Recursion

Introduction to Recursion

A subroutine/function is called recursive if it calls
itself.

If a subroutine/function simply called itself as a
part of its execution, it would result in infinite
recursion. This is a bad thing.

Therefore, when using recursion, one must ensure
that at some point, the subroutine/function
terminates without calling itself.

Example: The factorial function n! can be
implemented recursively.

int factorial (int n) {
if (n<=1)
return 1;
else
return n*factorial (n-1);

}

What ensures that the function factorial
terminates”?

Recursion

Where is Recursion Seen/Used?

We occasionally see recursion in the “real” world:
— Russian Matryoshka (nested dolls)
— Two almost parallel mirrors
— A video camera pointed at the monitor

More importantly for us, it is useful for some data
structures and the associated algorithms.

Some problems can be solved by combining
solutions of smaller instances of the given
problem. Recursion can be useful in these cases.
Examples:

— Binary Search

— Mergesort

— Computing n/!

— Many divide-and-conquer algorithms

Recursion

Recursion Example

Suppose we want to implement a subroutine
CountDown(n) which outputs the integers from
n down to 1, where n > 0.

Example: The call CountDown(5) results in
output ‘5432 1°.

The best way to implement this 1s a loop:

volid CountDown (int n) {
for (i=n;1>0;1--)
cout<<i<<" ";
cout<<"\n";

}

Of course, if we did this, we wouldn’t learn
anything about recursion. So, let’s consider how
to do it with recursion.

Recursion

Recursive CountDown(n)

How can we think of this subroutine recursively?

CountDown(n) outputs n followed by the
numbers from n — 1 down to 1.

The numbers n — 1 down to 1 are the output from
CountDown(n — 1).

Thus, the output from CountDown(n) is n
followed by the output from CountDown(n — 1).

Thus, we can write the function recursively as
follows:

volid CountDown (int n) {
cout<<n<<" ";
CountDown (n—-1) :

}

Nice, but something is wrong here. What is it?

Recursion

Recursive CountDown(n): Error

e The problem 1s, CountDown never stops:

Execute Output Then Execute
CountDown(3) 3 CountDown(2)
CountDown(2) 2 CountDown(1)
CountDown(1) 1 CountDown(0)
CountDown(0) 0 CountDown(-1)
CountDown(-1) -1 CountDown(-2)

The problem is not with the recursion, but with
our logic. We are supposed to stop printing when
n = 1, but we didn’t take that into account.

To fix this, we modity it so that a call to
CountDown(0) produces no output and does not
call CountDown again.

Calls to CountDown(n) when n < 0 should
produce no output, either.

We can take care of both of these problems at
once.

Recursion

Recursive CountDown(n): Fixed

e The following version of CountDown(n) is
correct:

volid CountDown (int n) {
if(n>0) {
cout<<n<<" ";
CountDown (n—-1) :

}
}

e Now, CountDown(n) does exactly what we want
when n > 0.

e [t is not too difficult to see that if n < 0, the
subroutine CountDown(n) does nothing.

Recursion

Making Recursion Work

e In order for a recursive routine to work properly, it
must be defined so that it will terminate
eventually.

e Thus, a proper recursive definition has both of the
following:

— base case(s): A case which 1s solved
non-recursively. In other words, when a
routine gets to the base case, it does not call
itself again. This 1s also called a stopping case
or terminating condition.

inductive case(s):. A recursive rule for all cases
except the base case. An inductive case should
always progress toward the base case.

e Example: For the routine CountDown(n):

— base case: When n < 0, CountDown(n) does
nothing.

— inductive case: When n > 0, CountDown(n)
outputs n, and executes CountDown(n — 1).
Notice, the second call 1s closer to the base
case.

