
Foley and Cusack

Gretchen C. Foley* and Charles A. Cusack†

*School of Music
University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0100 USA
gfoley2@unl.edu
†Westshore Design, LLC
494 Lincoln Avenue, Suite 10
Holland, Michigan 49423 USA
ferzle@yahoo.com

Computer-Assisted Analysis
of Music in George Perle’s
System of Twelve-Tone
Tonality

53

Music theorists face many challenges when analyz-
ing music written according to George Perle’s com-
positional theory of twelve-tone tonality, a system
based on inversional symmetry. Analysts focusing
on Mr. Perle’s music seek relationships among col-
lections of notes in an effort to discover connec-
tions within and across a specific work. It is often
possible to rely solely on the analytical tools of
twelve-tone tonality when working with Mr. Perle’s
music, but in many instances other tools have
proven rather useful, such as can be found in pitch-
class set theory and transformational theory. The
interested reader may refer to a number of excellent
resources to acquire a working knowledge of these
theories (Forte 1973; Rahn 1980; Lewin 1987; Straus
2005). However, in some cases even these theories
do not assist the analyst in generating meaningful
results from the pitch material in a twelve-tone
tonal composition.

Because Mr. Perle’s music is non-tonal, it lends it-
self particularly well to computer-assisted mathe-
matical anlysis. We have developed a simple
computer application, Twelve-Tone Tonality Re-
verse Engineer, or T3RevEng, that helps determine
the organization and context of the material, based
on the input of pitch classes expressed as integers.
In all tests thus far, T3RevEng has proven to be an
essential tool for the Perlean analyst owing to its
comprehensive, efficient, and accurate manipula-
tion of data.

The Fundamentals of Twelve-Tone Tonality

The foundation of twelve-tone tonality is provided
by the interval cycle, defined as a series of pitch
classes based on a single recurring interval, mea-

sured in half steps. Mr. Perle combines two inver-
sionally related interval cycles to form what he
calls a cyclic set, by placing the members of the
cycles in alternation. Figure 1 illustrates a cyclic
set based on the interval 1 cycle, with the ascend-
ing cycle in white noteheads, and the descending
cycle in black noteheads. In the following figures,
integers 0 to 11 represent the twelve pitch classes,
with C = 0, C-sharp/D-flat = 1, D = 2, and so on. The
integers 10 and 11, representing B-flat and B respec-
tively, are replaced by the letters “t” and “e” to re-
tain a single digit for each pitch class.

In any segment of the cyclic set comprising three
adjacent pitch classes, the central note is referred to
as the axis note, flanked on either side by neighbor
notes. In any such segment, the axis note forms a
pair of sums with the neighbor notes. These sums
repeat with each three-note segment throughout the
cyclic set and are called tonic sums. The tonic sums
provide the cyclic set with its name; hence, the
cyclic set in Figure 1 is 0,1. The sums 0 and 1 recur
by adding pairs of successive integers: 0 + 0 = 0, 0 +
1 = 1, 1 + e = 0 (modulo 12), e + 2 = 1 (modulo 12),
and so on.

The primary pre-compositional structure in
twelve-tone tonality is the array. The array is con-
structed from any two vertically aligned cyclic sets,
which provide it with its name. In Figure 2a, two
cyclic sets built from interval 1 cycles combine to
form the array 0,1/4,5. Arrays can also combine
cyclic sets of different cyclic intervals. In Figure 2b,
the array 0,4/4,5 contains cyclic sets constructed
from interval 4 and interval 1 cycles.

A single interval 4 cycle does not contain the ag-
gregate, that is, the collection of all twelve pitch
classes in the modulo 12 universe. Instead, the ag-
gregate partitions into four different interval 4
cycles, each containing only three pitch classes:
(0-4-8), (1-5-9), (2-6-t), and (3-7-e). To form a cyclic
set, either the same or different partitions may be

Computer Music Journal, 30:3, pp. 53–66, Fall 2006
© 2006 Massachusetts Institute of Technology.

combined. In the array given in Figure 2b, the cyclic
set 0,4 comprises two different partitions of inver-
sionally related interval 4 cycles: (3-7-e) and (1-5-9).
Moreover, the two cyclic sets of an array are not
fixed in relation to one another; the composer may
shift them horizontally in the manner of a slide rule
to create different vertical alignments between
them, as seen in Figure 2c.

To generate melodic and harmonic material at
the musical surface, Mr. Perle fragments arrays into
units ranging from trichords to hexachords. The
main unit is the axis-dyad chord, a hexachord com-
prising two linear trichords segmented from the ar-
ray’s cyclic sets. From another perspective, the
axis-dyad chord contains three vertical dyads, with
the axis dyad in the center surrounded by two

54 Computer Music Journal

Figure 1. Cyclic set 0,1. Figure 2. Cyclic sets com-
bine to form arrays. (a)
Cyclic sets of the same in-
terval form array 0,1/4,5.
(b) Cyclic sets of different

intervals combine to form
array 0,4/4,5. (c) Three dif-
ferent alignments of cyclic
sets from array 0,4/4,5.

