Sample Decidable/Undecidable proofs

1. **Problem 4.3:** Let $\text{ALL}_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA that recognizes } \Sigma^* \}$. Show that ALL_{DFA} is decidable.

 Proof #1: The following TM decides ALL_{DFA}:

 $S = "\text{On input } \langle A \rangle, \text{ where } A \text{ is a DFA:}\n \begin{align*}
 &\text{1. Construct a DFA } B \text{ such that } L(B) \text{ is the complement of } L(A). \\
 &\text{2. Use the TM } T \text{ from Thm 4.4 (deciding } E_{\text{DFA}}) \text{ on input } \\
 &\text{3. Accept if } T \text{ accepts, reject if } T \text{ rejects."} \\
 \text{Proof #2:** The following TM decides } \text{ALL}_{\text{DFA}}:
 \begin{align*}
 S &= "\text{On input } \langle A \rangle, \text{ where } A \text{ is a DFA:}\n \begin{align*}
 &\text{1. Construct a DFA } B \text{ such that } L(B) = \Sigma^*. \\
 &\text{2. Use the TM } F \text{ from Thm 4.5 (deciding } E_{\text{DFA}}) \text{ on input } <A,B> \\
 &\text{3. Accept if } F \text{ accepts, reject if } F \text{ rejects."} \\
 \end{align*}
 \end{align*}
 \]

2. **Problem 5.9:** Prove that $T = \{ \langle M \rangle \mid M \text{ is a Turing machine that accepts } w^R \text{ whenever it accepts } w \}$ is undecidable.

 Proof: Assume that T is decidable. Then some TM M decides T. We construct TM M' as follows

 $M' = "\text{On input } x:\n \begin{align*}
 &\text{1. If } x \neq 01 \text{ and } x \neq 10, \text{ reject.} \\
 &\text{2. If } x = 01, \text{ accept.} \\
 &\text{3. If } x = 10 \text{ simulate } M \text{ on } w. \\
 &\text{4. If } M \text{ accepts } w, \text{ accept. If } M \text{ halts and rejects, reject."} \\
 \]

 If $\langle M, w \rangle \in A_{\text{TM}}$ then M accepts w and $L(M') = \{01, 10\}$, so $M' \in T$.
 On the other hand, if $\langle M, w \rangle \notin A_{\text{TM}}$ then $L(M') = \{01\}$, so $M' \notin T$.
 Thus, $\langle M, w \rangle \in A_{\text{TM}}$ iff $M' \in T$, so $A_{\text{TM}} \leq_m T$. Therefore A_{TM} is decidable. Since A_{TM} is undecidable, it must be the case that our assumption that T is decidable is false, so T is undecidable.

3. **Problem 5.22:** Prove that A is Turing-recognizable iff $A \leq_m A_{\text{TM}}$.

 Proof:

 \Leftarrow Assume $A \leq_m A_{\text{TM}}$. According to Thm 4.11a (not in the book as theorem, but stated on page 174), A_{TM} is Turing-recognizable. Thus, by Thm 5.28, A is Turing-recognizable.

 \Rightarrow Assume that A is Turing-recognizable. Then there is some TM M which recognizes A. Let $f(x) = \langle M, x \rangle$. First notice that f is easily computable. Second, notice that $x \in A$ iff M accepts x iff $\langle M, x \rangle \in A_{\text{TM}}$, so f is a mapping reduction. Thus, $A \leq_m A_{\text{TM}}$.