
1

An Introduction to Quantum Computing and Quantum Error-Correction

Charles A. Cusack

November 1999

1 Introduction and Preliminaries

1.1 Introduction to Quantum Computing

Quantum computing was hinted at by Feynman [27, 26] in 1982, and made more for-

mal by David Deutsch in 1985 [18]. It was thought that perhaps quantum computers

could perform certain operations faster than any classical1 computer, but nothing

concrete was known, so for a decade progress in the field was slow. Then in 1994,

Peter Shor gave a polynomial-time quantum algorithm for factoring integers [49],

a problem for which the best known classical algorithm has exponential complexity.

Later came Grover’s search algorithm [32, 34], which is capable of unstructured search

in time O(
√

N), whereas the best possible classical algorithm has complexity Θ(N).

This was the first real “proof” that a quantum computer is a more powerful device

than a classical computer, at least in some sense.

In the 5 years since Shor’s result, much has been done. The field of quantum com-

puting is very broad, with research being done on algorithms, complexity theory, cryp-

tography, information theory, error-correcting codes, and physical implementation. A

major thrust of the work has been in the area of quantum error correction. The rea-

son for this is the fact that quantum states are very susceptible to inaccuracy and

decoherence. Without the use of error-correcting codes, quantum computation will

be all but impossible. In fact, because of the no-cloning theorem [58], it was thought

that perhaps error correction would be impossible. The plethora of papers on quan-

tum error-correcting codes (see [14, 31, 15, 48, 47, 54, 52, 13, 41, 29, 30, 31, 42, 43],

for a few) show that nothing could be further from the truth.

1In this paper, the term classical, when applied to compters and algorithms, means non-quantum,
non-relativistic. In other words, present-day computers and the algorithms which operate on them.

2

Most researchers are optimistic about the future of quantum computing, although

they differ on the question of when. Some researchers think we will see a fully func-

tional quantum computer within 10 years, while the more realistic estimate seems to

be that it will be at least 30 years, and perhaps longer.

In this paper, I attempt to give a very brief introduction to quantum computing.

As a mathematician, I feel the plight of those non-physicists trying to wade through

the quantum mechanics to understand the concepts involved. In light of this, I have

attempted to make this paper as physics-free as possible. My hope is that it doesn’t

oversimplify too much. Those interested in a more in-depth introduction should

consult one of [2, 45, 53, 56, 57]. For those with a good physics background, the

much heftier [44] may be appropriate.

I will proceed as follows. In Section 1.2 I will define the basic unit of storage in a

quantum computer, the qubit. I will then talk about multi-qubit systems, or registers.

The idea of entanglement will be briefly discussed. In Section 1.3 I will talk about the

quantum analog to the classical gate logic. I will discuss some of the key operations

that are performed on qubits and registers.

In Chapter 2 I will discuss some of the “neat” properties of quantum systems, and

one limitation.

Chapter 3 will deal with the two “breakthrough” quantum algorithms: Shor’s

factoring algorithm (Section 3.1) and Grover’s search algorithm (Section 3.2).

Chapter 4 will discuss the idea of quantum error-correcting codes.

1.2 Qubits and Quantum Registers

The study of quantum computing involves physics, mathematics, and computer sci-

ence. Most researchers have a lack of knowledge in at least one of these fields, making

it difficult to write about the subject to a general audience. Most of the introductions

on quantum computing [2, 53, 11, 56, 9] are written from the perspective of a physi-

cist, making it difficult for mathematicians and computer scientists to understand the

subject. Two references do a better job: [57] is a good non-technical introduction,

and [45] is a good but more complete introduction for non-physicists.

3

The approach I will take in this subsection is perhaps a little non-standard. It is

an attempt to make the concepts of quantum computing understandable with very

little knowledge of quantum mechanics.

In a classical computer, data are stored as bits in a two-state system. Thus, each

bit of data can be in either state ’0’ or state ’1’. A collection of n bits is called

a register. One can think of the possible states of a register as lying in Zn
2 . The

operations which a classical computer performs can be thought of as mappings from

Zn
2 to Zn

2 .

The situation in quantum computing is quite different. A quantum bit, or qubit,

is a quantum two-level system which can be in state ’0’ or ’1’, or a superposition of

both. That is, a qubit can be in state a · 0+ b · 1, where a and b are complex numbers

satisfying |a|2+|b|2 = 1. From the physical point of view, a qubit can be any quantum

two-level system, such as a spin-1/2 particle. We shall not concern ourselves with the

hows of implementation qubits. Instead we will view the qubits, and the operations

performed on them, in terms of mathematics. There are a few difficulties in viewing

quantum computers in this way. We shall discuss these as we come to them.

The state of a qubit can be thought of as a unit vector in a complex Hilbert space

of dimension 2. The state of an n-qubit quantum register can be thought of as a unit

vector in a Hilbert space of dimension 2n.

Before we go further, we shall look more closely at the complex Hilbert spaces of

dimension 2n.

