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1. Introduction

Let G be a connected graph. A configuration assigns a nonnegative number of pebbles to the vertices of G. For a
configuration C, we define C(v) to be the number of pebbles on vertex v, and if U is a subset of vertices of G, then C(U)
is the total number of pebbles on the vertices in U. A pebbling move (or just move) removes two pebbles from one vertex and
places one pebble on an adjacent vertex. A vertex v is reachable under some configuration if it is possible to move a pebble to
v through a sequence of pebbling moves. A configuration is solvable if all vertices are reachable. The pebbling number rooted
at a vertex v in G, (G, v), is defined as the smallest number of pebbles so that for any configuration of 7 (G, v) pebbles, v is
reachable. The pebbling number of a graph is 7(G) = maxyev(c) (7 (G, v)).

A graph G has the two-pebbling property if for every configuration of more than 27 (G) — q pebbles, where q is the number
of vertices with pebbles, it is possible to move 2 pebbles to any vertex. A violating configuration for a vertex v of G is any
configuration of more than 277(G) — q pebbles such that two pebbles cannot be moved to v. A graph that does not have the
two-pebbling property is called a Lemke graph.

The two-pebbling property was introduced by Chung [1]. Most graphs have the two-pebbling property [8]. In fact, only
a handful of families of Lemke graphs have been found [2-4,9,10]. Graham’s Conjecture states for any two graphs G and H,
7 (GOH) < 7 (G)w(H), where GOH is the Cartesian product of G and H [ 1]. Graham’s conjecture has been studied by numerous
researchers, and many results that affirm the conjecture rely on the two-pebbling property [1,5-7,9,10].

A graph G has the odd-two-pebbling property if for every configuration of more than 27(G) — r pebbles, where r is the
number of vertices with an odd number of pebbles, it is possible to move 2 pebbles to any vertex [10]. Note that any graph
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which has the two-pebbling property also has the odd-two-pebbling property. All Lemke graphs found to date also do not
have the odd-two-pebbling property. This is true even of more recent Lemke graphs [2,3]. Wang conjectured that two-
pebbling and odd-two-pebbling are equivalent [ 10]. We present a graph that has the odd-two-pebbling property but does
not have the two-pebbling property, proving that the properties are not equivalent.

2. General results
The following is a somewhat obvious but powerful tool in analyzing Lemke graphs.

Theorem 1. Let C be a violating configuration on graph G for root r with 27t (G) — q+ k pebbles, where k > 1. Then it is impossible
to place a pebble on r using less than 7= (G) — q + k + 1 pebbles.

Proof. If 7(G) — q+ k pebbles are used to place one pebble on r, 7(G) pebbles are left on G so a second pebble can be moved
tor.

In our arguments related to the two-pebbling property, we will often state that the root can be reached using 7 (G) —q—+1
pebbles and leave implicit the fact that a second pebble can be moved to the root by Theorem 1, implying that the given
configuration is not a violating configuration for the given root.

Lemma 2. Let G be a graph with n vertices and let C be a violating configuration for root r. Then ¢ < nand C(r) = 0.

Proof. If ¢ = n, then there are at least 27(G) —n+ 1 > 2n —n+ 1 = n + 1 pebbles on n vertices. Since every vertex
has at least one pebble and at least one vertex has at least two pebbles, a second pebble can be moved to any vertex. Clearly
C(r) < 2.1fC(r) = 1, then there are at least 27(G) —q+ 1 — 1 = n(G) + (7 (G) — q) > 7 (G) other pebbles on the graph and
a second pebble can be moved to r.

Lemma 3. Let G be a Hamiltonian graph with n vertices, C a configuration with p > n + 2 pebbles on ¢ = n — 1 vertices. Then
two pebbles can be moved to any vertex in G.

Proof. Since some vertex has at least two pebbles, any vertex that already has a pebble can get a second pebble by pebbling
along the Hamiltonian cycle. Let r be the vertex without a pebble. Since p = n + 2, either two vertices, u and v, have at least
two pebbles or some vertex u has 4 pebbles. In the first case, a pebble can be moved to r from each of u and v along two
disjoint paths that are part of the Hamiltonian cycle. Similarly, if some vertex has 4 pebbles, two pebbles can be moved to r
from u by following two disjoint paths along the Hamiltonian cycle.

