
Useful Results for Pebbling in Diameter Two Graphs

Charles Cusack and Airat Bekmetjev

March 5, 2008

1 Introduction

Let G be a connected graph with the vertex set V and the edge set E, where |V | = n and |E| = m.
Define a pebbling configuration as a function C : V → Z+ where C(v) represents the number of
pebbles placed on vertex v. For any vertex v such that C(v) ≥ 2 a pebbling step consists of placing
a pebble on one of the vertices adjacent to v and discarding two pebbles from v. A configuration
is called r-solvable if there is a sequence of pebbling steps that places at least one pebble on vertex
r. Any such sequence is called an r-solution. A configuration is called solvable if it is r-solvable for
any r ∈ V. We call an r-solution minimal if it contains the smallest number of pebbling steps.

The pebbling number of a graph G, denoted π(G), is the minimum number of pebbles such that
the configuration is solvable no matter how the pebbles are distriibuted on the vertices.

For any two vertices u, v ∈ V , the distance between u and v (denoted d(u, v)) is the the number
of edges on the shortest path from u to v. The diameter of a graph is the maximum distance
between any pair of vertices in a graph. For a subset S ⊆ V , let dmin(v, S) be the smallest distance
between vertex v and any other vertex in S. Let

Dm(S) = {v ∈ V \ S, such that dmin(v, S) = m}

In particular, for any vertex r ∈ V, D1(r) is the set of vertices adjacent to r.
Let Cm = {v ∈ V |C(v) ≥ m}. Clearly, a pebbling move is possible from any vertex in C2. Let

G2 represent the set of all graph of diameter 2. For the remainder of the paper, we shall assume all
graphs are diameter two unless otherwise stated.

The purpose of this paper is to present the reader with several ways of thinking about pebbling in
diameter two graphs. More specifically, we hope that new algorithms for determining the solvability
of diameter two graphs will be found based on one or more of these ways of thinking about diameter
two graphs.

We begin in Section 2 by providing a few elemetary results, and we give a simple, but inefficient,
algorithm that determines whether or not a configuration is solvable in Section 3. In Section 4 we
discuss a few results related the connectivity of a graph. Section 5 is devoted to a discussion of
the concept of pebbling islands and how this might be useful in determining solvability of diameter
two graphs. Finally, in Section 6 we discuss several facts that might be used to determine the
r-solvability of a graph by partitioning the graph into 3 tiers.

2 Basic Results

Lemma 2.1 For any graph G, π(G) ≥ max{n, 2diam(G)}.

1

Proof: If there are less than n pebbles, one can place each pebble on a different vertex, leaving at
least one vertex with no pebbles and no moves possible, so π(G) ≥ n. Also, let u and v be vertices
in G such that d(u, v) = diam(G). Then if 2diam(G)− 1 pebbles are placed on u, and no other peb-
bles are placed on the graph, it is impossible to move a pebble onto v. Therefore, π(G) ≥ 2diam(G).

Lemma 2.2 Let Kn be the complete graph on n vertices. Then π(Kn) = n.

Proof: Let C be a configuration with n pebbles. If some vertex has two pebbles, then any vertex
can be pebbled since every vertex is adjacent to every other vertex. If no vertex contains two
pebbles, then every vertex contains one, and the graph is solvable. By Lemma 2.1, π(Kn) ≥ n, and
we have shown any configuration of n pebbles is solvable. Thus π(Kn) = n.

Lemma 2.3 Let Sn be the star on n vertices (the graph in which one vertex is connected to the
other n− 1 vertices, and there are no other edges). Then π(Sn) = n + 1.

Proof: Let c be the center of the graph and r and v be any other vertices. If we place 0 pebbles
on c and r, three on v, and one on the remaining vertices, it is easy to see that no pebble can be
moved to r, and that a total of n pebbles are on the graph. Thus π(Sn) > n.