Let H1 be a 2-dimensional complex Hilbert space, and {(1, 0)T , (0, 1)T} a basis

for H1. A generic vector in H1 is of the form

a

(
1

0

)
+ b

(
0

1

)
,

where a and b are complex numbers with |a|2 + |b|2 = 1.

Let Hn be a complex Hilbert space of dimension 2n. We can define Hn recursively

by

Hn = Hn−1 ⊗H1,

where ⊗ is the tensor product.

4

Thus, a basis for H2 is
{(

1

0

)
⊗

(
1

0

)
,

(
1

0

)
⊗

(
0

1

)
,

(
0

1

)
⊗

(
1

0

)
,

(
0

1

)
⊗

(
0

1

)}

=








1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


 ,




0
0
0
1








,

and a generic vector in H2 is written as

a0




1
0
0
0


 + a1




0
1
0
0


 + a2




0
0
1
0


 + a3




0
0
0
1


 ,

where |a0|2 + |a1|2 + |a2|2 + |a3|2 = 1.

There is a compact notation, called ket notation, to write vectors in a complex

Hilbert space, developed by Dirac [21]. In addition to being more compact, it is much

more suited for discussion of quantum states, as we will see. In H1, we write

|0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
.

In H2, we write

|00〉 = |0〉 ⊗ |0〉 =




1
0
0
0


 , |01〉 = |0〉 ⊗ |1〉 =




0
1
0
0




|10〉 = |1〉 ⊗ |0〉 =




0
0
1
0


 , and |11〉 = |1〉 ⊗ |1〉 =




0
0
0
1




Thus, a basis for Hn is given by

{|0〉, |1〉, . . . , |2n − 1〉},

where the numbers in the kets are thought of in terms of their binary expansions.

Finally, we can write a vector in Hn as

2n−1∑
i=0

ai|i〉,

5

where each of the ai are complex numbers, and
∑2n−1

i=0 |ai|2 = 1.

At times we will use the shorthand |a〉|b〉 = |a〉 ⊗ |b〉.
We use a complex Hilbert space to represent the states of a n-qubit register because

n qubits can be in a superposition of 2n states. Recall that a classical register can

store just one of the possible 2n states. Thus, it seems that a quantum register can

store exponentially more information than a classical one.

Unfortunately, things are not as nice as I have described so far. Although it is

true that a quantum register can store a superposition of 2n states, the state of a

quantum register is not known unless we make a measurement of the register. When

we make a measurement, the state of the register is collapsed into one of the base

states, and which one it collapsed to is known to us. The probability that the state

collapses to |k〉 is |ak|2. In the measurement process, the original state of the register

is destroyed, and can not be reconstructed.

It is important to understand that this is not the same thing as we have with

a classical probabilistic computer. In the case of probabilistic computer, at each

step only 1 of the possible states is stored. Which one depends on the probability

distribution. With a quantum computer, we can actually store all of the possible

states and operate on them all at the same time. It is only when a measurement is

performed that the state is reduced to one of the base states, which we can view as

a classical state.

Example 1.1 Consider a qubit in state 1/
√

2(|0〉+ |1〉). If we measure the qubit, it

will collapse to state |0〉 with probability 1/2, and to state |1〉 with probability 1/2. If

we measure the state again, we will get the same result, because the state has collapsed

to the state which we measured it to be in.

Another difference between quantum and classical registers is the fact that two

(or more) bits in a quantum register can be entangled. This is best illustrated with

an example.

Example 1.2 Consider a 2-qubit register in state 1/
√

2(|00〉 + |11〉). Two particles

in this state are called an EPR pair (See [23, 6, 26] for the history of the EPR

6

paradox.). If we measure the register, it will collapse to state |00〉 with probability

1/2, and to state |11〉 with probability 1/2. In fact, if we just measure the first qubit

of the register, it will have the same result.

The two qubits in this register are said to be entangled because the value of one is not

independent of the other. If we measure one of the qubits, it effects the other one.

Essentially, a collection of qubits is entangled if it cannot be expressed as a tensor

product of single qubits. It is not hard to see that we can’t express 1/
√

2(|00〉+ |11〉)
as a tensor product.

Example 1.3 A register in the state 1/
√

2(|00〉+ |01〉) is not entangled, since it can

be written as |0〉(1/√2(|0〉+ |1〉)).

It is entanglement that gives quantum computing an edge over classical computing.

We will see two examples of how entanglement can be used to speed up classical

algorithms in Chapter 3.

1.3 Quantum Transformations

Now that we have an understanding of how data is stored (at least theoretically) in

a quantum computer, we need to discuss how it can be processed. As in classical

computing, there are many computational models for quantum computing. The most

popular model for quantum computation is the notion of quantum gates. I will not

discuss quantum gates in detail. The interested reader can consult one of many papers

dealing with this issue [3, 51, 20, 22, 19, 55, 4, 1]. Since the idea of quantum gates is

an extension of the idea of reversible logic, Bennet’s paper on reversible logic [8] may

also be of interest.

Quantum registers are transformed by unitary transformations. A matrix U is

unitary if UU † = U †U = 1, where U † is the conjugate transpose of U . It is an im-

portant fact that unitary transformations are linear. In fact, unitary transformations

are the linear transformations which map unit vectors to unit vectors.