Recursion

Example: Factorial

Recursive definition:

| 1 whenn =1
n! =
n x (n —1)! otherwise

Example:

1! 1

2! 2x ()!=2x1=2
3! 3Ix(2)!=3x2=6
4! 4x (3)!=4x6=24

In general, when n > 1,
nl=nx(n—1)x(n—2)%x(n—3)*...x1

In C++, we can implement this as:

int factorial (int n) {
if (n==1)
return 1;
else
return n*factorial (n-1);

}

Recursion

Recursive Problem Solving

In general, we can solve a problem with recursion if
we can:

e Find one or more simple cases of the problem that
can be solved directly.

e Find a way to break up the problem into smaller
instances of the same problem.

e Find a way to combine the smaller solutions.

Recursion 10

Recursion and Memory

e Each call of a function generates an instance of
that function
An instance of a function contains
— memory for each parameter (input)
— memory for each local variable
— memory for the return value
This chunk of memory is referred to as an

activation record.

Thus, a recursive function that calls itself n times
must allocate n activation records.

Usually, an iterative implementation will require
on the order of one activation record, plus a
constant amount of space.

This 1s the reason recursion i1s avoided when
possible. In fact, good compilers remove
recursion whenever possible.

Recursion

e factorial(4)

n
return value

Activation record for factorial(4)

e factorial(4): call to factorial(3)

n
return value

n
return value

Activation record for factorial(3)

Activation record for factorial(4)

Recursion

e factorial(4): call to factorial(2)

n
return value

n
return value

n
return value

Activation record for factorial(2)

Activation record for factorial(3)

Activation record for factorial(4)

e factorial(4): call to factorial(1)

n
return value

n
return value

n
return value

n
return value

Activation record for factorial(1)

Activation record for factorial(2)

Activation record for factorial(3)

Activation record for factorial(4)

Recursion

e factorial(4):
returns ‘1°.

n
return value

n
return value

n
return value

n
return value

factorial(1) is the base case, so it

Activation record for factorial(1)

Activation record for factorial(2)

Activation record for factorial(3)

Activation record for factorial(4)

Recursion

14

e factorial(4): factorial(2) now returns ‘2.

n
return value

n
return value

n
return value

Activation record for factorial(2)

Activation record for factorial(3)

Activation record for factorial(4)

Recursion

e factorial(4): factorial(3) now returns ‘6’.

n
return value

n
return value

Activation record for factorial(3)

Activation record for factorial(4)

e factorial(4): returns ‘24°. This was the original
function call, so the execution 1s finished.

n
return value

Activation record for factorial(4)

15

Recursion 16

The Run-Time Stack

e In order to support recursive function calls, the
run-time system treats memory as a stack of
activation records

Computing factorial(n) recursively requires the
allocation of n activation records on the stack.

What if we have infinite recursion:

int infiniteRecursion (int n) {
1f (n==0) return 1;
else return infiniteRecursion (

}

The value of n never reaches zero, so the function
1s called, and records are pushed onto the stack,
until the system runs out of memory.

Even if our recursion is not infinite, it is possible
that the recursion runs too deep, since computers
only have a finite amount of memory.

Recursion 17

Recursion and Iteration

Recursive functions can be translated to functions that
use loops.

e Recursive:

int factorial (int n) {
1f (n==1)
return 1;
else
return n*factorial (n-1);

}

e Iterative:

int factorial (int n) {
int result=1;
while (n>1) {
result = result * n;
n-—-—;
}

return result;

Recursion

n
return value

n
return value

n
return value

n
return value

Memory Usage?

RECURSIVE VERSION

Activation record for factorial(1)

Activation record for factorial(2)

Activation record for factorial(3)

Activation record for factorial(4)

ITERATIVE VERSION

24

24

result
n

return value

Notice that for input n, the recursive implementation
needs to allocate 2n integers, while the iterative
implementation needs only 3.

18

Recursion

Recursion: Advantages

e Recursion often mimics the way we think about a

problem, thus the recursive solutions can be very
intuitive to program. For example, binary search
1s very similar to the way we search through the

phone book.

Often recursive routines to solve problems can be
much shorter than iterative (non-recursive)
routines. This can make the code easier to
understand, modify, and/or debug.