Lemma 4. Let C be a violating configuration, u be a vertex with C(u) > 3, and assume C(v) = 0 for some neighbor of v of u.
Create configuration C’ from C by moving one pebble from u to v. Then C' is a violating configuration.

Proof. Let C be a violating configuration for some root r with p pebbles on g — 1 vertices such that C(u) > 3, and let v be a
neighbor of u with C(v) = 0. Since C is a violating configuration, p +q — 1 > 27(G). Then C" has p — 1 pebbles on q vertices.
Since p — 1+ q > 27(G) and r is still not reachable with two pebbles, C’ is clearly a violating configuration.

Corollary 5. Let G be a graph that has no violating configurations with pebbles on q vertices and let C be a violating configuration
with pebbles on q — 1 vertices. If C(u) > 3, then for each neighbor v of u, C(v) > 1. Equivalently, if C(v) = 0, then C(u) < 2 for
each neighbor u of v.

The following lemma is straightforward.

Lemma 6. Let P, be a path on n vertices, K3 be a clique on 3 vertices with vertex set V(K3) = {vq, v, v3}, and let C be a pebbling
configuration.

1. Ifn < 4and C(P,;) > n + 1, then at least two pebbles can be moved to one of its endpoints.

2. If C(K3) = 4, then it is possible to move 2 pebbles to at least two of its vertices.

3. IfC(K3) > 5, then 2 pebbles can be moved to any of its vertices.

4. IfC(K3) > 6, then 4 pebbles can be moved to one of its vertices. Further, if C(vy) 4+ C(vy) > 6 then 2 pebbles can be placed

on both vy and v, simultaneously.

5. If C(K3) = 7 and 4 pebbles cannot be moved to v; or v, then C(v3) = 5 and C(v;) = C(vy) = 1or C(v3) = 7 and
C(v1) =C(vp) =0.

. If C(K3) = 8 and 4 pebbles cannot be moved to v, then C(v{) = 0 and C(v,) and C(v3) are both odd.

If C(K3) > 9, then 4 pebbles can be moved to any of its vertices.

8. IfC(K3) > 14 and each vertex has at least one pebble, then 4 pebbles can be moved to any two of its vertices simultaneously.

N D



C.A. Cusack et al. / Discrete Mathematics 342 (2019) 777-783 779

Fig. 1. The new Lemke graph, H.

3. The new Lemke graph

When the algorithm from [2] to determine whether or not a graph has the two-pebbling property was run on all ten-
vertex graphs with diameter three, several new Lemke graphs were discovered with a very interesting property: all of the
violating configurations have at least one vertex with an even number of pebbles. In other words, these are Lemke graphs
that have the odd-two-pebbling-property. Since this was an unexpected result, it seemed prudent to verify it. The goal of
this paper is to prove that one of these graphs, H (see Fig. 1), does not have the two-pebbling property but does have the odd-
two-pebbling-property, proving that these two properties are not equivalent. We will proceed by showing that 7(H) = 10
and then prove that H has exactly 6 violating configurations, none of which satisfy the conditions of the odd-two-pebbling
property.

Let T; be subgraph induced by vertices {a;, b;, ¢;} fori € {1, 2, 3}. Let C be a configuration on H. Let p; = C(T;) and gq; be
the number of vertices on T; with pebbles. Finally, let o; = C(a;), Bi = C(b;), yi = C(c;), and § = C(d).

If moves are made on a configuration C, the result is a new configuration that is usually given a new name (e.g. C’). To
simplify the notation in proofs, we will often continue to call the configuration C and use definitions from above even after
moves have been made.

4. Pebbling number

In this section we show that 7(H) = 10. Clearly 7w (H, v) > 10 for all v. Due to the symmetry of H, we prove that
n(H,d) = n(H, a3) = w(H, c3) = 10 and the result follows.

Theorem 7. n(H, d) = 10.

Proof. Let C be a configuration with 10 pebbles such that d is unreachable. By Lemma 6.3, p; < 4 fori € {1, 2, 3}. Without
loss of generality, we may assume that p; = 4 and that «; = 3 and 81 = 1 (due to symmetry and unreachability of d).
Further, it is impossible to move a pebble from T, or T5 to T;. If p, = 4 or p3 = 4, Lemma 6.2 implies that a pebble can be
moved to either d or to Ty, so p, = p3 = 3. The pebbles on T, do not allow a pebble to be moved to either d or b;. Thus, either
oy = B =y, = lor B = 3and o, = y», = 0.In the former case, d is clearly reachable along the path (a4, b1, a3, ¢2, d), so
B> = 3and oy = y, = 0. A similar argument shows that w3 = 3 and 3 = y3 = 0. But then a pebble can be moved from a3
to b, so that b, has four pebbles and d is reachable. Therefore, 7 (H, d) = 10.