7

We can think of the unitary transformations as gates, much like classical boolean

logic gates. They have inputs and outputs, the outputs depending on the inputs and

the type of gate. There are several very important differences, however.

First, since we are dealing with qubits, not boolean bits, the gates don’t have

outputs restricted to ’0’ and ’1’. In fact, the outputs of a gate can be in any super-

position, and can, more importantly, introduce entanglement between two or more

qubits.

Second, unitary transformations are linear, so a transformation is described fully

by its effect on the basis states. This makes it easy to describe what logic gates

will do, but also results in the non-cloning theorem (See Section 2.1). In addition, it

means that quantum gates operate on each basis state of a qubit independently. In

other words, we can compute a function on many inputs at the same time. As stated

previously, we can only read one of the outputs. We shall see in Chapter 3 how it is

still possible to exploit the extra computation.

Third, since quantum transformations are unitary, the quantum gates must be

reversible. Thus means that given the outputs, the inputs should be determined

uniquely. One obvious implication of this is that the number of outputs must be the

same as the number of inputs. Most quantum computations are thought of in the

following framework: If I wish to compute the function f on an input x, I transform

the state |x〉|0〉 to |x〉|f(x)〉. Since I have saved the input x, the computation can be

reversed.

An important consideration when talking about quantum gates is whether or not

there is an efficient implementation of the gate. For instance, the quantum Fourier

transform in Example 1.8 below can be implemented efficiently in base q, if q has

small prime power factors [24], but may not be efficiently computable for all bases q.

I will conclude this subsection with examples of common gates used in quantum

computation.

Example 1.4 Below is a list of transformations on single qubits. Because the trans-

formations are linear, we need only show their effect on basis states. We also give the

matrix associated with each.

8

Identity I :
|0〉 7→ |0〉
|1〉 7→ |1〉

(
1 0
0 1

)

NOT (negation) X :
|0〉 7→ |1〉
|1〉 7→ |0〉

(
0 1
1 0

)

phase shift Z :
|0〉 7→ |0〉
|1〉 7→ −|1〉

(
1 0
0 −1

)

phase shift and negation (ZX) Y :
|0〉 7→ |1〉
|1〉 7→ −|0〉

(
0 −1
1 0

)

These are often referred to as the Pauli matrices. These transformations are important

for the study of quantum error-correcting codes.

Example 1.5 The Hadamard transformation is the single-bit transformation defined

by

H :
|0〉 7→ 1√

2
(|0〉+ |1〉)

|1〉 7→ 1√
2
(|0〉 − |1〉)

1√
2

(
1 1
1 −1

)

Example 1.6 The controlled-NOT gate, Cnot negates the second bit if the first bit is

a ‘1‘, and does nothing otherwise:

Cnot :

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Example 1.7 The Walsh or Walsh-Hadamard transformation, which performs the

Hadamard transform on each qubit of a quantum register, can be defined recursively

as follows:

W1 = H, Wn = H ⊗Wn−1.

Notice that when applied to an n bit register whose qubits are each initially in state

|0〉, it results in an equal superposition of all possible states:

Wn|0〉 = (H ⊗H ⊗ · · · ⊗H)(|0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉)
= H|0〉 ⊗H|0〉 ⊗ · · · ⊗H|0〉

9

=
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ · · · ⊗ 1√

2
(|0〉+ |1〉)

=
1√
2n

2n−1∑
i=0

|i〉.

The last example we give will be useful when we discuss Shor’s factoring algorithm.

Example 1.8 The quantum Fourier transform with base 2n is given by

UQFT : |a〉 7→ 1√
2n

2n−1∑
c=0

e
2πica
2n |c〉.

Like the discrete Fourier transform, the quantum Fourier transform maps from the

time domain to the frequency domain. Thus, it maps a function of period r to a

function which has non-zero values only at multiples of 1/r. We will discuss this more

with respect to Shor’s algorithm. There are many papers that discuss the quantum

Fourier transform in detail [24, 25, 49, 36, 38].

2 Quantum Effects and Limitations

In this section I will very briefly survey a few of the interesting abilities and limitations

of quantum effects. Most of the details will be omitted, but can be found in various

places, including [53, 45, 57]. I will not discuss several interesting topics, including

random number generation, quantum cryptography and key distribution. See [57, 53]

for more on these topics.

As is standard in the literature, I will refer to two individuals who wish to com-

municate as Alice and Bob.

2.1 No Cloning

An important question that needs to be addressed is whether or not it is possible to

make a copy of a quantum register. That is, given a quantum register in state |φ〉,
can we make a copy of this state in another register, resulting in two registers with

state |φ〉|φ〉. This is referred to as cloning a state.

10

If the state of a register is known, there are methods for cloning it. Given an

unknown quantum state, there is certainly a transformation that will clone it, but

the transformation may be unknown.

More generally, is there a single tranformation that will clone every quantum

state? That this cannot be done was shown by Wootters and Zurek [58]. The proof

given below is an adaptation of the proofs in [45, 53].

Theorem 2.1 An unknown quantum state cannot be cloned.