Let C be a configuration with n+1 pebbles. If every vertex has one pebble, C is clearly solvable.
Assume some vertex r does not contain a pebble. Then some vertex v contains two pebbles. If r is
the center of the star, a pebble can be moved from v to r. If r is not the center, there are two cases
to consider. In the first case, the center contains at least one pebble, in which case a pebble can
be moved from v to the center to r. On the other hand, if the center contains no pebble, there are
at least two vertices with no pebbles. In this case, there are either two vertices with two or more
pebbles, or one vertex with four or more. In either case, two pebbles can be moved to the center,
and then one to r. Thus, π(Sn) = n + 1.

We omit the proof for the following.

Lemma 2.4 Let Pn be the path on n vertices. Then π(Pn) = 2n−1.

In the exercises, we ask the reader to compute/prove the pebbling number of wheels, the Lemke
graph, and the Petersen graph.

The following is a trivial but important result about pebbling in diameter two graphs.

Lemma 2.5 Let G ∈ G2 have a configuration C such that it is possible to place 4 pebbles on some
vertex. Then C is a solvable configuration.

For a more complete introduction to graph pebbling and recent results in graph pebbling, see [1].

3 Basic Algorithm

In this section, we assume that G is a graph with vertices labeled 0, 1, . . . , n − 1, and C is a
configuration of pebbles associated with the graph. C might simply be an array of integers such
that C[i] is the number of pebbles on vertex i. We can implement a method AdjacentPebble(u, v)
on the configuration which performs a pebbling step from u to v (by removing two pebbles from u
and adding one to v) and returns the resulting configuration C ′, assuming u and v are adjacent,

2

and that u ∈ C2. This can be implemented in several ways–we can either assume that u and v
are connected (because we checked before we called the method), or we can pass the graph G into
the method and check. Similarly, we can either assume that u has at least two pebbles, or we
can check before we make the move. Below, we assume that none of this checking is done in the
method, leaving it to the user to verify that these two conditions are true before calling the method.
This is done for several reasons–first, it makes the method more efficient. Second, any reasonable
algorithm from which we call this method should be only attempting legal pebbling moves, so the
check should be unnecessary. We leave it to the reader to verify that this is the case in the following
algorithms.

It should be clear that, in theory, AdjacentPebble can be implemented so that it takes
constant time. However, the configuration it returns is a copy of the original, and it takes O(n)
time to make the copy.

Algorithm 3.1 (which uses Algorithm 3.2) is a simple exhaustive search algorithm that deter-
mines whether or not a graph is solvable by making all possible pebbling moves in lexicographical
order. The algorithm maintains a set L of vertices which can be pebbled, returning true if this set
ever has n elements on it (since then all of the vertices have been covered), and returning false if all
possible moves have been exhausted and some vertex remains unpebbled. It is important to note
that for the sake of efficiency, G and C ′ should be passed by reference, not by value.

For each recursive call of the algorithm, the graph has one less pebble, and since every vertex is
adjacent to at most n− 1 other vertices, the worst case time required to determine the solvability
of a graph with t pebbles is

T (t) = (n− 1)(T (t− 1) + O(n)) + O(n) = (n− 1)T (t− 1) + O(n2),

where T (1) = O(n). The reader is asked to prove in the exercises that the solution to the recurrence
relation is T (t) = O(nt). Since t might depend on n, this algorithm is not polynomial time in general.
The reader is asked to verify that there is a polynomial-time algorithm to determine the solvability
of some classes of graphs, including Kn and Sn.

Algorithm 3.1: IsSolvableWrapper(G,C)

global Set L
for u ← 0 to n− 1

do
{
if u ∈ C1

then add u to L
if |L| = n
then return (true)
else return (IsSolvable(G,C))

When implementing an exhaustive search algorithm like Algorithm 3.2, it is important that
pebbling moves can be undone so that different moves can be tried. There are generally two ways
to accomplish this. In Algorithm 3.2 we chose to simply copy the data structure (in this case, just
the configuration C, since the graph doesn’t change) every time a change is made.

Another technique is to store the moves that are made so they can be undone and the next move
tried. Often this involves the use of a stack, although if recursion is involved, a stack may not be
necessary. Algorithm 3.3 is identical to Algorithm 3.2 except that it uses this approach. In this case,
we use AdjacentPebble2(u, v), which works the same way as AdjacentPebble(u, v) except

3

rather than returning a copy of the configuration after the move, it simply modifies the configuration
itself and returns nothing. Then, after the recursive call is make, a call to UndoPebble(u, v) is
made to undo the move.