Figure 1

(a)

(b)

(c)

Figure 2

Foley and Cusack

neighbor dyads. Another significant unit, the sum
tetrachord, comprises two dyadic segments from
the cyclic sets. As its name indicates, the sum tetra-
chord contains two of the four tonic sums of the ar-
ray. Figure 3 shows an excerpt with segmentations
drawn from various alignments of the array 0,4/9,e.
Although the segmentations given below the staff
suggest an ordered two-voice texture, the actual
notes do not appear at the musical surface in the
same ordered configuration. Rather, the composer
may realize the notes of the segmentation freely, in
an infinite variety of settings.

Furthermore, Mr. Perle interprets multiple occur-
rences of a pitch class within a segment as indepen-
dent entities. Thus, a hexachord in Mr. Perle’s
system may actually contain fewer than six distinct
pitch classes. The first axis-dyad chord in Figure 3,
for example, comprises six notes, yet contains only
four different pitch classes: {2, 4, 7, t}. A number of
resources are available to readers seeking further in-
formation on the composer’s theory of twelve-tone
tonality (Perle 1977, 1996; Carrabré 1993; Headlam
1995; Rosenhaus 1995; Foley 1999).

Segmentation Considerations

In studying any of Mr. Perle’s compositions in
twelve-tone tonality, the analyst typically begins by
establishing the interval cycles and arrays of the
music. Using an axis-dyad chord from Figure 3, Fig-
ure 4a clarifies how the requisite information is ob-
tained. The cyclic set is named by the tonic sums
created by adjacent pairs of notes, and the originat-

ing interval cycles are found in the difference be-
tween the corresponding neighbor notes. In Figure
4a, the adjacent pairs of notes identify the upper
cyclic set as 0,4 (because 3 + 9 = 0 and 9 + 7 = 4,
modulo 12), while the difference between the neigh-
bor notes reveals the underlying interval 4 cycle
(because 7 – 3 = 4). Similarly, the sums created by
the adjacent pitches in the lower cyclic set provide
its name (9,e), and the difference between the neigh-
bor notes determines the underlying interval 2
cycle. Thus, the axis-dyad chord contains within its
structure all the information necessary to deter-
mine its fundamental array, based on the position-
ing of the chord’s component pitch classes. It is
possible, however, to rearrange these same pitch
classes {2, 3, 4, 7, 7, 9} to suggest other arrays based
on cycles of interval 4 and interval 2, as illustrated
in Figures 4b, 4c, and 4d.

Furthermore, the number of array possibilities in-
creases dramatically if the interval cycles of the ar-
ray have not yet been established. For example, the
same collection of pitch classes from Figure 4 can
be arranged to form 360 different arrays based on
various combinations of other interval cycles.

Segments that contain only four or five pitch
classes pose substantial challenges for the analyst,
however, because it is not possible to arrange the
notes in such a way as to display all four tonic sums
and both interval cycles, and thereby unequivocally
reveal the underlying array. To illustrate, the pitch
classes of the pentachordal segment in Figure 5 have
been arranged to show either (a) both interval cycles
and two tonic sums, or (b) one interval cycle and
three tonic sums. The pitch classes of the tetra-

55

Figure 3. Bracketed seg-
mentations based on array
0,4/9,e. (Mm.1–2 of Etude
No. 4, from Six Etudes for
Piano by George Perle.
Copyright © 1978 [re-

newed] by G. Schirmer,
Inc. [ASCAP]. Interna-
tional copyright secured.
All rights reserved. Used
by permission.)

chordal segment have been arranged to show either
(c) two tonic sums, (d) two interval cycles, or (e) one
tonic sum and one interval cycle. Only the axis-
dyad chord embodies the structure capable of show-
ing all four tonic sums and both interval cycles.

Arranging a segment of six notes into an axis-
dyad chord is equivalent to giving a linear ordering
of the six notes, where the first three notes are the
upper trichord and the last three notes are lower tri-
chord. Thus, the number of arrangements of six
notes into an axis-dyad chord is the number of per-
mutations on six numbers, namely 6! = 720 (recall
that n! is read as “n factorial,” and it is defined by n!
= n × (n – 1) × (n – 2) × . . . × 2 × 1), assuming the
pitch classes are all unique. Of course, this number
is smaller if some of the pitch classes are repeated,
as we saw with the pitch classes {2, 3, 4, 7, 7, 9}
above. In general, the number of ways to arrange k
distinct pitch classes (and 6 – k unknowns) into an
incomplete axis-dyad chord is k! × C(6,k) = 6!/(6 –
k)! because we need to choose the k spots to place
the notes (C(6,k) ways), and then we must consider
every possible ordering of the notes in these spots
(k! ways). Here, C(n,k) is the number of ways of se-
lecting k elements from a set of n elements and is
defined by C(n,k) = n!/k!(n – k)!. As we will see, not
all of these arrangements must be considered in or-
der to generate the list of possible arrays, because
different arrangements can yield the same array.