Proof. Let U be a unitary transformation that can clone arbitrary states. Then

U(|a〉|0〉) = |a〉|a〉, and U(|b〉|0〉) = |b〉|b〉, where a 6= b. By linearity,

U(1/
√

2(|a〉+ |b〉)|0〉) = U(1/
√

2|a〉|0〉) + U(1/
√

2|b〉|0〉)
= 1/

√
2(|a〉|a〉+ |b〉|b〉)

6= (1/
√

2(|a〉+ |b〉)(1/
√

2(|a〉+ |b〉)

Thus, U cannot clone 1/
√

2(|a〉+ |b〉). Thus, the theorem is proven. ¤
We will discuss the implications of the no-cloning theorem again in Chapter 4.

2.2 Dense Coding

If Alice and Bob each have half of an EPR pair, then Alice can send Bob only one

qubit q, and communicate two classical bits of information to Bob. Alice accomplishes

this by entangling q with her half of the EPR pair in such a way that Bob can, upon

receiving q, perform operations on q and his half of the EPR pair to determine which

bits Alice wants to communicate. The EPR pair is destroyed in the process.

This is referred to as dense coding, since 2 bits of information are communicated

by sending only 1 qubit. Of course, Alice and Bob had to somehow each obtain half

of an EPR pair, so in some sense, one bit was already exchanged. The advantage

here is that the EPR pair can be exchanged when “rates are cheap”, and can be used

later when “rates are expensive” to communicate 2 bits by sending only one.

11

2.3 Teleportation

As with dense coding, here we assume Alice and Bob share and EPR pair. Telepor-

tation is a method that Alice can use to transmit the state of a quantum particle q

to Bob using only classical communication. Again, she entangles q with her half of

the EPR pair. She then sends classical information that Bob can use to determine

what transformation(s) to perform on his half of the EPR pair in order to transform

it to state q.

Since quantum data cannot be cloned (See Section 2.1), it is clear that the state

of Alice’s qubit will be destroyed in the process. The EPR pair will also be destroyed

in the process.

3 Quantum Algorithms

Some researchers [17] have argued that most currently known quantum algorithms

are, at least in some sense, the same. Most known quantum algorithms start by

placing the register in an equal superposition of all states, compute a function on the

inputs, perform a quantum Fourier transform, and finish with a measurement. This is

true of Simon’s algorithm [50], Shor’s factoring and discrete logarithm algorithms [49],

Kitaev’s algorithm for the Abelian stabilser problem [40], and several others.

The next two sections outline the two most celebrated quantum algorithms –

Shor’s factoring algorithm and Grover’s search algorithm.

3.1 Shor’s Algorithm

Since the supposed intractability of factoring is the basis for cryptosystems like RSA,

a polynomial-time quantum factoring algorithm is of interest to many people. A de-

tailed explanation of Shor’s factoring algorithm can be found in either Shor’s original

paper [49], or the slightly more accessible paper by Ekert and Jozsa [24]. Several of

the introductions to quantum computing [45, 56, 53, 57] give shorter explanations of

varying degrees of detail.

12

A well known probabalistic classical algorithm to find factors of a number N goes

as follows:

1. Pick a random number y such that 0 < y < N . If gcd(y, N) 6= 1, we have found

our factor, and we can quit. Otherwise, proceed.

2. Find the order of y modulo N . That is, the smallest number a such that

ya ≡ 1 mod N . If a is odd, go back to step 1. Otherwise, continue.

3. Notice that since a is even,

ya ≡ 1 mod N ⇐⇒ ya − 1 ≡ 0 mod N ⇐⇒ (ya/2 − 1)(ya/2 + 1) ≡ 0 mod N

Thus, as long as ya/2 6= ±1 mod N , then gcd(ya/2±1, N) are non-trivial factors

of N . If ya/2 = ±1 mod N , go back to step 1.

The probability that a random integer y has even order modulo N and that

ya/2 6= ±1 mod N is at least 1/2. Thus, this algorithm does not have to be repeated

too many times before one expects to find a non-trivial factor. The problem with this

algorithm classically is that there is no known efficient (polynomial-time) algorithm

to find the order of an element modulo N (Step 2).

Shor’s algorithm isn’t actually a factoring algorithm. It is a polynomial-time

quantum algorithm for finding the order of an element modulo N . Thus, the actual

algorithm is the above with Shor’s algorithm as Step 2.

Here is how Shor’s algorithm works.

1. Given the number N to factor, choose a number q = 2b such that N2 ≤ q < 2N2.

The choice of q a power of 2 assures that the quantum Fourier transform can be

computed efficiently. The fact that we choose q ≥ N2 is for more subtle reasons

dealing with the accuracy of the quantum operations.

2. Choose at random an integer x, 0 < x < N , such that gcd(x,N) = 1. This will

be the element whose order we will find.

13

3. We start with 2m qubits, which we will think of as two registers a and b. Both

a and b will start out in state |0〉. Thus, the initial state is

|0〉|0〉.

4. Apply Wm to a. This puts the first register in an equal superposition of all

integers from 0 to 2m − 1. The current state is now

1√
2m

2m−1∑
a=0

|a〉|0〉.