Theorem 8. 7 (H, c3) = 10.

Proof. Let C be a configuration of 10 pebbles on H. Without loss of generality, assume p; > p,. If any of {bs, as, d} has two
or more pebbles c3 is reachable, so assume otherwise. There are 4 cases to consider.

Case 1: All three of {bs, as, d} have one pebble. Then p; > 4 and c; is reachable by Lemma 6.2.

Case 2: Two of {bs, a3, d} have one pebble. If p; > 5, then both b3 and d are reachable from T; by Lemma 6.3. Since at
least one of these has a pebble, c3 is reachable. Otherwise, p;y = p, = 4.1f§ = 0, then 83 = a3 = 1 and c3 is reachable
unless @y = B, = 0. In this case, a pebble can be moved to d from both T; and T, so c3 is reachable. If § = 1, then without
loss of generality, 3 = 0 and 83 = 1, and Lemma 6.2 implies that a pebble can be moved to either d or b; from T;, making
c3 reachable.
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Case 3: There is one pebble on {bs, as, d}. In this case, p; > 5.1f 83 = 10or § = 1, ¢5 is reachable by Lemma 6.3, so assume
a3 = 1. This implies that 8, < 1.If p; > 8, clearly c; is reachable from T;. This leaves 3 subcases.

Case 3.1: p; = 5. Then by Lemma 6.3, a pebble can be moved from T; to T, putting 5 pebbles on T,, which allows for a
move to as, making c3 reachable.

Case 3.2: p; = 6. Then p, = 3.1f B, = 1, then aj; either has a pebble or can receive one from ¢, so a pebble can be moved
from T; along the path (a, b,, as, c3).If B, = 0, there are two cases to consider. If &, = 3, a move can be made from T; to as,
making c3 reachable through as. Otherwise, @y < 2 and y, > 1, so d can be reached from both T; and T, and c3 is reachable.

Case 3.3: p; = 7. Then p, = 2. By Lemma 6.5, if c3 is not reachable from Ty, then either 8y = 5and oy = y; = 1, or
B1 =7and a1 = y; = 0.1fd, by, or as is reachable from T, the configuration is solvable. Thus, two vertices in T, have one
pebble. If 8, = 0, then one pebble from T; can be moved through T, to d, leaving 5 pebbles on T, allowing another pebble
to reach d. Otherwise, 8, = 1 and we move two pebbles from b, to a, and then pebble along the path (ay, b,, as, c3).

Case 4: There are no pebbles on {bs, as, d}. If p; = p, = 5, then 2 pebbles can be moved to d and one to c3. If p; > 8,
clearly c3 is reachable. This leaves two cases.

Case 4.1: p; = 6. Then p, = 4. If d is reachable from T, then c3 is reachable. Otherwise, either 8, = 3and a; = 1or
B> = 1and a; = 3.1f B, = 3, then move a pebble from b, to as. By Lemma 6.3, two pebbles can be moved to b, and then a
pebble can be moved along the path (by, aa, ba, as, ¢3). If @; = 3, a move from a, to b; would place 7 pebbles on T;. If that
configuration is unsolvable for c3, Lemma 6.5 implies that in the initial configuration either «; = y; = 1and ; = 4, or
B1 = 6.In either case, moving a pebble from b, to a, instead allows pebbling to d from both T, and T,, making c3 reachable.

Case 4.2: p; = 7. Then p, = 3.If ¢3 is unreachable from Ty, then Lemma 6.5 implies that ; = 5and @y = y; = 1, or
B1=7and a; = y; = 0.If a pebble can be moved from T, to Ty, then c3 is reachable since T; now has 8 pebbles. If a pebble
can be moved from T, to d, c3 is also reachable. Otherwise, 8, = 3ora; = f, = y», = 1.1f B = 3, then 2 pebbles can
be moved from b, to a,, one pebble from b, to a3, and then one pebble can be moved along the path (b4, a;, by, as, c3). If
ay = B2 = y» = 1, move along the path (bq, a3, ¢, d) and the remaining pebbles on T, allow a second pebble to be moved
to d, so cs3 is reachable.

