20

Recursion: Disadvantages� Each time one subroutine calls another, the
computer’s operating system must take care of a
number of things:
– Recording how to re-start the calling

subroutine later on,
– Passing the parameters from the calling

subroutine to the called subroutine (often by
pushing the parameters onto a stack controlled
by the system)

– Setting up space for the called subroutine’s
local variables

– Recording where the calling subroutine’s local
variables are stored� Doing all this requires time and memory.� Thus a routine which makes many recursive calls

can require a lot of time and memory - more than
a non-recursive solution might.

Recursion 21

Common Recursion Errors� Forgetting or having incomplete base cases.� Example: This routine goes into infinite
recursion if given a negative number for N.

void Sum1toN(int N)
{

if (N == 0) return(0);
else return(N + Sum1toN(N-1));

}� Getting things backwards.� Example: One of these routines prints from 1 up
to � , the other from � down to 1. Which is
which?

void PrintN(int N) {
if (N > 0) {

PrintN(N-1);
cout << N << ", ";
}

}
//--------------------------

void NPrint(int N) {
if (N > 0) {

cout << N << ", ";
NPrint(N-1);
}

}

Recursion 22

Example 2: Fibonacci Numbers� The Fibonacci numbers are a sequence of integers
which are of interest in mathematical and
computing applications� They are given by:

Fib ���! #"
$%'& (if � =0)

if � =1
Fib �*� +) -, Fib ��� + ./ if � 0)

� Thus, the first few are:
Fib(0) = 0
Fib(1) = 1
Fib(2) = Fib(0) + Fib(1) = 0 + 1 = 1
Fib(3) = Fib(1) + Fib(2) = 1 + 1 = 2
Fib(4) = Fib(2) + Fib(3) = 1 + 2 = 3
Fib(5) = Fib(3) + Fib(4) = 2 + 3 = 5
Fib(6) = Fib(4) + Fib(5) = 3 + 5 = 8
Fib(7) = Fib(5) + Fib(6) = 5 + 8 = 13
etc.� We will consider one iterative solution and one

recursive solution to calculate Fib(N)

Recursion 23

Iterative Fibonacci Routine� We can calculate the Fibonacci numbers
iteratively by starting with Fib(0)=0 and Fib(1)=1,
and and then working forward until we reach
Fib(�).� Since Fib(1) = Fib(1 -1) + Fib(1 -2), we must keep
track of the previous two numbers as we go.
int Fib(int N) {

int fib, fibm1, fibm2, index;
if (N <= 1) return(N);
else {

fibm2 = 0;
fibm1 = 1;
index = 1;
while (index < N) {

fib = fibm1 + fibm2;
fibm2 = fibm1;
fibm1 = fib;
index = index + 1;
}

return(fib);
}}

Recursion 24

Recursive Fibonacci Solution� While the iterative solution started from Fib(0)
and Fib(1) and worked forward, the recursive
solution starts from � and works backward.� We use Fib(�) = Fib(� -1) + Fib(� -2) as before.

int Fib(int N) {
if (N <= 1)

return(N);
else

return(Fib(N-1) + Fib(N-2));
}� As you can see, the recursive routine is much

simpler to program.� If you try both programs for assorted values of � ,
however, you will also see that the iterative
routine is much more efficient.

Recursion 25

Recursion: Conclusion (1)� A recursive function is one that invokes another
instance of itself.� Recursion is an alternative to iteration.� Recursion can often provide a more elegant
solution than iteration.� Each instance of a function has its own set of local
variables and parameters.� Recursive solutions are often less efficient, in
terms of time and space, than an iterative solution.� Some data structure problems are difficult to solve
without recursion. (particularly when the data
structure is recursive in its definition).

Recursion 26

Recursion: Conclusion (2)� Recursion can be used when all of the following
conditions can be satisfied:
– There exists one or more simple solutions to

the problem.
– Other cases of the problem can be expressed in

terms of one or more reduced cases of the
problem (which are closer to the known
simple solutions).

– Eventually the problem can be reduced to one
of the simple solutions.� When designing a recursive algorithm it is

important to ensure that the recursion will
eventually reach a terminating condition and stop.