5. Compute xa mod N and place the result in b. Notice that since a is in an equal

superposition of all integers from 0 to 2m − 1, b is now in a superposition of

xa for all integers a from 0 to 2m − 1. In addition, the two registers are now

entangled accordingly. The current state is now

1√
2m

2m−1∑
a=0

|a〉|xa mod N〉.

6. Measure b. This will yield some value y, which we really don’t care about.

More importantly, b will collapse to the state y, and a will collapse to an equal

superposition of all values k such that xk ≡ y mod N . Let r be the order of

x, and let l be the smallest value such that xl = y. It is not hard to see that

xk ≡ y mod N if and only if k = l+rj for some j. Notice that there are A ≈ q/r

values of j such that 0 ≤ l + rj ≤ q. Thus, our current state is now

1√
A

A∑
j=0

|l + rj〉|y〉.

We will no longer deal with register b, so I won’t write it anymore. Thus our

state is
1√
A

A∑
j=0

|l + rj〉.

7. Notice that if we could measure the register twice, we could extract the period r

by a simple subtraction. Unfortunately, as previously stated, one measurement

14

will collapse the state, and a second measurement will yield the same result.

Thus, we need some trick to extract r. That is where the quantum Fourier

transform comes in. We compute the Fourier transform of a and get

1√
r

r−1∑
j=0

e2πilj/r)|j q

r
〉.

The reader can check this, or read all of the gory details in [24]. Notice that

the value l is not seen in this state. The Fourier transform extracted the period

of the function (actually the inverse of the period), wiping away the “shift” l.

Thus, it didn’t matter which state was measured in step 6.

8. Now, a measurement of a will yield some number j(q/r), where both j and

r are unknown. The value of r can be extracted with high probability using

the classical technique for continued fraction expansion. (See appendix A of

either [24, 45]).

9. Repeat the algorithm until it is successful. The procedure fails when one of the

following happens:

(a) r is odd.

(b) xr/2 ≡ ±1 mod N , so a trivial factor is found.

(c) j and r have a common factor. In this case, the period is a multiple of

the number found. This case can be salvaged some of the time. Since we

know a divisor of the period, we can determine if small multiples of the

returned number are the period.

(d) The continued fraction expansion can return an answer that is close, but

not close enough.

Repeating the process O(log r) < O(log n) times will amplify the success prob-

ability arbitrarily close to 1.

That Shor’s algorithm is polynomial is not absolutely clear. The complexity depends

on the time complexity of performing the Walsh-Hadamard Transform, the quantum

15

Fourier transform, and the computation of xa mod N . There are methods for per-

forming each of these in time polynomial in O(log N) [5]. Since the computation

must be repeated at most O(log r) < O(log n) times, the total complexity is still

polynomial in O(log N).

3.2 Grover’s Algorithm

Many problems in computer science can be thought of as search problems. Given a list

of elements, one wishes to pick out an element with a certain property. Often problems

of this type have some sort of structure that can be exploited to make searching rather

quick. However, some problems have no structure that can be exploited. These

problems are often referred to as unstructured search problems.

For an unstructured search problem, the best a classical algorithm can do is to

search through the list one by one. Whether this is done randomly or in some order,

the complexity will be O(n), where n is the size of the list. Grover’s algorithm solves

the problem in time O(
√

n) on a quantum computer. This is an example of a quantum

algorithm that is provably better than what can be done on a classical computer. (It

should be noted that it hasn’t been proven that Shor’s algorithm is more efficient than

any classical factoring algorithm. It is exponentially faster than any known classical

algorithm.)

In Grover’s original paper [32], he assumed that only one element has the given

property. When there are t elements with the given property, the complexity is

O(
√

n/t) [12]. Grover’s algorithm is discussed in detail by various researchers [32,

33, 34, 39] and has been shown to be optimal [10, 32, 35, 59].

We will state the unstructured problem more precisely. Given an unstructured list

of n elements and some property P , we wish to find an element x from the list such

that P (x) is true. That is, P will return 1 if x satisfies the property and 0 otherwise.

For the algorithm, we will make several assumptions. First, the items on the list

correspond to the 2m possible base states in a m-qubit quantum register. Second, we

have an efficient method for determining whether or not P (x) is true for a given x

16

without measuring. In other words, we have a quantum gate which acts as follows:

UP : |x〉|0〉 7→ |x〉|P (x)〉

Lastly, we will assume just one value x has P (x) = 1. If there are more than one,

the only modification needed is to change the number of times the algorithm is re-

peated [12].

The algorithm is as follows:

1. As in Shor’s algorithm, we start with 2m qubits, which we will think of as two

registers a and b. Both a and b will start out in state |0〉. Thus, the initial state

is

|0〉|0〉.

2. Apply Wm to a. This puts the first register in an equal superposition of all

integers from 0 to 2m − 1. The current state is now

1√
2m

2m−1∑
a=0

|a〉|0〉.

3. Compute the transformation UP . For the first iteration, we obtain

1√
2m

2m−1∑
a=0

|a〉|P (a)〉.