Every arrangement of a chord has a potentially
different array. In fact, for some segments of six

notes, all 720 arrangements yield different arrays.
On average, a segment of six notes has 237 different
possible arrays, as demonstrated later in Table 3.

The situation is slightly more complicated for
segments of three to five notes. To compute the pos-
sible arrays in this case requires enumerating all
possible arrangements of the given notes into an
axis-dyad chord, and filling in the “missing” notes
with every possible pitch class. Table 1 gives the list
of all possible configurations of axis-dyad chords
given a segment of k = 3, 4, 5, or 6 notes. We use the
letters a, b, and c to identify the first, second, and
third spots in the upper trichord, and d, e, and f to
identify the first, second, and third spots in the
lower trichord. This allows us to use shorthand no-
tation—for example, [ac|e] can denote the segment
configuration:

a-c

-e-

The type of the configuration denotes the number
of known notes in each trichord, so the configura-
tion [ac|e] is of type 2 – 1, because two notes in the

56 Computer Music Journal

(a)

(c)

(b)

(d)

Figure 4. Axis-dyad chords
reveal both interval cycles
and all four tonic sums of
array.

Figure 5. Pentachordal
and tetrachordal seg-
mentations convey vary-
ing amounts of array
information.

(a) (b)

(c) (d)

(e)

Foley and Cusack

upper trichord and one note in the lower trichord
are known.

The configurations shaded in gray are actually
equivalent to others in the sense that they generate
the same set of possible arrays. In fact, it is easy to
see that when only one note in a given trichord is
known, all of the 144 possible cyclic sets are pos-
sible for that trichord. In other words, the “lone
note” creates no constraints. This means that, for
instance, the configurations [abc|d], [abc|e], and
[abc|f] are all equivalent. Because many of the pos-
sible configurations for two notes involve a lone
pitch in both trichords, all arrays are possible,
which is why we do not include them in our dis-
cussion. Table 2 shows how three different 3-1 con-
figurations of the segment {1, 3, 5, e} can yield the
same array.

The Need for a New Tool

Table 3 gives information about possible arrays for
segments of k = 3, 4, 5, or 6 notes. The number of
unique segments of k notes is N(k) = C(12 + k – 1,k),
and an upper bound on the number of arrays to
check, NA(k), is k! × 12(6 – k) × C(6,k). As mentioned
above, the actual number is less than this for k = 3
and 4, since not all of the C(6,k) configurations need
be considered. We use NAavg(k), NAmax(k), NAmin(k),
to denote the average, maximum, and minimum
number of arrays that a chord with k notes actually
has. The minimum, which clearly occurs if all of
the notes are the same, can be thought of as the best
case for the analyst. For example, no matter what
segment of four notes one is given, we know that at
least 1,376 arrays are possible.

As is often the case, the definition of “average”
can be misleading. The average segment in our anal-
ysis has many duplicate notes, because every pos-
sible multi-set of k notes is considered, whereas the
average segment in an actual composition is more
likely to have a small number of duplications. How-
ever, duplication of notes generally reduces the pos-
sible arrays, so the number of possible arrays for a
set of notes from an actual composition is generally
higher than the overall average. In other words,
when analyzing a composition, it is likely that the
number of possible arrays will be larger than the av-

57

Table 1. Possible Segment Configurations Consisting of k = 3, 4, 5, or 6 Notes

k Type Segment Configurations

3 3-0, 0-3 abc ---
--- def

3 2-1 ab- ab- ab- a-c a-c a-c -bc -bc -bc
d-- -e- --f d-- -e- --f d-- -e- --f

3 1-2 a-- a-- a-- -b- -b- -b- --c --c --c
de- d-f -ef de- d-f -ef de- d-f -ef

4 2-2 ab- ab- ab- a-c a-c a-c -bc -bc -bc
de- d-f -ef de- d-f -ef de- d-f -ef

4 3-1, 1-3 abc abc abc a-- -b- --c
d-- -e- --f def def def

5 3-2, 2-3 abc abc abc ab- a-c -bc
de- d-f -ef def def def

6 3-3 abc
def

Table 2. Arrangements of {1, 3, 5, e} Yielding Array
4,8/2,7

Configuration Missing Notes Chord

abc 1 3 5
3, 4

d-- e 3 4
abc 1 3 5

3, 8
-e- 3 e 8
abc 1 3 5

6, 8
--f 6 8 e

erage we computed, so in some sense the average
can be viewed as a better-than-usual case scenario.