We leave it to the reader to decide which of these algorithms is preferable.

Algorithm 3.2: IsSolvable(G,C)

comment: Determine first vertex with at least 2 pebbles

u ← 0
while u < n and u 6∈ C2

do u ← u + 1
if u = n
then return (false)

comment: Now try all possible moves from u

for each v ∈ D1(u)

do

add v to L
if |L| = n
then return (true)

C ′ = C.AdjacentPebble(u, v)
if IsSolvable(G,C ′)
then return (true)

return (false)

Algorithm 3.3: IsSolvable2(G, C)

comment: Determine first vertex with at least 2 pebbles

u ← 0
while u < n and u 6∈ C2

do u ← u + 1
if u = n
then return (false)

comment: Now try all possible moves from u

for each v ∈ D1(u)

do

add v to L
if |L| = n
then return (true)

C.AdjacentPebble2(u, v)
if IsSolvable2(G,C)
then return (true)

C.UndoPebble(u, v)
return (false)

4

Figure 1: An unsolvable configuration for a graph from G2,2 with |C2| = 4 .

4 Connectivity

The connectivity of a graph is the minimal number of vertices that must be removed from a graph
in order to make it unconnected. For instance, if a graph has connectivity 3, then there is some set
of three vertices whose removal will cause the graph to become unconnected, and there is no set of
2 vertices whose removal will disconnect the graph. A set of vertices whose removal causes a graph
to become disconnected is called a cut set.

We leave the proof of the following as exercises.

Lemma 4.1 Let G ∈ G2 and let Q be a cut set of vertices in G. Then each vertex in V \ Q is
adjacent to a vertex in Q.

Corollary 4.2 Let G ∈ G2 and let Q be a cut set of vertices in G. If at least two pebbles can be
placed on each of the vertices in Q, then the configuraton is solvable.

Let G2,k ⊂ G2 be the subset of diameter two graphs which are k-connected. We are going to
establish two upper bounds on the size of C2 for members of G2,k. The first bound is based on
Corollary 4.2 and uses vertices from a vertex cut set to perform pebbling steps.

Lemma 4.3 Let G ∈ G2,k. Then a configuration C is solvable if |C2| ≥ 3k − 1.

Proof: Assume that |C2| ≥ 3k−1, but that C is unsolvable. Let Q be a minimal cut set of k vertices.
Since C is unsolvable, none of the cut vertices can accumulate 4 or more pebbles, and by corol-
lary 4.2 at least one of the cut vertices can only accumulate 1. Thus, at most 3(k− 1) + 1 = 3k− 2
pebbles can be accumulated on the cut. However, lemma 4.1 implies that it is possible to accumu-
late at least 3k − 1 pebbles onto the k cut vertices (more if C2 ∩Q is not empty).

This result is tight for k = 1, 2. It is easy to check that if k = 1, then there are configurations
with |C2| = 1 which are unsolvable. For k = 2, Figure 1 gives a 2−connected graph with |C2| = 4
which is not solvable.

We end this section with a result that provides a better lower bound on the size of C2 for k ≥ 3.
We will omit the proof. The tightness of this bound is unknown for all values of k.

Theorem 4.4 Let G ∈ G2,k, where k ≥ 3. Then a configuration C is solvable if |C2| ≥ k + 4.

5

5 Islands and Bridges

An i−island is a maximal connected subgraph of a graph in which every vertex has at least one
pebble and one vertex has at least i pebbles. Given a set of integers b = 〈b1, b2, ..., bm〉, a b-island
is an island that contains distinct vertices v1, v2, ..., vm such that C(vj) ≥ bj , 1 6 j 6 m. If every
vertex on an island contains precisely one pebble, we call it a desert. A bridge is a vertex which
has no pebbles. Clearly, every vertex of a graph is either a bridge or a member of a single island.

