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a b s t r a c t

Let G be a connected graph. A configuration of pebbles assigns a nonnegative integer
number of pebbles to each vertex of G. A move consists of removing two pebbles from
one vertex and placing one pebble on an adjacent vertex. A configuration is solvable if any
vertex can get at least one pebble through a sequence of moves. The pebbling number of
G, denoted π (G), is the smallest integer such that any configuration of π (G) pebbles on G
is solvable. A graph has the two-pebbling property if after placing more than 2π (G) − q
pebbles on G, where q is the number of vertices with pebbles, there is a sequence of moves
so that at least two pebbles can be placed on any vertex. A graph has the odd-two-pebbling
property if after placingmore than 2π (G)−r pebbles onG, where r is the number of vertices
with an odd number of pebbles, there is a sequence of moves so that at least two pebbles
can be placed on any vertex. In this paper, we prove that the two-pebbling and odd-two-
pebbling properties are not equivalent.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a connected graph. A configuration assigns a nonnegative number of pebbles to the vertices of G. For a
configuration C , we define C(v) to be the number of pebbles on vertex v, and if U is a subset of vertices of G, then C(U)
is the total number of pebbles on the vertices in U . A pebbling move (or justmove) removes two pebbles from one vertex and
places one pebble on an adjacent vertex. A vertex v is reachable under some configuration if it is possible tomove a pebble to
v through a sequence of pebbling moves. A configuration is solvable if all vertices are reachable. The pebbling number rooted
at a vertex v in G, π (G, v), is defined as the smallest number of pebbles so that for any configuration of π (G, v) pebbles, v is
reachable. The pebbling number of a graph is π (G) = maxv∈V (G) (π (G, v)).

A graph G has the two-pebbling property if for every configuration of more than 2π (G)− q pebbles, where q is the number
of vertices with pebbles, it is possible to move 2 pebbles to any vertex. A violating configuration for a vertex v of G is any
configuration of more than 2π (G) − q pebbles such that two pebbles cannot be moved to v. A graph that does not have the
two-pebbling property is called a Lemke graph.

The two-pebbling property was introduced by Chung [1]. Most graphs have the two-pebbling property [8]. In fact, only
a handful of families of Lemke graphs have been found [2–4,9,10]. Graham’s Conjecture states for any two graphs G and H ,
π (G□H) ≤ π (G)π (H), whereG□H is the Cartesian product ofG andH [1]. Graham’s conjecture has been studied by numerous
researchers, and many results that affirm the conjecture rely on the two-pebbling property [1,5–7,9,10].

A graph G has the odd-two-pebbling property if for every configuration of more than 2π (G) − r pebbles, where r is the
number of vertices with an odd number of pebbles, it is possible to move 2 pebbles to any vertex [10]. Note that any graph
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which has the two-pebbling property also has the odd-two-pebbling property. All Lemke graphs found to date also do not
have the odd-two-pebbling property. This is true even of more recent Lemke graphs [2,3]. Wang conjectured that two-
pebbling and odd-two-pebbling are equivalent [10]. We present a graph that has the odd-two-pebbling property but does
not have the two-pebbling property, proving that the properties are not equivalent.

2. General results

The following is a somewhat obvious but powerful tool in analyzing Lemke graphs.

Theorem 1. Let C be a violating configuration on graph G for root r with 2π (G)−q+k pebbles, where k ≥ 1. Then it is impossible
to place a pebble on r using less than π (G) − q + k + 1 pebbles.

Proof. If π (G)− q+ k pebbles are used to place one pebble on r , π (G) pebbles are left on G so a second pebble can be moved
to r .

In our arguments related to the two-pebbling property, wewill often state that the root can be reached using π (G)−q+1
pebbles and leave implicit the fact that a second pebble can be moved to the root by Theorem 1, implying that the given
configuration is not a violating configuration for the given root.

Lemma 2. Let G be a graph with n vertices and let C be a violating configuration for root r. Then q < n and C(r) = 0.

Proof. If q = n, then there are at least 2π (G) − n + 1 ≥ 2n − n + 1 = n + 1 pebbles on n vertices. Since every vertex
has at least one pebble and at least one vertex has at least two pebbles, a second pebble can be moved to any vertex. Clearly
C(r) < 2. If C(r) = 1, then there are at least 2π (G)− q+ 1− 1 = π (G)+ (π (G)− q) ≥ π (G) other pebbles on the graph and
a second pebble can be moved to r .

Lemma 3. Let G be a Hamiltonian graph with n vertices, C a configuration with p ≥ n + 2 pebbles on q = n − 1 vertices. Then
two pebbles can be moved to any vertex in G.