The results of Table 3 were obtained by an ex-
haustive search of all possible segments of three to
six notes. For six notes, we computed all possible
arrays for every possible segment of six notes by
considering all 720 arrangements of the segment
into an axis-dyad chord. When k < 6, we must ex-
haust every possible segment of k notes, filling in
the “missing” (6 – k) notes with every possible com-
bination of pitch classes (clearly, there are 12(6 – k)

possibilities) and consider every ordering of the
given k notes for every non-equivalent configura-
tion from Table 1. The number of steps required to
compute the numbers NAavg(k), NAmax(k), NAmin(k),
is on the order of N(k) × NA(k), which is exponen-
tial in k. However, because k ≤ 6, the number of
steps involved is actually not that large, assuming a
computer is available. In fact, these numbers were
all computed in a matter of minutes on a Mobile
AMD Athlon 64 Processor 3200+ with a clock speed
of 1.60 GHz and with 512 MB of RAM. As an ex-
ample of how the computation was performed, we
will describe in more detail the process of determin-
ing these numbers for tetrachordal segments.

To determine the possible arrays for a segment of
four notes requires checking eleven possible seg-
ment configurations, determined by where the two
“missing” notes are in the chord. The careful reader
will observe that there are actually 15 configura-
tions, not 11. However, recall that each of the 3-1
(and 1-3) configurations generates the same possible
arrays, so one must only check one of each of these
configurations, reducing the number from 15 to 11.
For each of the two missing notes, there are twelve
possible pitch classes from which to choose, and
4! = 24 arrangements of the 4 given notes. The total

number of possible configurations is thus 11 × 122 ×
24 = 38,016. For each of the 1,365 unique segments
of 4 notes, we must check all of these configura-
tions and enumerate the arrays. The maximum
number of possible arrays for a segment with 4
notes is 11,454, with an average of 7,887.

The analysis for segments with three or five notes
is similar to that of four notes. Notice that because
there are only 124 = 20,736 possible arrays, seg-
ments of three notes are not very helpful in narrow-
ing down the array used to create the chord, because
on average 17,241 (more than 83%) of the arrays are
possible.

Given these results, it is clear that determining
the possible arrays by hand for even a single chord
can be prohibitive. Further, how does one determine
the arrays for a set of chords? The obvious method
is to determine the set of possible arrays for each
chord, and then find the intersection of all of these
sets. Again, this is practically impossible to do by
hand. It was in light of these facts that we developed
the T3RevEng, a software analysis tool that makes
these and other tasks trivial to perform in a matter
of seconds.

The Tool Described

Other software tools exist for Perlean analysis. In
1994, James H. Carr and Charles Porter, former pro-
tégés of George Perle, developed a Macintosh appli-
cation named “12-tt 2.0.” This software lists arrays
when the interval system and the sums are speci-
fied (Carr 1995). In describing the program to these
authors, Mr. Carr referred to it as an “array encyclo-
pedia,” and stated that Mr. Perle used it for many
years. More recently, another former student of

58 Computer Music Journal

Table 3. Possible Arrays for Sets of Chords with k = 3, 4, 5, or 6 Notes

Maximum Minimum

k N(k) NA(k) NAavg(k) NAmax(k) sample NAmin(k) sample

3 364 82,944 ≈17,241 19,215 0,1,3 8,636 0,0,0
4 1,365 38,016 ≈7,887 11,454 0,1,3,5 1,376 0,0,0,0
5 4,368 8,640 ≈2,030 3,968 0,1,2,5,9 67 0,0,0,0,0
6 12,376 720 ≈237 720 0,1,2,3,4,7 1 0,0,0,0,0,0

Foley and Cusack

Mr. Perle’s, Dave Headlam, created a series of pro-
grams for a graduate seminar he gave at the East-
man School of Music in 2005. The summary he
provided for the authors through personal corre-
spondence is as follows.

When provided with an input of from four to six
pitch classes, these programs identify all possible
array names, but only for one pair of interval cycles
at a time, as specified by the user. In addition, one
of Mr. Headlam’s students at the Eastman School,
Christopher Winders, wrote a program that allows
the user to slide the cyclic sets of an array in rela-
tion to one another to produce all possible vertical
alignments, and some information about that ar-
ray’s mode and key (more abstract entities in twelve-
tone tonality). Our program, T3RevEng, goes
further than its predecessors in that it allows the
user to determine all possible arrays, interval
cycles, and tonic sums of a passage composed in
twelve-tone tonality. Specifically, it can show every
arrangement of a segment of six pitches into an axis
dyad chord based on a given array name or interval
cycles; draw sum squares, difference squares, and
sum pentagrams; give all array names compatible
with a segment of four pitches and a pair of interval
cycles; and compute all array names and correspon-
ding chord configurations compatible with any set
of segments, each consisting of three to six notes.
We will now briefly describe some of the tasks that
T3RevEng can perform.