We say a bridge is filled if two pebbles are moved onto it and emptied if two pebbles are removed
from it. Note that any bridge that is used in a minimal r-solution, except r, must be filled and
emptied. Milans et al. [2] showed that, for any vertex r, a minimal r-solution contains no directed
cycle.

A vertex of G that is adjacent to at least one vertex of a subgraph G′ is called adjacent to G′.
Note that a vertex containing two or more pebbles allows the movement of at least one pebble
to any other vertex on the island or any bridge adjacent to the island. We say that a bridge has
potential s if s pebbles can be moved to it from adjacent islands.

5.1 Results Using Islands

In this section we present a few results about pebbling moves on graphs with diameter two. Most
of these are given without proof. The reader should attempt to verify the correctness of each of
the results.

Lemma 5.1 Let C be a configuration which contains an island I with at least 3 more pebbles than
vertices. Then C is solvable.

Proof: If I contains three or more pebbles than vertices, then I is a 4-island, a 〈2, 3〉-island, or a
〈2, 2, 2〉-island. Clearly, a 4-island already guarantees solvability. Given a 〈2, 3〉-island, we can move
a pebble from the vertex containing two pebbles to the vertex containing three pebbles, creating
a solvable configuration. If the island is a 〈2, 2, 2〉-island, let a, b, and c be vertices on I ∩ C2.
Consider any path P on the island between a and b. If c ∈ P we can accumulate 4 pebbles on c.
Otherwise choose a shortest path P ′ on the island between c and any vertex on P . Let u = P ∩P ′.
If u = a (or u = b), we can accumulate 4 pebbles on u by moving one from b (or a), and the other
from c. If u is different from a and b, we can accumulate 4 on u by moving one from each of a, b,
and c.

Thus, the only islands that can be present in an unsolvable configuration are deserts, 2-islands
(which may be 3-islands), and 〈2, 2〉-islands. In the light of Lemma 5.1, we call an island I which
contains at least 3 more pebbles than vertices an empire.

Lemma 5.2 If v is a bridge adjacent to a 2-island, then one pebble can be added to v.

Corollary 5.3 If every bridge is adjacent to a 2-island, then the configuration is solvable.

Lemma 5.4 Let v be a vertex on a 2-island. Then one pebble can be added to v unless it is the
only vertex which contains 2 or more pebbles.

Lemma 5.5 Let u and v be adjacent bridges and let u be adjacent to two 2-islands. Then one
pebble can be added to v.

6

Lemma 5.6 Let u and v be any two vertices on a desert. Then one pebble can be added to u iff
one pebble can be added to v.

Lemma 5.7 Let I be an island in a configuration containing s more pebbles than vertices. Then
in any minimal r-solution, at most 3− s pebbles are ever added to I.

Lemma 5.8 Let C be a configuration. Then in any minimal r-solution, at most one vertex is
pebbled from twice.

Corollary 5.9 Let C be a configuration. Then in any minimal r-solution, at most one vertex
v ∈ C2 is pebbled to. Further, if such a vertex exists and v 6∈ C3, then it is pebbled to exactly twice,
and in either case, it is pebbled from exactly twice.

Proof: In a minimal r-solution, the only reason to add a pebble to a vertex in C2 or C3 is in order
to pebble from it twice. According to Lemma 5.8, there is at most one such vertex. If we are to
pebble from it twice, we must pebble to it twice if v 6∈ C3.

For any vertex subset M ⊆ V the surplus of M is

sM (C) =
∑

v∈M

bC(v)/2c

The surplus of an island represents the maximum number of pebbles that can be moved onto
adjacent bridges. Note that if a pebbling step moves a pebble onto a vertex containing an even
number of pebbles, the surplus of the graph decreases by one, and if it moves a pebble onto a vertex
containing an odd number of pebbles, the surplus of the graph remains unchanged. In particular,
a pebbling move from an island to a bridge always reduces the surplus by one.

Lemma 5.10 Let C be a configuration with surplus s, and let the surplus be s′ after a minimal
r-solution. Then s− s′ or s− s′ − 1 different bridges, including the root, are used in the pebbling.