Proof. Since some vertex has at least two pebbles, any vertex that already has a pebble can get a second pebble by pebbling
along the Hamiltonian cycle. Let r be the vertex without a pebble. Since p = n+ 2, either two vertices, u and v, have at least
two pebbles or some vertex u has 4 pebbles. In the first case, a pebble can be moved to r from each of u and v along two
disjoint paths that are part of the Hamiltonian cycle. Similarly, if some vertex has 4 pebbles, two pebbles can be moved to r
from u by following two disjoint paths along the Hamiltonian cycle.

Lemma 4. Let C be a violating configuration, u be a vertex with C(u) ≥ 3, and assume C(v) = 0 for some neighbor of v of u.
Create configuration C ′ from C by moving one pebble from u to v. Then C ′ is a violating configuration.

Proof. Let C be a violating configuration for some root r with p pebbles on q − 1 vertices such that C(u) ≥ 3, and let v be a
neighbor of uwith C(v) = 0. Since C is a violating configuration, p+ q− 1 > 2π (G). Then C ′ has p− 1 pebbles on q vertices.
Since p − 1 + q > 2π (G) and r is still not reachable with two pebbles, C ′ is clearly a violating configuration.

Corollary 5. Let G be a graph that has no violating configurations with pebbles on q vertices and let C be a violating configuration
with pebbles on q − 1 vertices. If C(u) ≥ 3, then for each neighbor v of u, C(v) ≥ 1. Equivalently, if C(v) = 0, then C(u) ≤ 2 for
each neighbor u of v.

The following lemma is straightforward.

Lemma 6. Let Pn be a path on n vertices, K3 be a clique on 3 vertices with vertex set V (K3) = {v1, v2, v3}, and let C be a pebbling
configuration.

1. If n ≤ 4 and C(Pn) ≥ n + 1, then at least two pebbles can be moved to one of its endpoints.
2. If C(K3) ≥ 4, then it is possible to move 2 pebbles to at least two of its vertices.
3. If C(K3) ≥ 5, then 2 pebbles can be moved to any of its vertices.
4. If C(K3) ≥ 6, then 4 pebbles can be moved to one of its vertices. Further, if C(v1) + C(v2) ≥ 6 then 2 pebbles can be placed

on both v1 and v2 simultaneously.
5. If C(K3) = 7 and 4 pebbles cannot be moved to v1 or v2, then C(v3) = 5 and C(v1) = C(v2) = 1 or C(v3) = 7 and

C(v1) = C(v2) = 0.
6. If C(K3) = 8 and 4 pebbles cannot be moved to v1 then C(v1) = 0 and C(v2) and C(v3) are both odd.
7. If C(K3) ≥ 9, then 4 pebbles can be moved to any of its vertices.
8. If C(K3) ≥ 14 and each vertex has at least one pebble, then 4 pebbles can bemoved to any two of its vertices simultaneously.
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Fig. 1. The new Lemke graph, H .

3. The new Lemke graph

When the algorithm from [2] to determine whether or not a graph has the two-pebbling property was run on all ten-
vertex graphs with diameter three, several new Lemke graphs were discovered with a very interesting property: all of the
violating configurations have at least one vertex with an even number of pebbles. In other words, these are Lemke graphs
that have the odd-two-pebbling-property. Since this was an unexpected result, it seemed prudent to verify it. The goal of
this paper is to prove that one of these graphs,H (see Fig. 1), does not have the two-pebbling property but does have the odd-
two-pebbling-property, proving that these two properties are not equivalent. We will proceed by showing that π (H) = 10
and then prove that H has exactly 6 violating configurations, none of which satisfy the conditions of the odd-two-pebbling
property.

Let Ti be subgraph induced by vertices {ai, bi, ci} for i ∈ {1, 2, 3}. Let C be a configuration on H . Let pi = C(Ti) and qi be
the number of vertices on Ti with pebbles. Finally, let αi = C(ai), βi = C(bi), γi = C(ci), and δ = C(d).

If moves are made on a configuration C , the result is a new configuration that is usually given a new name (e.g. C ′). To
simplify the notation in proofs, we will often continue to call the configuration C and use definitions from above even after
moves have been made.

4. Pebbling number

In this section we show that π (H) = 10. Clearly π (H, v) ≥ 10 for all v. Due to the symmetry of H , we prove that
π (H, d) = π (H, a3) = π (H, c3) = 10 and the result follows.

Theorem 7. π (H, d) = 10.

Proof. Let C be a configuration with 10 pebbles such that d is unreachable. By Lemma 6.3, pi ≤ 4 for i ∈ {1, 2, 3}. Without
loss of generality, we may assume that p1 = 4 and that α1 = 3 and β1 = 1 (due to symmetry and unreachability of d).
Further, it is impossible to move a pebble from T2 or T3 to T1. If p2 = 4 or p3 = 4, Lemma 6.2 implies that a pebble can be
moved to either d or to T1, so p2 = p3 = 3. The pebbles on T2 do not allow a pebble to bemoved to either d or b1. Thus, either
α2 = β2 = γ2 = 1 or β2 = 3 and α2 = γ2 = 0. In the former case, d is clearly reachable along the path (a1, b1, a2, c2, d), so
β2 = 3 and α2 = γ2 = 0. A similar argument shows that α3 = 3 and β3 = γ3 = 0. But then a pebble can be moved from a3
to b2 so that b2 has four pebbles and d is reachable. Therefore, π (H, d) = 10.