Axis-Dyad Chord Creation

Given a segment of six notes and either the desired
array or the interval cycles of the desired array,
T3RevEng determines all possible axis-dyad chords.
For instance, if the user enters the notes {1, 2, 3, 4,
5, 6} and interval cycles 1,5 into the AD Chord
(cycles) Task, the program will produce the follow-
ing output:

There are 6 possibilities:

6,7: 243 7,8: 253 5,6: 324 8,9: 354

6,e: 156 5,t: 146 6,e: 156 3,8: 126

6,7: 425 7,8: 435

4,9: 136 3,8: 126

Note that all of the arrays have interval 1 and in-
terval 5 cycles, and these six arrangements are the
only possibilities in this case. If the user enters
notes {2, 3, 5, 6, 7, 9} and array t,1/7,e into the AD
Chord (array name) Task, the program will produce
the following:

There is 1 possibility:

t,1: 376

7,e: 529

The algorithm used for both of these is the brute-
force exhaustive search algorithm. That is, in each
case, all 720 arrangements of the notes are consid-
ered, and the array or interval cycles are computed
and matched against the input. Those that produce
the same array or interval cycles are produced as
output. At first glance, it seems that this approach
is too simplistic, and a more elegant and efficient al-
gorithm could be implemented. For instance, if the
input is {1, 2, 3, 4, 5, 6}, and the array is 0,0/0,0, it is
clear that no arrangement will work, and a check
that no two of the notes add to 0 will reveal this.

Should we implement a cleverer algorithm that
more quickly determines those arrangements that
will work? Surprisingly, we should not for several
reasons: the naïve algorithm was trivial to imple-
ment, is absolutely correct, and, because the num-
ber of arrangements is fixed at 720, it is extremely
fast. This is an instance where the motto “work
harder, not smarter” applies.

Squares and Pentagrams

As we have seen, tetrachordal and pentachordal seg-
ments do not contain enough information to deter-
mine the underlying array. However, different parts
of the array can be determined if we make assump-
tions about the configuration of the chord. This is
where T3RevEng’s sum squares, difference squares,
and sum pentagrams are useful. Figure 6 shows both
a sum square and difference square for the segment
{1, 2, 3, 4}, and Figure 7 shows a sum pentagram for
segment {1, 2, 3, 4, 5}. The nodes contain the notes
of the segment, and the edges are labeled with ei-
ther the sum of the adjacent notes (in the sum
square and sum pentagram), or both possible differ-

59

ences between the adjacent notes (in the difference
square), with all mathematics performed modulo
12. T3RevEng was used to generate the figures of
the sum squares, difference squares, and sum penta-
grams in this article.

The sum square is useful if the analyst assumes
the four notes in the tetrachordal segment belong to
one of the 2-2 configurations in which the notes in
each trichord are adjacent (e.g., [ab|de], [ab|ef], etc.),
because each partition of the edges of the sum square
will then reveal one of the tonic sums for each tri-
chord. Thus, from Figure 6a, we can see that for seg-
ment {1, 2, 3, 4}, the possible tonic sums pairs for
each trichord are 3/7, 4/6, and 5/5. Note that these
notes can be arranged to form array 3,2/7,4, for in-
stance, but not 3,7/2,4, because the tonic sums 3 and
7 do not belong to the same cyclic set in the array.

If the cycle intervals are also known, the list of
possible arrays is 24, because for each of the three
partitions, there are eight ways of distributing the
two known tonic sums in the array such that one
occurs in each trichord. Given a tetrachord and the
cycle intervals, the Sum Square Task of T3RevEng
will output these possibilities. For instance, if we
enter the segment {1, 2, 3, 4} and cycle intervals 3,5,
the output will be

sum pair 3/7: 3,6 3,6 0,3 0,3 7,t 4,7 7,t 4,7

7,0 2,7 7,0 2,7 3,8 3,8 t,3 t,3

sum pair 4/6: 4,7 4,7 1,4 1,4 6,9 3,6 6,9 3,6

6,e 1,6 6,e 1,6 4,9 4,9 e,4 e,4

sum pair 5/5: 5,8 5,8 2,5 2,5 5,8 2,5 5,8 2,5

5,t 0,5 5,t 0,5 5,t 5,t 0,5 0,5

A difference square can be used when the assump-
tion is that tetrachordal segment came from the
[ac|df] configuration. This particular arrangement of
the pitches will reveal the various possibilities for

the interval cycles underlying the array. If the ana-
lyst suspects that the tetrachordal segment repre-
sents a neighbor chord rather than a sum tetrachord,
the difference square will provide the configuration
that corresponds to the prevailing interval cycles.