It seems at this point we could measure the second register. If we measure 1,

we know the first register is in a superposition of those x such that P (x) =

1, so we can then measure the first register and obtain one of the desired x.

Unfortunately, if t is the number of values of x such that P (x) = 1, then the

probability of measuring 1 in the second register is t/2m, which is small if t is

small. Even if t is large, this would be no better than the classical algorithm.

4. Apply a transformation that changes the sign of the amplitude of the x for

which P (x) = 1. There is an efficient method for doing this [32]. This will

result in the amplitudes of the states looking something like the following:

17

......

5. Apply inversion2 about the average to the first register. This means that the

amplitudes of each state will be as much above (below) the average as they were

below (above). The method of performing this operation is given in [32, 45].

This will result in the amplitude of the x for which P (x) = 1 to be about twice

as large, and the amplitudes of the other states to be just slightly lower. It will

look something like the following

......

6. Repeat steps 3 through 5 π
4

√
2m times.

7. Measure the second register. Now with a high probability, a 1 will be obtained,

and a measurement of the first register will yield the correct value of x.

4 Quantum Error-Correction

4.1 Introduction and Brief History

So far the picture I have painted of quantum computing looks too good to be true.

In a sense it is. So far in the discussion, I made three assumptions:

• All of the transformations discussed can be implemented perfectly,

• no errors occur when applying transformations to quantum states, and

• the state of a quantum register is independent of the environment.

2reflection

18

Unfortunately, none of these assumptions is valid. Some of transformations discussed

can only be implemented within a certain threshold. When applied repeatedly, the

transformations may lead to states that are not close enough to the desired result. The

method of implementation of the quantum computer (Two promising implementations

include the use of cold trapped ions [16] or Nuclear Magnetic Resonance (NMR) [28, 37,

46]) can possibly bring with it causes of different sources of errors. Different quantum

systems are prone to different errors. There may also be restrictions on the amount

of precision with which a transformation may be implemented or a measurement may

be made. In short, the gates required for quantum computation are not perfect.

On top of this, the state of a register can become entangled with the environment.

In other words, the state of the register and the state of the environment are not

independent. When this happens, the state of the register starts to decay to a classical

state. This process is referred to as decoherence.

One may ask how bad these problems are. Steane [53] estimates that the rate of

decoherence is about 107 times too fast to perform factorization on a 130 digit number.

Thus, it is unreasonable to expect that we can implement quantum computers on a

large scale without some way of protecting against errors. In addition, when errors

occur, there must be a method of undoing them. The goal of the field of quantum

error-correction, much like its classical counterpart, is precisely this.

In some sense, classical codes seem to rely on the ability to copy the data which is

being protected. Since copying (cloning) a quantum state is impossible (Theorem 2.1),

it was thought that perhaps quantum error-correction was impossible. But quantum

error-correcting codes do exist.

In 1995 and 1996, Shor [47], Steane [54, 52], and Calderbank and Shor [15] pub-

lished the seminal results in the theory of quantum error correction. In 1996, Bennett

et al. [7] related the idea of quantum error correction to entanglement purification

protocols. The theory was more formalized by Knill and Laflamme [41], and Calder-

bank et al. [13, 14] in 1997. Some very recent papers transfer the ideas of cyclic

codes [29], BCH codes [30] and Reed-Solomon codes [31] to quantum codes.

19

An important consideration when dealing with quantum error correction is that

the methods that attempt to correct errors are not perfect, so they introduce errors.

Fortunately, it is possible to implement error correction so that the amount of overall

noise (error) after the process is reduced [48].

For the remainder of this paper, we will assume that the process of error correction

acts perfectly – that is, it introduces no additional errors.

4.2 Quantum Error Model

We have discussed the idea of errors in quantum states, but have not defined what an

error is. Below we state the error model we will work with. Many authors [13, 14, 53]

work under this error model.

Recall the Pauli Matrices defined earlier: X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, and

Y = XZ.3 When applied to a qubit, X corresponds to a bit flip, Z to a phase error,

and Y to both. Notice that the set P = {±I,±X,±Y,±Z} forms a group isomorphic

to the dihedral group D4.

The error model we use is based on two assumptions. First, each error occurs

randomly and effects only one qubit. Thus, if a quantum register experiences errors

in t qubits, the errors are all independent of each other. Second, the possible error

transformations are those described by the Pauli matrices.

Given these assumptions, we see that the possible errors are members of the group

E of tensor products ±w1 ⊗ · · · ⊗ wn, where each wi ∈ {I, X, Y, Z}. The group E
is a subgroup of the unitary group U(2n). The weight of an error is the number of

matrices wi 6= I in the tensor product.

In reality, errors may not act independently on each qubit, and may have non-

discrete phase changes. It turns out that any code that corrects t errors under these

assumptions will correct arbitrary errors on t qubits [7, 41, 13, 14, 43]. Thus, the

restriction is not too severe.

3Some authors define Y = iXZ.