Let H; be the subgraph induced by the set of vertices {a;, by, c1, b3} and H, = H\H;. We will prove several results that
will be used in the next theorem.

Lemma9. Let C be a configuration on H.

1. If p; = 4, then one pebble can be moved to as unless 8, = 0 and «, and y;, are both odd.
2. IfC(Hy) = 6, then a pebble can be moved to as unless § = o = 3.
3. IfC(H,) > 7, then a pebble can be moved to as.

Proof. The proof of statement 1 is straightforward.

For statement 2, let C(H,) = 6 and assume «3 = 0. By Lemma 6.3, a3 is reachable if p, > 5. Thus, assume p; < 4 and
therefore y5 + § > 2.

If y3 + 8 = 2, then p, = 4. By statement 1, we can assume oy = land y», = 3oray; =3 andy, = 1.Ify3 =8 = 1, a3 is
clearly reachable. Otherwise, § = 2, and we can get 4 pebbles to either a; or ¢, thus allowing a pebble to be moved to as.

If 3 +8 = 3,then § = 3 and y3 = 0 or we can clearly reach as. In this case, p, = 3 and unless «; = 3 (the exception
in the statement), either 2 pebbles can be moved to b, or one more pebble to d, and as is reachable. Finally, as is clearly
reachable if 5 + § > 4.

For statement 3, if C(H,) = 7, it is possible to remove one pebble from C and avoid the configuration with § = o, = 3.
By statement 2, as is reachable.

Theorem 10. (H, a3) = 10.

Proof. Let C be a configuration of 10 pebbles on H and assume w3 = 0. By Lemma 9.3, a; is reachable if C(H,) > 7. This
leaves 6 cases.

Case 1: C(H;) = 6. By Lemma 9.2, a3 is reachable unless § = o, = 3. In this case, a pebble can be moved from a, to by
so that the path {bs, ay, b1, ¢1} has 5 pebbles. By Lemma 6.1, two pebbles can be moved to either c;, in which case a fourth
pebble can be added to d, or to bs. In both cases, as can be reached.

Case 2: C(H) = 5.Then C(H,) = 5 and by Lemma 6.1 at least 2 pebbles can be moved to bz or c; (by considering the
path {bs, ai, by, c1}), and at least 2 pebbles can be moved to b3 or by (by considering the path {bs, a1, c1, b1}). If two pebbles
can be moved to bs, then as is reachable, so we can assume that 2 pebbles can be moved to either c¢; or b;. If @, = 3, move
a pebble from b; to a,. Otherwise, move a pebble from c; to d. In either case, H, now has 6 pebbles and «; # 3, so as is
reachable by Lemma 9.2.

For the remaining cases, since C(H;) > 6, we can assume 33 = 0 since otherwise as is reachable. Thus, p; = C(H;) > 6.
We will assume that as is not reachable from Ty, so Lemma 6.4 implies that 4 pebbles can be moved to either b, or c;. This
implies that two pebbles can be moved to either d or a, from T;.

Case 3: C(Hy) = 4. If o = 3, move a pebble from T; to a, and as is reachable. Similarly if § = 3. Otherwise, move two
pebbles to either d or a, from T; so that C(H,) = 6. Since it is not that case that both o = 3 and § = 3, a3 is reachable by
Lemma 9.2.
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For the remaining cases C(H,) < 3, so p; > 7. We will assume that 4 pebbles cannot be moved to a; since otherwise a;
is reachable. Thus, oy < 1, s0 81 + y1 > 6, and by Lemma 6.4, two pebbles can be placed on b; and c¢; simultaneously.

Case 4: C(H;) =3,s0p; =17.

Case 4.1: p, = 3.1f 4 pebbles can be moved to by from Ty, then 2 pebbles can be moved from T; to T, and by Lemma 6.3,
as is reachable. If 4 pebbles cannot be moved to either a; or by, then by Lemma 6.5, y; > 5, so a pebble can be added to either
a, or c;. Since either 8, = 1 or the parity of a; and y; differ, it is possible to move to either a, or ¢, so that as is reachable by
Lemma 9.1.

