1. **Problem 4.3:** Let $ALL_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA that recognizes } \Sigma^* \}$. Show that ALL_{DFA} is decidable.

Proof #1: The following TM decides *ALL*_{DFA}:

- S = "On input $\langle A \rangle$, where A is a DFA:
 - 1. Construct a DFA B such that L(B) is the complement of L(A).
 - 2. Use the TM T from Thm 4.4 (deciding E_{DFA}) on input
 - 3. Accept if T accepts, reject if T rejects."
- **Proof #2:** The following TM decides *ALL*_{DFA}:
 - S = "On input $\langle A \rangle$, where A is a DFA:
 - 1. Construct a DFA B such that $L(B) = \Sigma^*$.
 - 2. Use the TM F from Thm 4.5 (deciding EQ_{DFA}) on input <A,B>
 - 3. Accept if F accepts, reject if F rejects."
- 2. **Problem 5.9:** Prove that $T = \{ \langle M \rangle \mid M \text{ is a Turing machine that accepts } w^R \text{ whenever it accepts } w \}$ is undecidable.

Proof: Assume that *T* is decidable. Then some TM *M* decides *T*. We construct TM *M'* as follows M' = "On input *x*:

- 1. If $x \neq 01$ and $x \neq 10$, reject.
- 2. If x = 01, accept.
- 3. If x = 10 simulate *M* on *w*.
- 4. If *M* accepts *w*, accept. If *M* halts and rejects, reject."

If $\langle M, w \rangle \in A_{TM}$ then *M* accepts *w* and L(*M'*)={01,10}, so *M'* \in T.

On the other hand, if $\langle M, w \rangle \notin A_{TM}$ then L(M')={01}, so M' \notin T.

Thus, $\langle M, w \rangle \in A_{\text{TM}}$ iff $M' \in T$, so $A_{\text{TM}} \leq_m T$. Therefore A_{TM} is decidable. Since A_{TM} is undecidable, it must be the case that our assumption that *T* is decidable is false, so *T* is undecidable.

3. **Problem 5.22:** Prove that A is Turing-recognizable iff $A \leq_m A_{TM}$. **Proof :**

- $\Leftarrow Assume A \leq_{m} A_{TM}. According to Thm 4.11a (not in the book as theorem, but stated on page 174), A_{TM} is Turing-recognizable. Thus, by Thm 5.28, A is Turing-recognizable.$
- Assume that A is Turing-recognizable. Then there is some TM M which recognizes A. Let $f(x) = \langle M, x \rangle$. First notice that f is easily computable. Second, notice that $x \in A$ iff M accepts x iff $\langle M, x \rangle \in A_{TM}$, so f is a mapping reduction. Thus, $A \leq_m A_{TM}$.