Radix Sort

• A key can be thought of as a string of character from some alphabet.

• If the keys are integers stored in base \(d\), the alphabet is \(\{0, 1, \ldots, d - 1\}\).
 – In base 10, the alphabet is \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\).
 – In base 2, the alphabet is \(\{0, 1\}\).

• **Radix sort** sorts the keys according to one digit at a time.

• This is best seen with an example:

 123 | 581 | 123 | 123
 435 | 123 | 435 | 246
 396 | 763 | 945 | 257
 945 | 394 | 246 | 394
 257 ⇒ 435 ⇒ 257 ⇒ 396
 394 | 945 | 763 | 435
 246 | 396 | 581 | 581
 581 | 246 | 394 | 763
 763 ⇒ 257 ⇒ 396 ⇒ 945
Radix Sort Details

• How and why did the example work?

• The sort must start with the least significant digit first. Why?

• We must use a stable sort. Why?

• Assume
 – The keys are (at most) d digits.
 – Each key is stored in an array of size d
 – The least significant digit is first.

• Here is the shell of the algorithm:

  ```c
  RadixSort(int **A, int n,int d) {
    for(i=1;i<d;i++)
      StableSortColumn(A,n,i);
  }
  ```

• The routine `StableSortColumn(A,n,i)` does a stable sort of the array A based on the values in column i.
Radix Sort Example 2

- The following list has binary keys, written with least significant bit on the right. We sort it with Radix sort, using *naive sort* on each column.

<table>
<thead>
<tr>
<th>010</th>
<th>010</th>
<th>000</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
<td>100</td>
<td>001</td>
</tr>
<tr>
<td>101</td>
<td>100</td>
<td>101</td>
<td>010</td>
</tr>
<tr>
<td>001</td>
<td>110</td>
<td>001</td>
<td>011</td>
</tr>
<tr>
<td>111</td>
<td>101</td>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>011</td>
<td>001</td>
<td>110</td>
<td>101</td>
</tr>
<tr>
<td>100</td>
<td>111</td>
<td>111</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>011</td>
<td>011</td>
<td>111</td>
</tr>
</tbody>
</table>
The Correctness of Radix Sort

We show that any two keys are in the correct relative order at the end of the algorithm.

Proof:

- Assume the keys are stored with least significant bit on the right.

- Given two keys, let \(k \) be the leftmost bit-position where they differ:

 \[
 \begin{array}{cccc}
 0 & 1 & 0 & 1 & 1 \\
 0 & 1 & 1 & 0 & 1 \\
 \end{array}
 \]

 \(k \)

- At step \(k \) the two keys are put in the correct relative order.

- The relative order of the two keys does not change, since they have the same key in the rest of the columns, which we stable sort.
Illustration of Correctness

- Consider a sort on an array with these two keys (It makes no difference what order they are in when the sort begins):

```
0 1 1 0 1
0 1 0 1 1
```

- When the sort visits the kth column, the keys are put in the correct relative order

```
0 1 0 1 1
0 1 1 0 1
```

- Because the sort is stable, the order of the two keys will not be changed when bits $> k$ are compared

```
0 1 0 1 1
0 1 1 0 1
```
Time Complexity of Radix Sort

- Let b be the length of the keys.
- Let $O(T(n))$ be the complexity of the stable sort we use.
- Then it is clear that the complexity of Radix Sort is $O(b \times T(n))$.
- Can Radix Sort beat the other sorts in practice? What assumptions do you have to make?
- A sort called Counting Sort can be very useful as the stable sort within Radix Sort.