Proof: Clearly the r-solution reduced the surplus by s − s′. Since the surplus is only reduced by
a move onto a vertex with an even number of pebbles, the only way to reduce the surplus is to
pebble to a bridge or a vertex with exactly two pebbles (that is, in C2 \C3), since if a vertex has 4
or more pebbles, there is no reason to move any more onto it. According to Corollary 5.9, at most
one vertex in C2 is pebbled to.

If one move is made onto a vertex v ∈ C2 \ C3, then by Corollary 5.9, it is the unique vertex
that is pebbled from twice. Therefore, s− s′ − 1 moves were made onto s− s′ − 1 different bridges
in C, including the root.

If no moves are made onto a vertex v ∈ C2 \ C3, then s− s′ moves were made onto bridges. If
one of these bridges is pebbled from twice, then s− s′ − 1 different bridges were used. Otherwise,
s− s′ different bridges were used.

Corollary 5.11 Let C be a solvable configuration with surplus s. Then at most s bridges are
needed to pebble to any root, including the root itself.

Corollary 5.11 may help lead to an efficient algorithm to determine the solvability of diameter
two graphs, since it gives us an upper bound on the number of bridges that can possibly be used
pebble to any root in a graph.

7

Lemma 5.12 Let C be a configuration with exactly one vertex u with 2 or more pebbles. Then C
is solvable iff every bridge is adjacent to the 2-island or u contains at least 4 pebbles.

Lemma 5.13 Let C be a configuration on G with exactly two vertices with 2 or more pebbles. Then
C is solvable iff one of the following is true:

1. G contains an empire, or

2. Every bridge is

(a) adjacent to a 2-island,

(b) adjacent to a bridge with potential 2, or

(c) adjacent to desert which is adjacent to a bridge with potential 2.

Proof: The reverse implication is easy to check. For the forward implication, assume C is solvable,
contains no empires, and that some bridge r is not adjacent to a 2-island or a bridge with potential
2. We need to show that r is adjacent to a desert which is adjacent to a bridge with potential
2. Notice that G contains either two 2-islands (with one or both possibly being a 3-island) or a
〈2, 2〉-island. In either case, it is clear that the graph has surplus 2. Thus, at most two bridges,
including r, can be used to pebble r. Since r is not adjacent to either of the islands, a second
bridge, u, must be used to pebble to r. Since u is the only other bridge used, it must be filled
from the two 2-islands or the 〈2, 2〉-island, which means it has potential two, and is not adjacent
to r. Filling u reduces the potential of the graph to 1. Thus, u is the only vertex with more than
1 pebble on it. Since C is solvable, there must be a move from u to r. The only possibility is that
both u and r are adjacent to a desert.

The following result may be helpful in creating an efficient algorithm to determine the solvability
of diameter two graphs.

Lemma 5.14 Let C be a solvable configuration which contains k vertices with 2 or more pebbles,
where k ≥ 2. If C contains no empire and there is some vertex r which is not adjacent to a 2-island,
then some bridge with potential 2 is needed in the pebbling of r.

Proof: Since C contains no empire, C consists of bridges, deserts, and 2-islands (which might be
3-islands or 〈2, 2〉-islands). Assume that no bridge with potential 2 is needed to pebble to r.

If r is pebbled from an adjacent desert, then some vertex on the desert was pebbled from a
bridge. Otherwise r is pebbled from an adjacent bridge. In either case there a bridge which must
be filled in order to pebble to r.

Let u be the first bridge that is filled while pebbling to r. Then u received at least one pebble
from an adjacent bridge or desert, since it cannot have potential 2. If one pebble comes from a
desert adjacent to u, then some vertex on the desert received a pebble, which must come from an
adjacent filled bridge. Otherwise, one pebble must come from a bridge adjacent to u which is filled.
In either case, this contradicts the fact that u was the first filled bridge.

5.2 Algorithms

The goal of this section is to present several algorithms which might prove useful in the construction
of a polynomial-time algorithm to determine the solvability of all diameter two graphs.

8

As before, we will let G ⊂ G2,k be a graph with |V | = n and |E| = m, we will label the vertices
0, 1, . . . , n− 1. The next result by Shiloach [3] is used to determine the pebbling solvability in the
presence of a 〈2, 2〉-island.