Theorem 8. π (H, c3) = 10.

Proof. Let C be a configuration of 10 pebbles on H . Without loss of generality, assume p1 ≥ p2. If any of {b3, a3, d} has two
or more pebbles c3 is reachable, so assume otherwise. There are 4 cases to consider.

Case 1: All three of {b3, a3, d} have one pebble. Then p1 ≥ 4 and c3 is reachable by Lemma 6.2.
Case 2: Two of {b3, a3, d} have one pebble. If p1 ≥ 5, then both b3 and d are reachable from T1 by Lemma 6.3. Since at

least one of these has a pebble, c3 is reachable. Otherwise, p1 = p2 = 4. If δ = 0, then β3 = α3 = 1 and c3 is reachable
unless α1 = β2 = 0. In this case, a pebble can be moved to d from both T1 and T2, so c3 is reachable. If δ = 1, then without
loss of generality, α3 = 0 and β3 = 1, and Lemma 6.2 implies that a pebble can be moved to either d or b3 from T1, making
c3 reachable.
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Case 3: There is one pebble on {b3, a3, d}. In this case, p1 ≥ 5. If β3 = 1 or δ = 1, c3 is reachable by Lemma 6.3, so assume
α3 = 1. This implies that β2 ≤ 1. If p1 ≥ 8, clearly c3 is reachable from T1. This leaves 3 subcases.

Case 3.1: p1 = 5. Then by Lemma 6.3, a pebble can be moved from T1 to T2, putting 5 pebbles on T2, which allows for a
move to a3, making c3 reachable.

Case 3.2: p1 = 6. Then p2 = 3. If β2 = 1, then a2 either has a pebble or can receive one from c2, so a pebble can be moved
from T1 along the path (a2, b2, a3, c3). If β2 = 0, there are two cases to consider. If α2 = 3, a move can be made from T1 to a2,
making c3 reachable through a3. Otherwise, α2 ≤ 2 and γ2 ≥ 1, so d can be reached from both T1 and T2 and c3 is reachable.

Case 3.3: p1 = 7. Then p2 = 2. By Lemma 6.5, if c3 is not reachable from T1, then either β1 = 5 and α1 = γ1 = 1, or
β1 = 7 and α1 = γ1 = 0. If d, b1, or a3 is reachable from T2, the configuration is solvable. Thus, two vertices in T2 have one
pebble. If β2 = 0, then one pebble from T1 can be moved through T2 to d, leaving 5 pebbles on T1, allowing another pebble
to reach d. Otherwise, β2 = 1 and we move two pebbles from b1 to a2 and then pebble along the path (a2, b2, a3, c3).

Case 4: There are no pebbles on {b3, a3, d}. If p1 = p2 = 5, then 2 pebbles can be moved to d and one to c3. If p1 ≥ 8,
clearly c3 is reachable. This leaves two cases.

Case 4.1: p1 = 6. Then p2 = 4. If d is reachable from T2, then c3 is reachable. Otherwise, either β2 = 3 and α2 = 1 or
β2 = 1 and α2 = 3. If β2 = 3, then move a pebble from b2 to a3. By Lemma 6.3, two pebbles can be moved to b1 and then a
pebble can be moved along the path (b1, a2, b2, a3, c3). If α2 = 3, a move from a2 to b1 would place 7 pebbles on T1. If that
configuration is unsolvable for c3, Lemma 6.5 implies that in the initial configuration either α1 = γ1 = 1 and β1 = 4, or
β1 = 6. In either case, moving a pebble from b1 to a2 instead allows pebbling to d from both T1 and T2, making c3 reachable.

Case 4.2: p1 = 7. Then p2 = 3. If c3 is unreachable from T1, then Lemma 6.5 implies that β1 = 5 and α1 = γ1 = 1, or
β1 = 7 and α1 = γ1 = 0. If a pebble can be moved from T2 to T1, then c3 is reachable since T1 now has 8 pebbles. If a pebble
can be moved from T2 to d, c3 is also reachable. Otherwise, β2 = 3 or α2 = β2 = γ2 = 1. If β2 = 3, then 2 pebbles can
be moved from b1 to a2, one pebble from b2 to a3, and then one pebble can be moved along the path (b1, a2, b2, a3, c3). If
α2 = β2 = γ2 = 1, move along the path (b1, a2, c2, d) and the remaining pebbles on T1 allow a second pebble to be moved
to d, so c3 is reachable.

