
Mergesort 1

Merge Sort

• The idea behind Mergesort is the following:
– Divide the array in half.
– Recursively sort each half.
– Merge the two sorted halves.

• The algorithm is as follows:
Mergesort(int *A,int left,int right) {

if (left >= right) return
int mid = (left + right)/2;
Mergesort(a, left, mid);
Mergesort(a, mid + 1, right);
Merge(a, left, mid, right);

}

• So, how do we do the merge?

• Example:
A= 2 4 5 8 10 B= 1 3 6 7 9

C=



Mergesort 2

Merge: Try 1

• Merge takes two sorted subarrays and produces a
single sorted array.

• Assume we have 2 sorted arrays, and we want to
combine them into a third array. Merge works as
follows:
– We have a pointer to the beginning of each

subarray.
– Put the smaller of the elements pointed to in

the new array.
– Move the appropriate pointer.
– Repeat until new array is full.

• Here is some C++ code that merges two sorted
arrays, A and B, into a third array C.
int p1=0, p2=0, index=0;
int n=sizeA+sizeB;
while(index<n) {

if(A[p]) < B[p2]) {
C[index]=A[p1];
p1++; index++; }

else {
C[index]=B[p2];
p2++; index++; }

}



Mergesort 3

Merge: Try 2

• The problem with that code is that it assumes we
have 3 different arrays.

• For mergesort, our two input arrays are part of a
bigger array, and together they form the output
array.

• We can use an auxiliary arrays (But read on–this
is not quite correct):
void Merge(int *A,int L,int M,int R) {

int B1=new int[M-L+1];
int B2=new int[R-M];

for (int i=0;i<M-L+1;i++)
B1[i] = A[i+L];

for (int i=0;i<R-M;i++)
B2[i] = A[i+M+1];

int b1=0; int b2=0;
for(int k=L;k<=R;k++)

if(B1[b1] < B2[b2])
A[k]=B1[b1++];

else
A[k]=B2[b2++];

}
}



Mergesort 4

Merge Problems and Solutions

• The second attempt is more suited for our
purpose, but both versions still have one major
flaw. What is it?

• Neither of these does bound checking. There are 3
solutions that come to mind:
– Do explicit bound checking.
– Add a large element to the end of each input

list (Sometimes called a sentinel).
– Do something more clever.

• Here two ideas about how to be more clever:
– Use a single auxiliary array. Copy the first half

normally, and the second half of the array
backwards. If you think about it, there is no
need for bound checking if done this way. See
the next page for implementation.

– Use a single auxiliary array throughout the
entire algorithm, swapping the subproblems
back and forth. Although more complicated to
implement, this can actually result in making
the algorithm about twice as fast.



Mergesort 5

Merge: Try 3

Here is an implementation of Merge that uses uses a
single auxiliary array, with half copied normally, and
half copied backwards.

void Merge(int A[],int L,int m,int R) {
int size=R-L+1;
int mid=m-L+1;

// Copy the array
int *B=new int[size];
for(int i=0;i<mid;i++)

B[i]=A[L+i]; // 1st half forward
for(int j=mid;j<size;j++)

B[j]=A[R-j+mid]; // 2nd half reversed

// Now merge
int i=0;
int j=size-1;
for(int k=L;k<=R;k++)

if(B[i]<B[j]) // Notice: no bound check
A[k]=B[i++];

else
A[k]=B[j--];

delete []B; // In some implementations
}



Mergesort 6

Mergesort Example

0 MS 85 24 63 45 17 31 96 50
1 Div 85 24 63 45 17 31 96 50
1 MS 85 24 63 45
2 Div 85 24 63 45
2 MS 85 24
3 Div 85 24
3 MS 85
3 MS 24

3 Merge 24 85
2 MS 63 45
3 Div 63 45
3 MS 63
3 MS 45

3 Merge 45 63
2 Merge 24 45 63 85



Mergesort 7

Mergesort Example Continued

0 MS 85 24 63 45 17 31 96 50
1 Div 85 24 63 45 17 31 96 50
1 MS 85 24 63 45

...
2 Merge 24 45 63 85

1 MS 17 31 96 50
2 Div 17 31 96 50
2 MS 17 31
3 Div 17 31
3 MS 17
3 MS 31

3 Merge 17 31
2 MS 96 50
3 Div 96 50
3 MS 96
3 MS 50

3 Merge 50 96
2 Merge 17 31 50 96
1 Merge 17 24 31 45 50 63 85 96



Mergesort 8

Complexity of Mergesort

• Let T (n) be the time complexity of Mergesort.

• Mergesort always splits the list evenly, so the
recursive depth of mergesort is always O(log n)

• The amount of work done at each level is O(n).

• In light of this, one would expect that
T (n) = O(n log n).

• Indeed, T (n) = O(n log n):
– It is no hard to see that

T (n) = 2T (n/2) + Θ(n),

where T (1) = Θ(1).
– We have seen many times before that the

solution to this recurrence is
T (n) = Θ(n log n).

• The amount of extra memory used O(n), which is
acceptable.

• An important property of Mergesort is that it is
stable.