Theorem 5.15 [3] For any distinct vertices s1, s2, t1, and t2, it can be determined in O(nm) time
whether or not G has two vertex-disjoint paths connecting s1 to t1 and s2 to t2.

Corollary 5.16 Let I be a 〈2, 2〉-island.

1. For any two distinct vertices u, v ∈ D1(I), it can be determined in O(nm) time whether or
not both u and v can be pebbled from I simultaneously.

2. For any u ∈ D1(I), it can be determined in O(n3m) time whether u can be filled from I.

Proof: Let G′ be a subgraph of G induced by the vertex set I ∪ u∪ v. Let s1 and s2 be elements of
C2 ∩ I. Then the first part of the theorem follows from Result 5.15 by determining disjoint paths
connecting s1, s2, t1 = u and t2 = v. This clearly takes time O(nm).

For the second part, notice that if u is only adjacent to one vertex in I, then it can be filled
from I iff I is an empire. If I is not an empire then u can be filled from I iff there are disjoint
paths from u to s1 and s2. In this case, given any u ∈ D1(I), we can apply Theorem 5.15 to each
pair of vertices t1, t2 ∈ I which are both adjacent to u until the answer is “yes” or we exhaust them
all (and answer “no”). Since there are no more than n− 1 vertices adjacent to u, we must check at
most

(
n−1

2

)
= O(n2) pairs of vertices, so this will take time O(n3m).

The following list contains descriptions of several basic procedures that can be easily imple-
mented on a graph data structure, and might be useful. Since islands are tied to both the structure
of the graph and the configuration of pebbles, we will assume that the configuration is stored as
part of the graph data structure, and we will refer to this data structure as the graph configuration.
We assume the islands are maintained as part of the graph configuration as well, and that each
vertex can determine which island it resides on in constant time (since each vertex can store a
reference to its island).

Notice that whenever a pebbling move is performed, the islands must be updated, since a single
pebbling move might significantly change the configuration of islands.

• UpdateIslands() updates the data structure representing the islands. This can be imple-
mented using a BFS/DFS algorithm in time O(n+m). In addition, it is possible to compute
and store the surplus and the number of “extra” pebbles an island contains (these are not quite
the same), as well as having each vertex store which island it belongs to, without changing
the complexity. We assume that this information about islands is stored and maintained.

• GetIslandContaining(u) returns the vertex set of the island I such that u ∈ I. Can be
implemented in O(1) time.

• ContainsEmpire() returns true iff G contains an empire. Can be implemented in O(n)
time.

• IsOnTwoIsland(u) returns true iff u is on a 2−island. Can be implemented in O(1) time.

• IsOnTwoTwoIsland(u) returns true iff u is on a 〈2, 2〉-island. Can be implemented in
O(1) time.

9

• IsAdjacentTwoIsland(u) returns true iff u is adjacent to a 2−island. Can be imple-
mented in O(n).

• AdjacentPebble(u, v) performs a pebbling step from u to v and returns the resulting graph
configuration, assuming u and v are adjacent, and that u ∈ C2. Takes O(n + m) time since
we need to call UpdateIslands(). The actual pebbling move takes O(1) time.

• PebbleFromIsland(S, v) performs a sequence of pebbling steps required to move a pebble
from S to v using only vertices in S in intermediate steps, assuming v ∈ D1(S) and S is a
2-island. Returns the resulting graph configuration. Takes O(n + m) time since we need to
call UpdateIslands(). The actual pebbling move takes O(n) time.

• CanDoublePebble(C ′, S, u, v) returns true iff pebbles can be moved from S (assuming
S is a 〈2, 2〉-island) to vertices u and v (where u = v is possible) simultaneously, using only
vertices from S in intermediate moves. Assigns to C ′ the resulting graph configuration. Takes
time O(n3m).