Case 4.2: p, = 2.Then§ = 1or y3 = 1.If 4 pebbles can be moved to b; from Ty, then by Lemma 9.1, we can assume
y» = ay = 1and B, = 0 since otherwise as is reachable. Move 2 pebbles to both b; and c;. If § = 1, move a pebble along
the paths (by, az, by) and (¢4, d, c2, by) so that b, has two pebbles. If y;3 = 1, move a pebble from c; to d and along the path
(b1, aa, 3, d). In either case, as can be reached.

If 4 pebbles cannot be moved to either a; or by, by Lemma 6.5, either ; = 5and §; = 1or y; = 7 and 8; = 0. Since
2 pebbles can be moved to d, as is reachable if y3 = 1, so assume § = 1.If y; = 7 then we can move 3 more pebbles to d.
Otherwise, y; = 5 and «; = B; = 1. Since p, = 2, there are four possibilities. If 8, = 1, then either @, = 10r y, = 1 and
a second pebble can be added to either a; or ¢, and then to b,. If y, = 2 or «; = 2 then 4 pebbles can be moved to a;. If
¥y, = ap = 1then move a pebble along the paths (cq, b1, az, by) and (cy, d, ¢, b2) so b, has two pebbles. In all cases, as is
reachable.

Case4.3:p, < 1.Then§+y3 > 2.1Ify3 > 2,5 > 3,orboth§ > 1and y5 > 1, then as is clearly reachable. Thus, § = 2 and
y3 = 0.Then p; = 1 and either 4 pebbles can be moved to c; or, by Lemma 6.5, either 1 = 5and y; = oy = lor gy =7
and 1 = y; = 0.1f 8, = 1 or », = 1 then 2 pebbles can be moved to b,, so a; = 1.1f 8; = 7, we can move 3 more pebbles
to a,. Otherwise, 81 = 5 and «; = y; = 1, so a second pebble can be moved to a; from d and 2 more pebbles can be moved
to a; from by. In any case, as is reachable.

Case 5: C(Hy) = 2. Then p; = 8 and if a3 is not reachable from Ty, then Lemma 6.6 implies that @y = 0 and 81 + y1 = 8,
where both are odd. No matter how these pebbles are placed, both d and a; are reachable with 2 pebbles from T;, and one
of them can receive 3 pebbles. Thus, as is reachable if b, or c3 has one pebble, d, c;, or a; has two pebbles, or both d and a,
have one pebble. Thus, we can assume either § = y, = 1or », = @y = 1, and it is straightforward to verify that a; can be
reached from any of the eight configurations on T;.

Case 6: C(Hy) < 1.Then p; = 9 and the as is reachable by Lemma 6.7.

5. Two-pebbling property
Lemma 11. Let C be a violating configuration on H with pebbles on q vertices. Then4 < q < 7.

Proof. Let C be a configuration of p = 21 — q pebbles on q vertices of H.If ¢ = 1, p = 20 = 27(H) and 2 pebbles can be
moved to any vertex.

If g = 2,p = 19, and some vertex u has at least ten pebbles. Since the diameter of H is 3, moving from u to any other
vertex uses at most 8 pebbles, leaving at least 11 pebbles, enough to move a second pebble that vertex.

If ¢ = 3, p = 18. Each of the three vertices with a pebble has at most 7 pebbles since otherwise one pebble can be placed
on any other vertex leaving 7 (H) pebbles on the graph, so a second pebble can be moved to that vertex. Thus each of the
three vertices with pebbles, u, v, and w, has between 4 and 7 pebbles. No matter which vertices u, v, and w are, every vertex
is within distance two of one of them. Thus, one pebble can be moved to any root using 4 pebbles, leaving 14 pebbles to
move a second pebble.

By Lemma 2, ¢ < 9 and r has no pebbles. If g = 9, p = 12 and since H is Hamiltonian, the result follows from Lemma 3.

If ¢ = 8, r and some other vertex v have no pebbles. Since p = 13 and H \ {v} is Hamiltonian, the result follows from
Lemma 3.

Theorem 12. There are no configurations on H that violate the two-pebbling-property with d as the root.

Proof. Let C be a violating configuration for vertex d with 21 — g pebbles on g vertices. By Lemma 11, we only need to
consider 4 < q < 7.Inall of these cases, p > 14. Therefore, p; > 5 for some i. No matter how those pebbles are placed on T;,
d is reachable using only 4 pebbles, and the result follows from Theorem 1.