Many of the ‘best’ known algorithms for many
problems are based on a divide-and-conquer
approach:

— Divide the problem into a set of smaller
problems

— Solve each small problem separately
— Put the results back together for the overall
solution

These divide-and-conquer techniques are often
best thought of 1n terms of recursive functions.
(e.g. Quicksort and Mergesort)

19

Recursion

Recursion: Disadvantages

e FEach time one subroutine calls another, the
computer’s operating system must take care of a
number of things:

— Recording how to re-start the calling
subroutine later on,

— Passing the parameters from the calling
subroutine to the called subroutine (often by
pushing the parameters onto a stack controlled
by the system)

— Setting up space for the called subroutine’s
local variables

— Recording where the calling subroutine’s local
variables are stored

e Doing all this requires time and memory.

e Thus a routine which makes many recursive calls
can require a lot of time and memory - more than
a non-recursive solution might.

20

Recursion

Common Recursion Errors

e Forgetting or having incomplete base cases.

e Example: This routine goes into infinite

recursion if given a negative number for N.

volid SumltoN (int N)
{

if (N == 0) return(0);

else return(N + SumltoN(N-1));
}

e Getting things backwards.

e Example: One of these routines prints from 1 up

to IV, the other from /N down to 1. Which is
which?

void PrintN (int N) {
if (N > 0) {
PrintN(N-1) ;
cout << N << ", ";

void NPrint (int N)
if (N > 0) {
cout << N << ", ",
NPrint (N-1);
}

21

Recursion 22

Example 2: Fibonacci Numbers

e The Fibonacci numbers are a sequence of integers
which are of interest in mathematical and
computing applications

e They are given by:
0 if n=0

Fib(n) = { 1 if n=1
Fib(n — 1) + Fib(n —2) ifn >1

e Thus, the first few are:

e We will consider one iterative solution and one
recursive solution to calculate Fib(N)

Recursion 23

Iterative Fibonacci Routine

e We can calculate the Fibonacci numbers
iteratively by starting with Fib(0)=0 and Fib(1)=1,
and and then working forward until we reach
Fib(IV).

e Since Fib(x) = Fib(z-1) + Fib(z-2), we must keep
track of the previous two numbers as we go.

int Fib(int N) {
int fib, fibml, fibm2, index;
1f (N <= 1) return (N);
else {
fibm2 0;
fibml = 1;
index = 1;
while (index < N) {
fib = fibml + fibm2;
fibm2 = fibml;
fibml = fib;
index = index + 1;
}

return (fib) ;

.

Recursion

24

Recursive Fibonacci Solution

While the iterative solution started from Fib(0)
and Fib(1) and worked forward, the recursive
solution starts from N and works backward.

We use Fib(/V) = Fib(/NV-1) + Fib(/N-2) as before.

int Fib(int N)
if (N <= 1)
return (N) ;

{

else
return (Fib (N-1) + Fib (N-2));
}

As you can see, the recursive routine 1s much
simpler to program.

If you try both programs for assorted values of IV,
however, you will also see that the iterative
routine is much more efficient.

Recursion 25

Recursion: Conclusion (1)

A recursive function is one that invokes another
istance of itself.

Recursion i1s an alternative to iteration.

Recursion can often provide a more elegant
solution than iteration.

Each instance of a function has its own set of local
variables and parameters.

Recursive solutions are often less efficient, in
terms of time and space, than an iterative solution.

Some data structure problems are difficult to solve
without recursion. (particularly when the data
structure is recursive in its definition).

Recursion

Recursion: Conclusion (2)

e Recursion can be used when all of the following
conditions can be satisfied:

— There exists one or more simple solutions to
the problem.

— Other cases of the problem can be expressed in
terms of one or more reduced cases of the
problem (which are closer to the known
simple solutions).

— Eventually the problem can be reduced to one
of the simple solutions.

e When designing a recursive algorithm it is
important to ensure that the recursion will
eventually reach a terminating condition and stop.

26