Given a pentachordal segment, we have already
seen that we can either determine both interval
cycles and two tonic sums, or one interval cycle and
three tonic sums. The former is the case for configu-
rations in which two notes are non-adjacent
([abc|df] and [ac|def]), and the latter is the case for
the remaining configurations, and is also when the
sum pentagram is useful. The development of the
sum and difference squares and sum pentagrams led
to the strongest utility of the software, the Multiple
Segment Analysis task, which we describe next.

Multiple Segment Analysis

The ability to consider multiple segments simulta-
neously is crucial to analyzing compositions in
twelve-tone tonality, because chords function as
related entities within a passage, not as isolated ele-
ments. This is where T3RevEng really shines.
Given a set of segments, each consisting of any-
where between three and six notes, the Multiple
Segment Analysis Task of T3RevEng computes all
arrays that are compatible with all of the segments.
An array can then be selected, and it will show all of
the non-equivalent configurations of each segment
that conform to that array. In addition, a set of
cyclic intervals can be entered to restrict the arrays
to those whose interval cycles match. Figure 8 gives

60 Computer Music Journal

Figure 6. (a) Sum square
and (b) difference square
for segment {1, 2, 3, 4}.

Figure 7. Sum pentagram
for segment {1, 2, 3, 4, 5}.

(a) (b)

Foley and Cusack

a screenshot of the Multiple Segment Analysis Task
in action.

As with the axis-dyad chord creation algorithms,
we use a brute-force algorithm to accomplish this
task, for many of the same reasons. That is, for each
segment that is entered, we check every possible
configuration, as we did in the statistical analysis
described earlier. For each segment we then have a
set of possible arrays. We then simply compute the
intersection of all of these sets, leaving only those
arrays that are compatible with all segments. This

approach was used after considering a more compli-
cated approach using graphs. However, before trying
this approach we implemented the brute-force ap-
proach to see how it would perform. It turns out
that this approach is quite adequate. We ran tests
on several sets of up to 30 segments, ranging from
randomly generated segments, which result in few
arrays, to sets of segments that are all subsets of
{1, 2, 3, 4, 5, 6}, which have many arrays in com-
mon. In all cases, the arrays are generated in under
10 sec. This seems fast enough, so we abandoned a

61

Figure 8. Screenshot of
T3RevEng Multiple Seg-
ment Analysis.

more complex analysis of the problem that would
lead to a more complex algorithm that may or may
not be faster.

Analytical Applications

The program’s speed greatly facilitates the prelimi-
nary analytical process of determining arrays and
chord configurations. Entering the first six notes
from Figure 9 in the Multiple Segment Analysis
Task, but without specifying the interval cycles,
generates 720 arrays. To decrease the unwieldy
number of possibilities, the analyst specifies that
interval 1 and 3 cycles are in operation, based on the
observation that the first six notes (identified as seg-
ment A) form a palindromic succession of intervals
<<1-3-3-3-1>>. As a result, the number of possible
arrays trims down to just 16. The analyst then en-
ters the notes from the next segment B, reducing
the possible arrays to just two, namely 1,2/0,3 and
2,3/0,3. The analyst continues to enter segments
one at a time to ascertain finally which of these ar-
rays underlies the passage.

Detecting relationships among segments is also
made easier with the Multiple Segment Analysis
Task. The analyst can highlight the transpositional
relationship of a descending major second between
corresponding segments E-H, F-I, and G-J in mea-
sure 2 by choosing transpositionally related arrays
and axis-dyad chord configurations.

T3RevEng is especially helpful in forming inter-
pretations that are not so readily apparent. The ex-
cerpt in Figure 10a begins with segments from the
array 8,9/6,9, determined by entering the segments
one at a time. The nine dyads of measure 25, how-
ever, cannot be shown to emanate from a single

array when considered as three axis-dyad chords. In-
terpreting Mr. Perle’s dynamic marking of pp subito
at the last dyad of measure 25 as indicating a differ-
ent musical gesture, the analyst includes the last
dyad with the segments in measure 26 instead of
those in measure 25. The resulting axis-dyad chords
in measure 26 all belong to a new array, 5,6/5,8.

The remaining dyads of measure 25 form four
tetrachords, all of which may belong to 144 arrays.
To manage this ungainly result, the analyst must
find some means to constrict the data. Entering the
four tetrachords in the Sum Square Task reveals
that they all have the sum pairs 8/6 and 9/5 in com-
mon. The tetrachords are then arranged to feature
these sums in the same physical position for all four
squares, as illustrated in Figure 10b. The analyst
then interprets these tetrachords as constituting a
transitional passage, with the sum pair 8/6 provid-
ing the link from array 8,9/6,9 of the preceding
phrase to 5,6/5,8 of the following phrase. The re-
maining sum pair functions as a secondary link,
with sum 9 leading from the former array, and sum
5 leading to the ensuing array.