The last three methods can be implemented so that they either modify the graph configura-
tion, or return a copy of the graph configuration after the move, leaving the original configuration
unchanged. As in Section 3, which choice is made has an impact on the algorithms that call these
methods. It should be noted that undoing a move from PebbleFromIsland or CanDoublePeb-
ble is not as easy as undoing AdjacentPebble since the exact set of pebbling moves made is
uncertain unless we somehow store them. However, the beauty of the islands and bridges repre-
sentation of diameter two graphs is that we can make moves from islands without worrying about
exactly what moves are made, so having to keep track of the exact moves made in order to undo
them is unappealing.

6 3-Tier Representation

In this section we examine a few results related to the 3-tier representation of diameter two graphs.
Let r be a root we wish to pebble to. Notice that |Dk(r)|=0 for k ≥ 3 for diameter two graphs.
This allows us to partition the graph into 3 tiers: the root (r), the vertices adjacent to the root
(D1(r)), and the vertices not adjacent to the root (D2(r))–See Figure 2.

Figure 2: The 3-tier view of a diameter two graph

Lemma 6.1 Let C be an unsolvable configuration and r be the root vertex.

1. C4 = ∅.

10

Figure 3: Diagram of Lemma 6.4

2. C2 ∪ C3 ⊆ D2(r).

Lemma 6.2 Let u ∈ D2(r) and v ∈ V \ r. Then at least one of the following is true:

1. u and v are adjacent.

2. u and v are both adjacent to some w ∈ D1(r).

3. u and v are both adjacent to some w ∈ D2(r).

Lemma 6.3 Let C be an unsolvable configuration.

1. No two vertices in C2 are adjacent to the same vertex in D1(r).

2. No vertex in C2 is adjacent to a vertex in D1(r) ∩ C1.

3. Every vertex in C2 is adjacent to at most 1 other vertex in C2.

4. No vertex in C3 is adjacent to any vertex in C2.

5. For every pair of vertices u ∈ C3 and v ∈ C2, there is a different empty vertex in D2(r) which
is adjacent to both u and v.

6. Let {x, y, z} ⊂ C2 be three distinct vertices such that there is some p which is adjacent to x, y
and z. Then for any other triple of distinct points {u, v, w} ⊂ C2 all of which are adjacent to
some q then |{x, y, z} ∩ {u, v, w}| 6= 1.

The following lemma can be easily proven, and can be useful in constructing unsolvable config-
urations. See Figure 3 for a graphical representation of the theorem.

Lemma 6.4 Let G = (V,E) be a diameter 2 graph with |V | = n. Let U be a set of n vertices, and
label the elements of U (resp. V) as u1, . . . , un (v1, . . . , vn). Let G′ = (V ′, E′) be the graph with
V ′ = V ∪ U ∪ r, and E′ = E ∪ {(ui, vi)}n

i=1 ∪ {(ui, uj)}i 6=j ∪ {(ui, r)}n
i=1. Then G′ is diameter two.

Notice that U = D1(r) and V = D2(r), and if we place zero pebbles on r and all vertices in
D1(r), then G is solvable if and only if we can place 4 pebbles on some vertex in V . We can use
this fact to construct diameter two graphs which are not solvable by just constructing D2(r) such
that no vertex can accumulate 4 pebbles.

11

7 Exercises

1. Determine π(Wn), where Wn is the wheel graph on n ≥ 4 vertices. (Wn is a cycle of n − 1
vertices with 1 vertex in the center connected to each of the n − 1 vertices on the cycle.)
Prove your assertion. (Hint: To prove that the pebbling number is k, you have to show that
there is some configuration of k− 1 pebbles which is unsolvable, and that any distribution of
k pebbles is solvable.)

2. Prove that π(L) = 8, where L is the Lemke graph. (Hint: See hint for exercise 1.)

3. Prove that π(P) = 10, where P is the Petersen graph. (Hint: See hint for exercise 1.)

4. Prove that the solution to the recurrence relation T (t) = (n−1)T (t−1)+O(n2), T (1) = O(n),
is O(nt). Hint: Notice that the recurrence depends on t, not n.

5. Give a polynomial-time algorithm to determine whether a configuration of pebbles on Kn is
solvable. Do the same for Sn. Give the computational complexity of each algorithm.