Let H1 be the subgraph induced by the set of vertices {a1, b1, c1, b3} and H2 = H\H1. We will prove several results that
will be used in the next theorem.

Lemma 9. Let C be a configuration on H.

1. If p2 = 4, then one pebble can be moved to a3 unless β2 = 0 and α2 and γ2 are both odd.
2. If C(H2) = 6, then a pebble can be moved to a3 unless δ = α2 = 3.
3. If C(H2) ≥ 7, then a pebble can be moved to a3.

Proof. The proof of statement 1 is straightforward.
For statement 2, let C(H2) = 6 and assume α3 = 0. By Lemma 6.3, a3 is reachable if p2 ≥ 5. Thus, assume p1 ≤ 4 and

therefore γ3 + δ ≥ 2.
If γ3 + δ = 2, then p2 = 4. By statement 1, we can assume α2 = 1 and γ2 = 3 or α2 = 3 and γ2 = 1. If γ3 = δ = 1, a3 is

clearly reachable. Otherwise, δ = 2, and we can get 4 pebbles to either a2 or c2, thus allowing a pebble to be moved to a3.
If γ3 + δ = 3, then δ = 3 and γ3 = 0 or we can clearly reach a3. In this case, p2 = 3 and unless α2 = 3 (the exception

in the statement), either 2 pebbles can be moved to b2 or one more pebble to d, and a3 is reachable. Finally, a3 is clearly
reachable if γ3 + δ ≥ 4.

For statement 3, if C(H2) = 7, it is possible to remove one pebble from C and avoid the configuration with δ = α2 = 3.
By statement 2, a3 is reachable.

Theorem 10. π (H, a3) = 10.

Proof. Let C be a configuration of 10 pebbles on H and assume α3 = 0. By Lemma 9.3, a2 is reachable if C(H2) ≥ 7. This
leaves 6 cases.

Case 1: C(H2) = 6. By Lemma 9.2, a3 is reachable unless δ = α2 = 3. In this case, a pebble can be moved from a2 to b1
so that the path {b3, a1, b1, c1} has 5 pebbles. By Lemma 6.1, two pebbles can be moved to either c1, in which case a fourth
pebble can be added to d, or to b3. In both cases, a3 can be reached.

Case 2: C(H2) = 5. Then C(H1) = 5 and by Lemma 6.1 at least 2 pebbles can be moved to b3 or c1 (by considering the
path {b3, a1, b1, c1}), and at least 2 pebbles can be moved to b3 or b1 (by considering the path {b3, a1, c1, b1}). If two pebbles
can be moved to b3, then a3 is reachable, so we can assume that 2 pebbles can be moved to either c1 or b1. If α2 = 3, move
a pebble from b1 to a2. Otherwise, move a pebble from c1 to d. In either case, H2 now has 6 pebbles and α2 ̸= 3, so a3 is
reachable by Lemma 9.2.

For the remaining cases, since C(H1) ≥ 6, we can assume β3 = 0 since otherwise a3 is reachable. Thus, p1 = C(H1) ≥ 6.
We will assume that a3 is not reachable from T1, so Lemma 6.4 implies that 4 pebbles can be moved to either b1 or c1. This
implies that two pebbles can be moved to either d or a2 from T1.

Case 3: C(H2) = 4. If α2 = 3, move a pebble from T1 to a2 and a3 is reachable. Similarly if δ = 3. Otherwise, move two
pebbles to either d or a2 from T1 so that C(H2) = 6. Since it is not that case that both α2 = 3 and δ = 3, a3 is reachable by
Lemma 9.2.
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For the remaining cases C(H2) ≤ 3, so p1 ≥ 7. We will assume that 4 pebbles cannot be moved to a1 since otherwise a3
is reachable. Thus, α1 ≤ 1, so β1 + γ1 ≥ 6, and by Lemma 6.4, two pebbles can be placed on b1 and c1 simultaneously.

Case 4: C(H2) = 3, so p1 = 7.
Case 4.1: p2 = 3. If 4 pebbles can be moved to b1 from T1, then 2 pebbles can be moved from T1 to T2 and by Lemma 6.3,

a3 is reachable. If 4 pebbles cannot bemoved to either a1 or b1, then by Lemma 6.5, γ1 ≥ 5, so a pebble can be added to either
a2 or c2. Since either β2 = 1 or the parity of α2 and γ2 differ, it is possible to move to either a2 or c2 so that a3 is reachable by
Lemma 9.1.