20

4.3 Quantum Error-Correcting Codes

Assume we have a k-qubit register we wish to encode. Let the state of the register be

|φ〉. The error correction scheme will use k+2(n−k) qubits. We begin by encoding the

first k qubits with an additional n− k qubits, initially in state |0〉: E(|φ〉|0〉) = |φe〉.
The set of encodings forms a subspace of the n-qubit register. From now on, we can

imagine that the first n qubits form an n-qubit register. The last n−k bits are called

an ancilla, and are used to extract the syndrome as will be described shortly. They

will be set to state |0〉 before the error detection is done.

Let M ∈ E be an error that effects our quantum state |φE〉. The state of the

system after the error is applied is M |φE〉. We wish to be able to reconstruct |φE〉
from M |φE〉, where we do not know which error M occurred.

Each encoding scheme E has a set S of correctable errors. That is, if M ∈ S, then

the state |φE〉 can be recovered from M |φE〉. Each error Ms ∈ S has associated with

it a syndrome s, and there is an operation A which will extract the syndrome state |s〉
given the state Ms|φE〉. That is, A(Ms|φE〉|0〉) = Ms|φE〉|s〉. The syndrome states

are mutually orthogonal so that they are distinguished by measurement. Given the

syndrome |s〉, we know which error occurred, and we can apply the inverse operator

M−1
s to recover the state |φE〉. We can then reset the ancilla back to |0〉 for use again.

Now assume that several errors from the set S occur. Then the state of the register

will become ∑
s

|es〉Ms|φE〉,

where |es〉 are states of the environment. If we apply A to the state, we obtain

∑
s

|es〉(Ms|φE〉)|s〉.

Measuring the ancilla state will collapse the state to |es〉(Ms|φE〉)|s〉 for some s,

removing all but one error, which we can correct as before.

Given the general idea of quantum error correction, the obvious question is which

errors an encoding E correct. It is more useful to think of the code as a subspace

21

rather than an encoding. Knill and Laflamme [41] (see also [43]) gave a simple

characterization of the sets of errors correctable by a code:

Theorem 4.1 Let Q be a subspace of an n-qubit quantum register of dimension at

least three, and let T be any set of 2n×2n matrices. Then the following are equivalent:

1. Q allows correction of all errors in T ;

2. all errors E∗
1E2 such that E1, E2 ∈ T are detectable relative to Q;

3. for all E1, E2 ∈ T , and all x, y ∈ Q, if x and y are orthogonal, then E1x and

E2y are orthogonal;

4. for all E1, E2 ∈ T , there exists a scalar λ(E1,E2) such that for all x ∈ Q,

〈E1x,E2x〉 = λ(E1,E2)|x|2;

5. for each error E = E∗
1E2 such that E1, E2 ∈ T , there exists a scalar λE such

that

ΠQEΠQ = λEΠQ,

where ΠQ is the orthogonal projection onto Q.

In practice, certain errors and types of errors occur more often than other types.

The trick is to find quantum error-correcting codes E that will correct the most

common errors. This is a difficult task. The most obvious, and most studied, types

of codes are those which correct all errors affecting t or less qubits. These are called

t-error correcting codes. There is an interesting method, developed by Shor and

Calderbank [15] and Steane [54], for using classical codes and their duals for quantum

error correction. I will conclude this section with a discussion of the ideas behind this.

Linear classical error-correcting codes will correct X-errors. Since X-errors are

bit flips, we can use a classical code C to encode our k-qubit state to the n-qubit

state corresponding to the codewords of C. Recall that the syndrome extraction of a

linear code depends on only the error, not the codeword itself. Thus, no matter what

22

state the register is in, the error can be corrected. Thus, we can use an [n, k, d] code

to correct up to (d− 1)/2 X-errors.

Unfortunately, we cannot use these codes to correct Z-errors. However, notice that

Z = WnXWn, where Wn is the Walsh-Hadamard transform discussed in example 1.5.

So correcting Z-errors is equivalent to rotating the state of each qubit by H, correcting

X-errors, and rotating back. Steane [54] noticed that

Wn

∑
i∈C

|i〉 =
1√
2k

∑

j∈C⊥

|j〉.

This fact can be used to correct Z-errors using C⊥.

Since Y -errors are a combination of X- and Z-errors, it should be evident at this

point that good quantum error-correcting codes can be obtained from good classical

linear codes C for which C⊥ is also a good code. In fact, linear classical codes which

are contained in their dual (such codes are called weakly self-dual) work very well as

quantum codes. Various authors have investigated weakly self-dual codes, and their

error-correcting capability as quantum codes. Calderbank et al. discuss quantum

codes over GF (4) [14], Grassl and Beth discuss quantum BCH [30] and cyclic [29]

codes, and Grassl, Geiselmann, and Beth discuss quantum Reed-Solomon codes [31].

5 Conclusions

We have seen that quantum computers are capable of performing some tasks faster

than any classical computer. There seem to be two major hurdles in making quantum

computing a reality. The first is implementation. Although many researchers are

currently working on different methods of implementation, the largest experiments

done thus far involve tens of qubits, whereas useful quantum computing will require

at least thousands of qubits. One should keep in mind, however, that the field of

quantum computing is in its infancy, and much progress is expected over the next 10

to 30 years in regards to this issue.