Lemma 13. Let C be a configuration on H with a1 > 1.
1. far+y1>7,a1+ B1 > 7,0ra1 + 1+ y1 > 8, then a pebble can be moved to as.
2. Ifpy = 14 and either B; > 6 and a, > 1o0ry; > 6 and d > 1, two pebbles can be moved to as.

Proof. The proof of statement 1 is straightforward. For the second statement, move 3 pebbles from b; to a, (or from c; to d)
and then a pebble can be moved from a, (or d) to as. Since p; = 8 now, the result follows from statement 1.

Lemma 14. Let C be a violating configuration on H with root as with pebbles on q < 7 vertices such that there are no violating
configurations on q + 1 vertices. Then p, < 3.
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Proof. If p; > 5, Lemma 6.3 implies that a; is reachable from Ts. It is not too difficult to see that it requires at most 4 of the
5 pebbles, leaving at least 10 pebbles on H, allowing a second pebble to reach as. When p, = 4, each configuration either
allows as to be reachable with at most 4 pebbles or violates Corollary 5.

Theorem 15. H has no violating configurations with root as.

Proof. Let C be a violating configuration with 21 —q pebbles on g vertices. By Lemma 11, we only need to consider4 < q < 7.
In all of these cases, p > 14. By Lemma 14, p, < 3.Also, y3 + 8 < 3 and B3 < 1by Theorem 1. This implies that p; > 7.
Corollary 5 implies that g = 3. Using Theorem 1 again, 83 = 0, and thus p; > 8. Once again, Corollary 5 implies that
1 < oy < 2(afact we use often when applying Lemma 13.1), so 81 4+ y1 > 6. By Theorem 1, if 8; > 2, at least one of «; and
B, is zero, and if y; > 2, at least one of § and y3 is zero. Since 81 + Y1 > 6, it follows that at least one of «y, 2, §, and y3 is
zero.

Case 1: g = 7.Then p = 14. Since o3 = f3 = 0, exactly one other vertex has no pebbles. Thus, either § = y3 = 1or
ay = P, = 1. Ineither case, y, = 1.

Case 1.1: § = y3 = 1.Then y; = 1,s0 81 > 5, and Corollary 5 implies that 1 < «; < 2, so that 8, = 0.If o, = 2, move a
pebble along (a, ¢;, d, c3, a3) and Lemma 6.7 implies that as is reachable with a second pebble since p; = 9.If &, = 1, then
a1 + B1 = 9. Move along (b1, c1, d, c3, az) leaving a1 + 81 > 7, so Lemma 13.1 applies.

Case 1.2: oy = B, = 1.Then 81 = 1,and § 4+ y3 = 1,s0 a1 4+ y; = 9. Pebble along (c1, by, az, by, as) leaving oy + 1 > 7,
so Lemma 13.1 applies.

Case 2: ¢ = 6. Then p = 15.Since p, < 3and § + y3 < 3, then p; > 9. Theorem 1 implies that either § = O or y5 = 0,
and either oy = 0 or B, = 0, and all other vertices have at least one pebble. This gives us four cases.

Case 2.1: § = ay = 0. Corollary 5 implies that ay, by, and c¢; each have at most two pebbles, contradicting the fact that
p1=>9.

Case22:6§ =B, =0.Theny; = 1,y; <2,and y» + a3 < 3,s0p; > 11and B; > 7.1f y; = 2, move a pebble from c;
to d and then move a pebble along (by, a3, ¢35, d, c3, a3), leaving o1 + B > 7.1f y; = 1, there are two cases to consider. If
a3 + ¥, = 3, move a pebble from T, to d. Then move a pebble along (b1, c1, d, c3, a3), leaving oy + 81 > 8. lf ay + y» = 2,
then a; = y» = 1and p; > 12. Move a pebble along (b1, a3, ¢;, d) and then (b4, ¢y, d, c3, a3), leaving oy + 1 > 7. In all of
these cases, Lemma 13.1 allows a second pebble to be moved to as.

Case2.3: y3 = ay = 0.Thend = y» = B = 1, B1 < 2,and y; > 5. Move along the path (c1, d, ¢3, b, a3) using only 5
pebbles so Theorem 1 applies.