On occasion, the analyst will choose to bypass ob-
vious conclusions suggested by T3RevEng’s findings
in favor of more musically convincing readings. In
Figure 11, the tetrachordal segment G is reinter-
preted as pivoting to a different array, 9,0/5,t. How-
ever, this tetrachord, as well as the next two at H
and I, could still be analyzed as belonging to the for-
mer array, 8,e/6,e. Based solely on the data supplied
by the Multiple Segment Analysis Task, the onset
of the new array would be located at chord J, be-
cause its pitch classes cannot be arranged to fit the
preceding array. However, the analyst chose to lo-
cate the pivot chord at G for interpretative prefer-
ences T3RevEng cannot consider. Although both

62 Computer Music Journal

Figure 9. Arrays and chord
segment configurations.
(Mm.1–2 of Etude No. 1,
from Six Etudes for Piano
by George Perle. Copyright

© 1978 [renewed] by
G. Schirmer, Inc. [ASCAP].
International copyright se-
cured. All rights reserved.
Used by permission.)

Foley and Cusack

tetrachords F and G share the same pitch-class con-
tent, the notes are rearranged at G, suggesting an ap-
propriate location for the pivot. Furthermore,
tetrachord H begins a new phrase. All the corre-
sponding tetrachords in the two phrases are related
symmetrically, with the first vertical dyad in each
tetrachord remaining invariant, and the second ver-
tical dyad undergoing a symmetrical transposition:
The upper note of the dyad is transposed upward by
a semitone (T+1), and the lower note is transposed
downward by a semitone, (T–1). This is evident

when comparing tetrachordal pairs A-H, B-I, C-J,
D-K, E-L, and F-M.

Another situation requiring analytical interven-
tion occurs in the opening measures of Mr. Perle’s
Invention from the Wind Quintet No. 4, given in
Figure 12. This passage divides into two arrays,
9,e/6,1 and t,e/6,1, with a concurrent change of in-
terval cycles. Three of the segments in this passage
can be analyzed as belonging to both arrays, raising
the question of where to locate the modulation
from one array to the other in a musically satisfying

63

Figure 10. (a) Tetrachords
of m. 25 provide transition
between arrays. (Mm. 23–
26 of Etude No. 1, from Six
Etudes for Piano by George
Perle. Copyright © 1978
[renewed] by G. Schirmer,
Inc. [ASCAP]. Interna-

(a)

(b)

Figure 11. Tetrachordal
segments of arrays 8,e/6,e
and 9,0/5,t. (Excerpt of
“There Came a Wind Like
a Bugle,” from Thirteen
Dickinson Songs, Vol. 1 by
George Perle [piano only,

Figure 10

Figure 11

tional copyright secured.
All rights reserved. Used
by permission.) (b) Tetra-
chords of m. 25 arranged
as sum squares.

third system and first half
of fourth system]. Copy-
right © 1981 [renewed] by
G. Schirmer, Inc. [ASCAP].
International copyright se-
cured. All rights reserved.
Used by permission.)

way. In this case, the analyst interprets the modula-
tion as occurring on beat three of the second mea-
sure, the first of the three potential pivot locations.
Several factors contribute to this decision.

First, the initial statement of the motive/counter-
motive pair concludes on this beat. Second, the
French horn makes its first entrance precisely at
this point. Additional justification is provided by
the relationship between the opening and closing
measures of the movement. As with the passage
from measure 1 shown in Figure 12, the passage

from measure 87 begins in array 9,e/6,1, shown in
Figure 13. The notes within the segments of mea-
sure 1 are transposed by six semitones (T6) in the
corresponding segments in measure 87. The tetra-
chordal segments in measure 2 have expanded to
pentachordal segments in measure 88 owing to the
addition of the French horn, yet the pitch classes of
the corresponding sums are also transposed by T6.

This tritone relationship holds until beat 3 in
measure 88. At this point, the lower cyclic set does
not maintain the T6 relationship; instead, it is sym-

64 Computer Music Journal

Figure 12. Possible pivot
chord locations. (Mm. 1–4
of Invention, from Wind
Quintet No. 4 by George
Perle. Copyright © 1987 by

Figure 13. Segments from
array 9,3/6,1. (Mm. 1–4 of
Invention, from Wind
Quintet No. 4 by George
Perle. Copyright © 1987 by

Figure 12

Figure 13

Galaxy Music Corporation.
All rights reserved. Inter-
national copyright secured.
Used by permission.)

Galaxy Music Corporation.
All rights reserved. Inter-
national copyright secured.
Used by permission.)

Foley and Cusack

metrically related to its counterpart, with the
neighbor notes transposed up by five semitones
(T+5) and the axis note transposed down by the
same amount (T–5). Also from this point, the five
instrumental parts are rhythmically modified in
comparison to their setting in measures 3–4.