Case 4.2: p2 = 2. Then δ = 1 or γ3 = 1. If 4 pebbles can be moved to b1 from T1, then by Lemma 9.1, we can assume
γ2 = α2 = 1 and β2 = 0 since otherwise a3 is reachable. Move 2 pebbles to both b1 and c1. If δ = 1, move a pebble along
the paths (b1, a2, b2) and (c1, d, c2, b2) so that b2 has two pebbles. If γ3 = 1, move a pebble from c1 to d and along the path
(b1, a2, c2, d). In either case, a3 can be reached.

If 4 pebbles cannot be moved to either a1 or b1, by Lemma 6.5, either γ1 = 5 and β1 = 1 or γ1 = 7 and β1 = 0. Since
2 pebbles can be moved to d, a3 is reachable if γ3 = 1, so assume δ = 1. If γ1 = 7 then we can move 3 more pebbles to d.
Otherwise, γ1 = 5 and α1 = β1 = 1. Since p2 = 2, there are four possibilities. If β2 = 1, then either α2 = 1 or γ2 = 1 and
a second pebble can be added to either a2 or c2 and then to b2. If γ2 = 2 or α2 = 2 then 4 pebbles can be moved to a1. If
γ2 = α2 = 1 then move a pebble along the paths (c1, b1, a2, b2) and (c1, d, c2, b2) so b2 has two pebbles. In all cases, a3 is
reachable.

Case 4.3: p2 ≤ 1. Then δ + γ3 ≥ 2. If γ3 ≥ 2, δ ≥ 3, or both δ ≥ 1 and γ3 ≥ 1, then a3 is clearly reachable. Thus, δ = 2 and
γ3 = 0. Then p1 = 1 and either 4 pebbles can be moved to c1 or, by Lemma 6.5, either β1 = 5 and γ1 = α1 = 1 or β1 = 7
and α1 = γ1 = 0. If β2 = 1 or γ2 = 1 then 2 pebbles can be moved to b2, so α2 = 1. If β1 = 7, we can move 3 more pebbles
to a2. Otherwise, β1 = 5 and α1 = γ1 = 1, so a second pebble can be moved to a1 from d and 2 more pebbles can be moved
to a1 from b1. In any case, a3 is reachable.

Case 5: C(H2) = 2. Then p1 = 8 and if a3 is not reachable from T1, then Lemma 6.6 implies that α1 = 0 and β1 + γ1 = 8,
where both are odd. No matter how these pebbles are placed, both d and a2 are reachable with 2 pebbles from T1, and one
of them can receive 3 pebbles. Thus, a3 is reachable if b2 or c3 has one pebble, d, c2, or a2 has two pebbles, or both d and a2
have one pebble. Thus, we can assume either δ = γ2 = 1 or γ2 = α2 = 1, and it is straightforward to verify that a3 can be
reached from any of the eight configurations on T1.

Case 6: C(H2) ≤ 1. Then p1 = 9 and the a3 is reachable by Lemma 6.7.

5. Two-pebbling property

Lemma 11. Let C be a violating configuration on H with pebbles on q vertices. Then 4 ≤ q ≤ 7.

Proof. Let C be a configuration of p = 21 − q pebbles on q vertices of H . If q = 1, p = 20 = 2π (H) and 2 pebbles can be
moved to any vertex.

If q = 2, p = 19, and some vertex u has at least ten pebbles. Since the diameter of H is 3, moving from u to any other
vertex uses at most 8 pebbles, leaving at least 11 pebbles, enough to move a second pebble that vertex.

If q = 3, p = 18. Each of the three vertices with a pebble has at most 7 pebbles since otherwise one pebble can be placed
on any other vertex leaving π (H) pebbles on the graph, so a second pebble can be moved to that vertex. Thus each of the
three vertices with pebbles, u, v, and w, has between 4 and 7 pebbles. No matter which vertices u, v, and w are, every vertex
is within distance two of one of them. Thus, one pebble can be moved to any root using 4 pebbles, leaving 14 pebbles to
move a second pebble.

By Lemma 2, q ≤ 9 and r has no pebbles. If q = 9, p = 12 and since H is Hamiltonian, the result follows from Lemma 3.
If q = 8, r and some other vertex v have no pebbles. Since p = 13 and H \ {v} is Hamiltonian, the result follows from

Lemma 3.

Theorem 12. There are no configurations on H that violate the two-pebbling-property with d as the root.

Proof. Let C be a violating configuration for vertex d with 21 − q pebbles on q vertices. By Lemma 11, we only need to
consider 4 ≤ q ≤ 7. In all of these cases, p ≥ 14. Therefore, pi ≥ 5 for some i. No matter how those pebbles are placed on Ti,
d is reachable using only 4 pebbles, and the result follows from Theorem 1.

Lemma 13. Let C be a configuration on H with α1 ≥ 1.

1. If α1 + γ1 ≥ 7, α1 + β1 ≥ 7, or α1 + β1 + γ1 ≥ 8, then a pebble can be moved to a3.
2. If p1 = 14 and either β1 ≥ 6 and a2 ≥ 1 or γ1 ≥ 6 and d ≥ 1, two pebbles can be moved to a3.