Case 2.4: y3 = B, = 0.Then d, a;, and ¢, each have at least one pebble, and § + a3 + y» < 5, so p; > 10. At most 7
pebbles from T, can be used to move a pebble to a; through a; in such a way that 8; > 1and y; > 1 after the moves. Then
B1+ v1 +d+ az + c; > 8. Since the graph induced by {b1, ¢1, d, a3, b,, c;} is Hamiltonian, Lemma 3 applies. Thus, two
pebbles can be moved to b,, and a second pebble to as.

Case 3: q = 5. Then p = 16. If «; > 2, then 6 pebbles from T; can be used to move to as. Thus, @; = 1. There are three
cases to consider, each using Corollary 5 extensively.

Case3.1: By > 3and y; > 3. Then1 < o, < 2and 1 < § < 2 and the rest of the vertices (besides a;) have no pebbles.
So p; > 12 and either 8; > 6 or y; > 6.1f 81 > 6, then @y = 1 by Theorem 1, and either § = 1 and p; = 14 or§ = 2 and
p1 = 13 and a move from d to ¢; would make p = 14. In either case, Lemma 13.2 applies. Otherwise, y; > 6 and a similar
argument applies.

Case3.2:y; < 2.ThenB; > 5,2 = 1, B, = 0,and y» < 1by Theorem 1. Since ¢ = 5, eithery, = 1,3 = 1,6 = 1, 0or
8 = 2.In the first 3 cases, p; = 14. In the last case, a move from d to c; makes p; = 14. In all cases, f; > 10, so Lemma 13.2
applies.

Case3.3: 81 <2.Theny; > 5,508 = 1,3 = 0,and y, < 1by Theorem 1. Since g = 5, either 8, = 1,» = 1,3 = 1, 0r
ay = 2.In the first three cases, p; = 14.If o, = 2, a move from a, to by leaves p; = 14.In all cases, y; > 10, so Lemma 13.2
applies.

Case 4: ¢ = 4. Then p = 17 and Theorem 1 and Corollary 5 imply that either 81 = 14and y; = o1 = o = 1; B = 13,
y1=2,andoy =a; =1,y = 14and oy = B4 =86 = 1;0ryy = 13,81 = 2,and a; = § = 1.In all cases, Lemma 13.2
applies.

Lemma 16. Let C be a configuration on H. Then fori € {1, 2, 3}, the following hold.

1. If p; > 8, or p; = 7 and q; = 2, then a pebble can be moved to cs.
2. If§ = 1and p; + q; > 13, two pebbles can be moved to cs.

3. If pi + q; > 17, two pebbles can be moved to cs.

Proof. The statements are obvious when i = 3. Statement 1 follows from Lemma 6.5. To prove statement 2, when q; = 1,
use at most 4 pebbles from T; to move to c3, leaving 8 on some vertex of distance at most 3 from c3. For g; = 2 and q; = 3,
make moves from T; to d to cs3, and apply statement 1. For statement 3, apply statement 1 for ¢; = 1,2 and use Lemma 6.8
for q; = 3.

Theorem 17. H has exactly two violating configurations with cs as the root.
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Proof. Let C be a violating configuration with 21—q pebbles on g vertices. By Lemma 11, we only need to consider4 < q < 7.
In all of these cases, p > 14. By Theorem 1, c3 has no pebbles, as, b3, and d each have at most one pebble, and ay, c1, ¢, and
b, each have at most three pebbles. We can assume that p; > p,. Since p; + p, > 11, p; > 6. If both a; and b3 have at least
one pebble, a pebble can be moved to c; using four pebbles. Thus, at least one of a; or bs has no pebbles. Similarly, at least
one of ¢; or d has no pebbles.

Case 1: ¢ = 7. Then p = 14, and since two of a4, bs, c1, and d have no pebbles, each of by, a;, b,, ¢;, and as has at least one
pebble. Theorem 1 implies that @; = B8, = y» = a3 = 1. Clearly @1 + 83 < 3 and y; + § < 3,50 8; > 4. Pebble along the
path (b1, az, by, as, c3), leaving 8 pebbles on {ay, b1, c1, b3, d}. Since the subgraph induced by {ay, b1, c1, bs, c3, d} has Cg as
a spanning subgraph, and 7 (Cs) = 8, a second pebble can be moved to cs.

For the remainder of the cases, ¢ < 6 and p > 15. Since p; > 6,8 = B3 = 0 by Theorem 1. This and the fact that o3 < 1
implies that p; + p, > 14, sop; > 7. Corollary 5 implies that 1 < o7 <2and1 < y; < 2,50 81 > 3,q; = 3,and o > 1. By
Theorem 1, at least one of b, or az has no pebbles.