6. Prove Lemma 2.5.

7. What type of algorithm (brute force, divide-and-conquer, decrease-and-conquer, etc.) is
Algorithm 3.2?

8. In Algorithm 3.2, how do we know that the call to AdjacentPebbble(u, v) is legal? That
is, how do we know that u and v are adjacent, and that u has at least two pebbles?

9. Asymptotically, is Algorithm 3.3 any faster than Algorithm 3.2?

10. Prove Lemma 4.1. Hint: Use the fact that G is diameter two.

11. Prove Corollary 4.2. Hint: Use Lemma 4.1.

12. Prove Lemma 5.5.

13. Prove Lemma 5.12.

14. Prove Lemma 6.3.

15. Prove that there is no limit on the number of islands a graph of diameter two can have. In
other words, for any positive integer k, show that there is some diameter two graph with a
configuration of pebbles which contains k islands.

16. Prove that there is no limit on the number of islands an unsolvable graph of diameter two
can have.

17. Give an algorithm for ContainsEmpire(G) and verify that its complexity is O(n). Use the
basic graph operations and the procedures from Section 5.2.

18. Give an algorithm for IsAdjacentTwoIsland(G, u) and verify that its complexity is O(n).
Use the basic graph operations and the procedures from Section 5.2.

19. Implement Algorithms 3.1 (and 3.2) and determine how large n and t can be until the algo-
rithm becomes unreasonably slow. (Hint: For increasing values of n and t, generate a random
graph on n vertices, and then randomly place t pebbles on the vertices and run the algorithm.

12

20. Come up with an algorithm that is more efficient than Algorithm 3.1. Give and prove esti-
mates on the running time of the algorithm. Does your algorithm run in polynomial time?
(Hint: The answer to the last question is almost certainly “no”.)

21. Come up with an algorithm to determine the solvability of diameter two graphs. Give and
prove estimates on the running time of the algorithm. Does your algorithm run in polynomial
time?

22. It is possible to parallelize Algorithm 3.1. Does this increase the size of the problems that
can be solved significantly? Explain.

23. Can a randomized algorithm be used to determine the solvability of a configuration? Explain.

24. Explain how you can use simulations to determine upper and lower bounds on the pebbling
number of a graph. Be precise. It is important to note that the answer may be different for
upper and lower bounds. Think about what it means to be an upper bound versus what it
means to be a lower bound.

8 Open Questions

There are several open questions which may help lead to an efficient (polynomial-time) algorithm
to determine the solvability of diameter two graphs. We list a few here.

1. For what values of k is the bound in Theorem 4.4 tight? In particular, if k = 3, is 6 enough,
or do we need 7?

2. Is there a limit on the number of 2-islands an unsolvable configuration of diameter two can
have?

3. Is there an upper bound on |C2| for an unsovable configuration? In other words, is there
some constant c such that if |C2| ≥ c, then C is always solvable? (We think this may be true
for c = 8, but have been unable to prove it. We can construct a configuration with |C2| = 6
which is unsolvable, but have been unable to contruct any example with |C2| ≥ 7 which is
unsolvable.)

4. Is it possible to prove that there is a maximum number of bridges needed to pebble to any
root, or is this unbounded?

5. In a minimal r-solution, is there at least one island which is pebbled from but never pebbled
to in a minimal pebbling? (If the answer to this is “yes”, then a polynomial-time algorithms
exists to determine the solvability of graphs in G2,k, as long as k is a constant.)

6. Is there a efficient algorithm to determine the solvability of graphs in G2,k for fixed values
of k? Or is this problem NP-Complete? (We think the answer is that there is an efficient
algorithm.)

7. Is there an efficient algorithm to determine the solvability of graphs in G2 (diameter two
graphs)? Or is this problem NP-Complete? (We think the answer is that there is an efficient
algorithm, but are less certain about this one.)

13

References

[1] G. Hurlbert. Recent progress in graph pebbling, 2005.

[2] K. Milans and B. Clark. The complexity of graph pebbling. SIAM J. Discret. Math., 20(3):769–
798, 2006.

[3] Y. Shiloach. A polynomial solution to the undirected two paths problem. J. ACM, 27(3):445–
456, 1980.

14