Proof. The proof of statement 1 is straightforward. For the second statement, move 3 pebbles from b1 to a2 (or from c1 to d)
and then a pebble can be moved from a2 (or d) to a3. Since p1 = 8 now, the result follows from statement 1.

Lemma 14. Let C be a violating configuration on H with root a3 with pebbles on q ≤ 7 vertices such that there are no violating
configurations on q + 1 vertices. Then p2 ≤ 3.
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Proof. If p1 ≥ 5, Lemma 6.3 implies that a3 is reachable from T2. It is not too difficult to see that it requires at most 4 of the
5 pebbles, leaving at least 10 pebbles on H , allowing a second pebble to reach a3. When p2 = 4, each configuration either
allows a3 to be reachable with at most 4 pebbles or violates Corollary 5.

Theorem 15. H has no violating configurations with root a3.

Proof. Let C be a violating configurationwith 21−q pebbles on q vertices. By Lemma 11,we only need to consider 4 ≤ q ≤ 7.
In all of these cases, p ≥ 14. By Lemma 14, p2 ≤ 3. Also, γ3 + δ ≤ 3 and β3 ≤ 1 by Theorem 1. This implies that p1 ≥ 7.
Corollary 5 implies that q1 = 3. Using Theorem 1 again, β3 = 0, and thus p1 ≥ 8. Once again, Corollary 5 implies that
1 ≤ α1 ≤ 2 (a fact we use often when applying Lemma 13.1), so β1 + γ1 ≥ 6. By Theorem 1, if β1 ≥ 2, at least one of α2 and
β2 is zero, and if γ1 ≥ 2, at least one of δ and γ3 is zero. Since β1 + γ1 ≥ 6, it follows that at least one of α2, β2, δ, and γ3 is
zero.

Case 1: q = 7. Then p = 14. Since α3 = β3 = 0, exactly one other vertex has no pebbles. Thus, either δ = γ3 = 1 or
α2 = β2 = 1. In either case, γ2 = 1.

Case 1.1: δ = γ3 = 1. Then γ1 = 1, so β1 ≥ 5, and Corollary 5 implies that 1 ≤ α2 ≤ 2, so that β2 = 0. If α2 = 2, move a
pebble along (a2, c2, d, c3, a3) and Lemma 6.7 implies that a3 is reachable with a second pebble since p1 = 9. If α2 = 1, then
α1 + β1 = 9. Move along (b1, c1, d, c3, a3) leaving α1 + β1 ≥ 7, so Lemma 13.1 applies.

Case 1.2: α2 = β2 = 1. Then β1 = 1, and δ + γ3 = 1, so α1 + γ1 = 9. Pebble along (c1, b1, a2, b2, a3) leaving α1 + γ1 ≥ 7,
so Lemma 13.1 applies.

Case 2: q = 6. Then p = 15. Since p2 ≤ 3 and δ + γ3 ≤ 3, then p1 ≥ 9. Theorem 1 implies that either δ = 0 or γ3 = 0,
and either α2 = 0 or β2 = 0, and all other vertices have at least one pebble. This gives us four cases.

Case 2.1: δ = α2 = 0. Corollary 5 implies that a1, b1, and c1 each have at most two pebbles, contradicting the fact that
p1 ≥ 9.

Case 2.2: δ = β2 = 0. Then γ3 = 1, γ1 ≤ 2, and γ2 + α2 ≤ 3, so p1 ≥ 11 and β1 ≥ 7. If γ1 = 2, move a pebble from c1
to d and then move a pebble along (b1, a2, c2, d, c3, a3), leaving α1 + β1 ≥ 7. If γ1 = 1, there are two cases to consider. If
α2 + γ2 = 3, move a pebble from T2 to d. Then move a pebble along (b1, c1, d, c3, a3), leaving α1 + β1 ≥ 8. If α2 + γ2 = 2,
then α2 = γ2 = 1 and p1 ≥ 12. Move a pebble along (b1, a2, c2, d) and then (b1, c1, d, c3, a3), leaving α1 + β1 ≥ 7. In all of
these cases, Lemma 13.1 allows a second pebble to be moved to a3.

Case 2.3: γ3 = α2 = 0. Then δ = γ2 = β2 = 1, β1 ≤ 2, and γ1 ≥ 5. Move along the path (c1, d, c2, b2, a3) using only 5
pebbles so Theorem 1 applies.

Case 2.4: γ3 = β2 = 0. Then d, a2, and c2 each have at least one pebble, and δ + α2 + γ2 ≤ 5, so p1 ≥ 10. At most 7
pebbles from T1 can be used to move a pebble to a3 through a1 in such a way that β1 ≥ 1 and γ1 ≥ 1 after the moves. Then
β1 + γ1 + d + a2 + c2 ≥ 8. Since the graph induced by {b1, c1, d, a2, b2, c2} is Hamiltonian, Lemma 3 applies. Thus, two
pebbles can be moved to b2, and a second pebble to a3.