Case 2: q = 6. Then p = 15, exactly one of b, or a; has no pebbles, and y, = 1 by Theorem 1.

Case 2.1: B = 0.Then 1 < ap < 2 by Corollary 5 and p; > 11.If @y = 2, move a pebble along the path (ay, ¢, d). If
oy = 1, then p; = 12 and we move a pebble along the path (b1, a3, ¢, d). In both cases, p; > 10 and § = 1 after the moves,
so Lemma 16.2 applies.

Case 2.2: a3 = 0.Since g; = 3 and p; > p,, 3 < p» < 7.Since a3 = B3 = § = 0, Corollary 5 implies that each of «, 1,
and B is 1or 2.

Case2.2.1:3 < p, <6.If p, = 3,thena, = 1, and p; = 12. Move a pebble along the path (b, ay, ¢3,d). If4 < p, <5,
then p; > 10 and since g, = 3, a pebble can be moved from T, to d. If p, = 6, p; = 9, and since g, = 3, a pebble can be
moved to both d and b; from Ty. In all three cases, p; > 10, q; = 3, and § = 1 after the moves, so Lemma 16.2 applies.

Case 2.2.2: p, = 7. Then p; = 8 and c3 can be reached from T; by Lemma 16.1. If 8, = 2, c3 can also be reached from T.
Thus y, = B, = 1and oy, = 5.1f y; = 2, then ¢35 can be reached using 5 pebbles from c, a;, and c;, so Theorem 1 applies.
Thus y; = 1. If @y = 2, then 81 = 5. Move two pebbles from b, to a; and then through bs to c3. Then move along the paths
(az, by, c1, d), (az, c3, d), and from d to c3 with a second pebble. This implies that @y = yy = y» = 2 = 1, 81 = 6, and
oy = 5. Because of the symmetry of the graph, if we remove our assumption that p; > p,, 81 = 5 and a; = 6 also leads to
a violating configuration. It is easy to see that if we add a pebble to either b, or ay, it is possible to move two pebbles to cs.
Thus, when g = 6 there are exactly two violating configurations with p = 15, and none with p > 16.

Case 3: q = 5.Thenp = 16 and p; > 8, so Theorem 1 implies y3 =8 = 3 = 0,1 = y; = 1,and y, < 1. Exactly one of
as, by, and ¢, has any pebbles.

Notice that there are exactly 16 configurations of pebbles with ¢ = 5 and p = 16 that yield one of the violating
configurations above after a move is made (8 for each), and it is easy to check that they are not violating configurations
before the move. For instance, if 81 = 8, a; = 5, and o1 = y», = B, = 1, move from by to a; and apply Lemma 16.1 to both
T; and T,. Similarly for 8y = 6,3 = 5, @y = 3,and y, = ; = 1. Lemma 4 implies that we can assume for the remainder of
the cases that if C(v) = 0, then C(u) < 2 for any neighbor u of v. Thus, 1 < a; < 2 since at least one of its neighbors has no
pebbles. Similarly, 8, < 2.

If B, = 2,then y, = o3 = 0and B; > 10.If «w; = 2, move from both a; and b, to c; and then to d. If o, = 1, then 8; = 11.
Pebble along the path (b1, a3, ¢c;) and then (b, c;, d) leaving 81 = 9. In either case, Lemma 16.2 applies.

If B, < 1,then B; + y» + a3 = 1. Thus, either 8; = 12 and o, = 1, or 81 = 11 and @, = 2 and we move one pebble from
a; to by. In both cases, Lemma 16.3 applies.

Case 4: ¢ = 4. Then p = 17. Corollary 5 and Theorem 1 imply thatowy = 1 = 1,1 < oy < 2,and 13 < $; < 14, and
Lemma 16.3 applies.

Given the symmetry of the graph, the following result is obvious.
Theorem 18. H has exactly 6 violating configurations.
Theorem 19. H does not have the two-pebbling property, but does have the odd-two-pebbling property.

Proof. H does not have the two-pebbling property by Theorem 18. All of the violating configurations havep = 15andr = 5,
and since 15 # 20 — 5 = 2w (H) — r, they do not violate the odd-two-pebbling property.
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