Future Work

An obvious question that comes to mind is to what
extent a computer can be used to help analyze mu-
sic written using Mr. Perle’s compositional system
of twelve-tone tonality. We have demonstrated in
the present work a program that can compute useful
information given a sequence of chord segments,
performing in seconds what could take weeks or
months for a human analyst. The natural question
to ask is how much more can be automated, and
what tasks absolutely require the expertise of a hu-
man analyst.

Currently, the analyst must break up the compo-
sition into segments by hand. We would like to in-
vestigate whether an efficient algorithm exists to
segment a composition, and even make some tenta-
tive decisions about where the array names might
change based on less input from the analyst. At pres-
ent, the analyst uses cues from the music—includ-
ing changes in meter, instrumentation, contour,
texture, dynamics, articulation, rhythmic patterns,
tempo, pedal markings, nonmetrical beaming as-
signments, and a myriad of other indicators—to cre-
ate segments. An algorithm can take some of these
things into account if the composition is input in a
suitable format. For example, the notes can be input
so that their location in the score and their voice or
instrumental designation is indicated, allowing the
algorithm to take this into account when deciding
segments or array name changes.

There are other things, like contour, syncopation,
or nonmetrical beamings, that an algorithm cannot
grasp so easily. Although a computer program is
limited in that it has no intuition or knowledge of
music theory, it can consider many possibilities
much faster than a human analyst. What is unclear
at this point is whether we can find a suitable algo-
rithm that is fast enough to overcome the lack of in-

tuition. When working with segments of fixed sizes
(three to six in the current work), the number of
possible arrangements is small enough to deal with.
However, if an algorithm is given an entire compo-
sition, there are so many possible ways to segment
it that it would not be possible to do an exhaustive
analysis, even with a computer. We must find some
heuristics to narrow down the segmentations that
are considered and to determine possible array
names and transitions.

We also need to determine exactly what inputs
are needed. Should we input the exact notes or just
pitch classes; do we need the durational value of the
notes, or just the pitch information; how should
various articulation markings be dealt with; how do
we specify parts, and do we need to; and do we pro-
vide as input a list of possible interval cycles or ar-
ray names to be considered? The more we can
supply as input, the better an algorithm can per-
form, but also the more manual work the analyst
must perform.

Although it is certain that a program will not re-
place the human analyst, we may be able to create a
program that can produce several (not too few or too
many) segmentation alternatives for the analyst to
consider. This will allow the analyst to spend less
time on rote computations and more time on the in-
terpretative questions generated during and by the
analytical process.

Final Observations

The T3RevEng program is a calculator designed
solely to generate data, and as such requires an indi-
vidual trained in twelve-tone tonality to interpret
the information it yields. When understood and
used in this sense, T3RevEng has proven to be a vir-
tually indispensable tool for the analyst of Mr. Perle’s
twelve-tone tonal music. (It must be stressed that
this application does not analyze phrases in a musi-
cal way and does not solve interpretative quandaries.)
T3RevEng may also be useful for composition
within the system of twelve-tone tonality. The
composer may enter input from a variety of perspec-
tives, including potential pitch class segments, or
desired interval cycles or tonic sums, and the appli-

65

cation will provide as output a wealth of informa-
tion for the composer’s consideration. In short, the
program can supply the composer with a compre-
hensive set of pre-compositional material, based on
the composer’s specifications. As such, then, the
T3RevEng program is a practical, robust tool for
both analysts and composers working within the
parameters of twelve-tone tonality.

References

Carr, J. 1995. “George Perle and the Computer: An Un-
easy Alliance.” International Journal of Musicology
4:207–215.

Carrabré, T. 1993. “Twelve-Tone Tonality and the Music
of George Perle.” Ph.D. dissertation, City University of
New York.

Foley, G. 1999. “Pitch and Interval Structures in George
Perle’s Theory of Twelve-Tone Tonality.” Ph.D. disser-

tation, University of Western Ontario.
Forte, A. 1973. The Structure of Atonal Music. New

Haven, Connecticut: Yale University Press.
Headlam, D. 1995. “Tonality and Twelve-Tone Tonality:

The Recent Music of George Perle.” International Jour-
nal of Musicology 4:301–333.

Lewin, D. 1987. Generalized Musical Intervals and
Transformations. New Haven, Connecticut: Yale Uni-
versity Press.

Perle, G. 1977. Twelve-Tone Tonality. Berkeley: Univer-
sity of California Press.

Perle, G. 1996. Twelve-Tone Tonality, 2nd ed. Berkeley:
University of California Press.

Rahn, J. 1980. Basic Atonal Theory. New York: Schirmer.
Rosenhaus, S. 1995. “Harmonic Motion in George Perle’s

Wind Quintet No. 4.” Ph.D. dissertation, New York
University.

Straus, J. 2005. Introduction to Post-Tonal Theory, 3rd ed.
Upper Saddle River, New Jersey: Prentice-Hall.

66 Computer Music Journal