Case 3: q = 5. Then p = 16. If α1 ≥ 2, then 6 pebbles from T1 can be used to move to a3. Thus, α1 = 1. There are three
cases to consider, each using Corollary 5 extensively.

Case 3.1: β1 ≥ 3 and γ1 ≥ 3. Then 1 ≤ α2 ≤ 2 and 1 ≤ δ ≤ 2 and the rest of the vertices (besides a1) have no pebbles.
So p1 ≥ 12 and either β1 ≥ 6 or γ1 ≥ 6. If β1 ≥ 6, then α2 = 1 by Theorem 1, and either δ = 1 and p1 = 14 or δ = 2 and
p1 = 13 and a move from d to c1 would make p = 14. In either case, Lemma 13.2 applies. Otherwise, γ1 ≥ 6 and a similar
argument applies.

Case 3.2: γ1 ≤ 2. Then β1 ≥ 5, α2 = 1, β2 = 0, and γ2 ≤ 1 by Theorem 1. Since q = 5, either γ2 = 1, γ3 = 1, δ = 1, or
δ = 2. In the first 3 cases, p1 = 14. In the last case, a move from d to c1 makes p1 = 14. In all cases, β1 ≥ 10, so Lemma 13.2
applies.

Case 3.3: β1 ≤ 2. Then γ1 ≥ 5, so δ = 1, γ3 = 0, and γ2 ≤ 1 by Theorem 1. Since q = 5, either β2 = 1, γ2 = 1, α2 = 1, or
α2 = 2. In the first three cases, p1 = 14. If α2 = 2, a move from a2 to b1 leaves p1 = 14. In all cases, γ1 ≥ 10, so Lemma 13.2
applies.

Case 4: q = 4. Then p = 17 and Theorem 1 and Corollary 5 imply that either β1 = 14 and γ1 = α1 = α2 = 1; β1 = 13,
γ1 = 2, and α1 = α2 = 1; γ1 = 14 and α1 = β1 = δ = 1; or γ1 = 13, β1 = 2, and α1 = δ = 1. In all cases, Lemma 13.2
applies.

Lemma 16. Let C be a configuration on H. Then for i ∈ {1, 2, 3}, the following hold.

1. If pi ≥ 8, or pi = 7 and qi = 2, then a pebble can be moved to c3.
2. If δ = 1 and pi + qi ≥ 13, two pebbles can be moved to c3.
3. If pi + qi ≥ 17, two pebbles can be moved to c3.

Proof. The statements are obvious when i = 3. Statement 1 follows from Lemma 6.5. To prove statement 2, when qi = 1,
use at most 4 pebbles from Ti to move to c3, leaving 8 on some vertex of distance at most 3 from c3. For qi = 2 and qi = 3,
make moves from T1 to d to c3, and apply statement 1. For statement 3, apply statement 1 for qi = 1,2 and use Lemma 6.8
for qi = 3.

Theorem 17. H has exactly two violating configurations with c3 as the root.
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Proof. Let C be a violating configurationwith 21−q pebbles on q vertices. By Lemma 11,we only need to consider 4 ≤ q ≤ 7.
In all of these cases, p ≥ 14. By Theorem 1, c3 has no pebbles, a3, b3, and d each have at most one pebble, and a1, c1, c2, and
b2 each have at most three pebbles. We can assume that p1 ≥ p2. Since p1 + p2 ≥ 11, p1 ≥ 6. If both a1 and b3 have at least
one pebble, a pebble can be moved to c3 using four pebbles. Thus, at least one of a1 or b3 has no pebbles. Similarly, at least
one of c1 or d has no pebbles.

Case 1: q = 7. Then p = 14, and since two of a1, b3, c1, and d have no pebbles, each of b1, a2, b2, c2, and a3 has at least one
pebble. Theorem 1 implies that α2 = β2 = γ2 = α3 = 1. Clearly α1 + β3 ≤ 3 and γ1 + δ ≤ 3, so β1 ≥ 4. Pebble along the
path (b1, a2, b2, a3, c3), leaving 8 pebbles on {a1, b1, c1, b3, d}. Since the subgraph induced by {a1, b1, c1, b3, c3, d} has C6 as
a spanning subgraph, and π (C6) = 8, a second pebble can be moved to c3.

For the remainder of the cases, q ≤ 6 and p ≥ 15. Since p1 ≥ 6, δ = β3 = 0 by Theorem 1. This and the fact that α3 ≤ 1
implies that p1 + p2 ≥ 14, so p1 ≥ 7. Corollary 5 implies that 1 ≤ α1 ≤ 2 and 1 ≤ γ1 ≤ 2, so β1 ≥ 3, q1 = 3, and α2 ≥ 1. By
Theorem 1, at least one of b2 or a3 has no pebbles.

