Runtime Analysis of Randomized Quicksort

We give a proof that the average case running time of randomized quicksort is ©(n logn).!

There are several slight variations of the quicksort algorithm, and although the exact running times are
different for each, the asymptotic running times are all the same. We begin by presenting the following
version of Quicksort, written in C++.

The Quicksort Algorithm The Random Partition Algorithm
void Quicksort (int A[],int 1, int r) { int RPartition(int A[], int 1, int r) {
if (r > 1) { int piv=1l+(rand ()% (r-1+1);
int p = RPartition(A,1l,r); Swap (A[1l],A[piv]);
Quicksort (A,1,p-1); int i = 1+1;
Quicksort (A,p+l,r); int j = r;
} while (1) {

} while (A[i] <= A[l] && i<r) ++1i;
while (A[]J] >= A[l] && J>1) —-3;
if (i o>= ) |

Swap (A[J]1,A[1l]);

return j;

}
else Swap (A[i],A[J]);
}
}

We will base our analysis on this version of Quicksort. Itis straightforward to see that the runtime of
RPartitionis ©(n). (A proof of this is left to the reader). We start by developing a recurrence relation
for the average case runtime of Quicksort.

Theorem 1: Let T'(n) be the average case runtime of Quicksort on an array of size n. Then
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Proof: Since the pivot element is chosen randomly, it is equally likely that the pivot will end up at any
position from [ to r. That is, the probability that the pivot ends up at location [ + 4 is 1/n for each i =
0,...,r — . If we average over all of the possible pivot locations, we obtain
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'All logs are base 2.



The last step holds since 7°(0) = 0. O

We will need the following result in order to solve the recurrence relation.

Lemma 2: For any n > 3,
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Proof: We can write the sum as
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Then we can bound (k log k) by (klog(n/2)) = k(logn — 1) in the first sum, and by (k logn) in the second
sum. This gives
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Now we are ready for the final analysis.
Theorem 3: Let T'(n) be the average case runtime of Quicksort on an array of size n. Then

T(n) = O(nlogn).



Proof: We need to show that T'(n) = O(nlogn) and T'(n) = Q(n logn). To prove that T'(n) = O(nlogn),
we will show that for some constant a,

T(n) < anlogn foralln > 2.2

When n = 2,
anlogn = a2log?2 = 2a,

and a can be chosen large enough so that 7'(2) < 2a. Thus, the inequality holds for the base case. Assume
that T'(1) = C, for some constant C. For 2 < k < n, assume T'(k) < aklog k. Then
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We have shown that with an appropriate choice of a, T'(n) < anlogn foralln > 2, so T'(n) = O(nlogn).
We leave it to the reader to show that T'(n) = Q(nlogn). O

The proof here is based on the one presented in Section 8.4 of [1]. The algorithm they give is slightly
different, and they include some interesting insights. It is recommended that you read their proof.
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“We pick 2 for the base case since nlog n=0 if n = 1, so we cannot make the inequality hold. Another solution would be to
show that T'(n) < anlogn + b. In this case, b can be chosen so that the inequality holds for n = 1.