Case 2: q = 6. Then p = 15, exactly one of b2 or a3 has no pebbles, and γ2 = 1 by Theorem 1.
Case 2.1: β2 = 0. Then 1 ≤ α2 ≤ 2 by Corollary 5 and p1 ≥ 11. If α2 = 2, move a pebble along the path (a2, c2, d). If

α2 = 1, then p1 = 12 and we move a pebble along the path (b1, a2, c2, d). In both cases, p1 ≥ 10 and δ = 1 after the moves,
so Lemma 16.2 applies.

Case 2.2: α3 = 0. Since q2 = 3 and p1 ≥ p2, 3 ≤ p2 ≤ 7. Since α3 = β3 = δ = 0, Corollary 5 implies that each of α1, γ1,
and β2 is 1 or 2.

Case 2.2.1: 3 ≤ p2 ≤ 6. If p2 = 3, then a2 = 1, and p1 = 12. Move a pebble along the path (b1, a2, c2, d). If 4 ≤ p2 ≤ 5,
then p1 ≥ 10 and since q2 = 3, a pebble can be moved from T2 to d. If p2 = 6, p1 = 9, and since q2 = 3, a pebble can be
moved to both d and b1 from T2. In all three cases, p1 ≥ 10, q1 = 3, and δ = 1 after the moves, so Lemma 16.2 applies.

Case 2.2.2: p2 = 7. Then p1 = 8 and c3 can be reached from T1 by Lemma 16.1. If β2 = 2, c3 can also be reached from T2.
Thus γ2 = β2 = 1 and α2 = 5. If γ1 = 2, then c3 can be reached using 5 pebbles from c1, a2, and c2, so Theorem 1 applies.
Thus γ1 = 1. If α1 = 2, then β1 = 5. Move two pebbles from b1 to a1 and then through b3 to c3. Then move along the paths
(a2, b1, c1, d), (a2, c2, d), and from d to c3 with a second pebble. This implies that α1 = γ1 = γ2 = β2 = 1, β1 = 6, and
α2 = 5. Because of the symmetry of the graph, if we remove our assumption that p1 ≥ p2, β1 = 5 and α2 = 6 also leads to
a violating configuration. It is easy to see that if we add a pebble to either b1 or a2, it is possible to move two pebbles to c3.
Thus, when q = 6 there are exactly two violating configurations with p = 15, and none with p ≥ 16.

Case 3: q = 5. Then p = 16 and p1 ≥ 8, so Theorem 1 implies γ3 = δ = β3 = 0, α1 = γ1 = 1, and γ2 ≤ 1. Exactly one of
a3, b2, and c2 has any pebbles.

Notice that there are exactly 16 configurations of pebbles with q = 5 and p = 16 that yield one of the violating
configurations above after a move is made (8 for each), and it is easy to check that they are not violating configurations
before the move. For instance, if β1 = 8, α2 = 5, and α1 = γ2 = β2 = 1, move from b1 to a2 and apply Lemma 16.1 to both
T1 and T2. Similarly for β1 = 6, α2 = 5, α1 = 3, and γ2 = β2 = 1. Lemma 4 implies that we can assume for the remainder of
the cases that if C(v) = 0, then C(u) ≤ 2 for any neighbor u of v. Thus, 1 ≤ α2 ≤ 2 since at least one of its neighbors has no
pebbles. Similarly, β2 ≤ 2.

If β2 = 2, then γ2 = α3 = 0 and β1 ≥ 10. If α2 = 2, move from both a2 and b2 to c2 and then to d. If α2 = 1, then β1 = 11.
Pebble along the path (b1, a2, c2) and then (b2, c2, d) leaving β1 = 9. In either case, Lemma 16.2 applies.

If β2 ≤ 1, then β2 + γ2 + α3 = 1. Thus, either β1 = 12 and α2 = 1, or β1 = 11 and α2 = 2 and we move one pebble from
a2 to b1. In both cases, Lemma 16.3 applies.

Case 4: q = 4. Then p = 17. Corollary 5 and Theorem 1 imply that α1 = γ1 = 1, 1 ≤ α2 ≤ 2, and 13 ≤ β1 ≤ 14, and
Lemma 16.3 applies.

Given the symmetry of the graph, the following result is obvious.

Theorem 18. H has exactly 6 violating configurations.

Theorem 19. H does not have the two-pebbling property, but does have the odd-two-pebbling property.

Proof. H does not have the two-pebbling property by Theorem 18. All of the violating configurations have p = 15 and r = 5,
and since 15 ̸> 20 − 5 = 2π (H) − r , they do not violate the odd-two-pebbling property.
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