The second is the problem of decoherence. However, the fields of error-correcting

coding theory and fault-tolerant quantum computing are moving forward rapidly.

23

Many researchers now believe that the errors can be dealt with sufficiently to allow

quantum computations on the scale required to solve interesting problems.

Even if quantum computing never becomes a reality, the study of quantum com-

puting has helped to bring better understanding of fields ranging from quantum me-

chanics and physical systems to information theory and computational complexity.

24

References

[1] A. Barenco. A universal two-bit gate for quantum computation. Proc. R. Soc.

Lond. A, June 1995. quant-ph/9505016.

[2] A. Barenco. Quantum physics and computers. Contemp. Phy.s, 37:375, 1996.

quant-ph/9612014.

[3] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor,

T. Sleater, J. Smolin, and H. Weinfurter. Elementary gates for quantum com-

putation. Physical Review A, 1996. quant-ph/9503016.

[4] A. Barenco, D. Deutsch, and Q. Ekert. Conditional quantum dynamics and logic

gates. Phys. Rev. Lett., 74:4083–4086, 1995. quant-ph/9503017.

[5] D. Beckman et al. Efficient networks for quantum factoring. quant-ph/9602016,

1996.

[6] J.S. Bell. On the einstein poldosky rosen paradox. Physics, 1:195–200, 1964.

[7] C.H. Bennet, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters. Mixed-state

entanglement and quantum error correction. Phys. Rev. A, 54(5):3824–3851,

Novermber 1996.

[8] C.H. Bennett. Logical reversibility of computation. IBM J. Res. Devel., 17:525–

532, Nov. 1973.

[9] C.H. Bennett and P.W. Shor. Quantum information theory. IEEE Transactions

on Information Theory, October 1998.

[10] C.H. Bennett et al. Strengths and weaknesses of quantum computing. Siam J.

Comput., 26(5):1510–1523, October 1997.

[11] A. Berthiaume. Quantum computation. In Complexity Theory Retrospective II.

Springer-Verlag, 1996.

25

[12] M. Boyer et al. Tight bounds on quantum searching. In Proceedings of the

Workshop on Physics of Computation: PhysComp ’96, Los Alamitos, CA, 1996.

IEEE Society Press. quant-ph/9605034.

[13] A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane. Quantum error

correction and orthogonal geometry. Phys. Rev. Let., 78(3):405–408, January

1997.

[14] A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane. Quantum error

correction via codes over gf(4). IEEE Trans. Information Theory, to appear

1997. quant-ph/9608006.

[15] A.R. Calderbank and P.W. Shor. Good quantum error-correcting codes exist.

Phys. Rev. A, 54(2):1098–1105, August 1996.

[16] J.I. Cirac and P. Zoller. Quantum computation with cold trapped ions. Physical

Review Letters, 74(20):4091–4094, May 1995.

[17] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revis-

ited. Phil. Trans. R. Soc. Lond. A, 1996. quant-ph/9708016.

[18] D. Deutsch. Quantum theory, the church-turing principle and the universal

quantum computer. Proc. R. Soc. Lond. A, 400:97–117, 1985.

[19] D. Deutsch. Quantum computational networks. Proc. R. Soc. Lond. A, 425:73–

90, 1989.

[20] D. Deutsch, A. Barenco, and A. Ekert. Universality in qunatum computation.

Proc. R¿ Soc. Lond. A, 449:669, Jun3 1995. quant-ph/9505018.

[21] P.A.M. Dirac. The principles of Quantum Mechanics. The International Series

of Monographs on Physics (27). Oxford University Press, New York, 4th edition,

1958.

[22] D.P. DiVincenzo. Quantum gates and circuits. Phil. Trans. R. Soc. Lond. A,

December 1996.

26

[23] A. Einstein, B. Poldosky, and N. Rosen. Can quantum-mechanicaldescriptions

of physical reality be considered complete? Physicsl Review, 47:777–780, 1935.

[24] A. Ekert and R. Jozsa. Quantum computation and shor’s factoring algorithm.

Rev. of Mod. Phys., 68(3):733–753, July 1996.

[25] A. Ekert and R. Jozsa. Quantum algorithms: Entanglement enhanced informa-

tion processing. Phil. Trans. Roy. Soc. (Lond.), 1998. quant-ph/9803072.

[26] R.P. Feynman. Simulating physics with computers. Iner. J. of Th. Phys.,

21(6/7):467–488, 1982.

[27] R.P. Feynman. Feynman Lectures on Computation. Addison-Wesley Publishing

Company, Inc, 1996. Chapter 6 reprinted from Optics News, February 1985,

11-20.

[28] N.A. Gershenfeld and I.L. Chuang. Bulk spin-resonance quantum computation.

Science, 275:350–356, January 1997.

[29] M. Grassl and T. Beth. Cyclice quantum error-correcting codes and quantum

shift registers. quant-ph/9908061, October 1999.

[30] M. Grassl and T. Beth. Quantum bch codes. quant-ph/9908060, October 1999.

[31] M. Grassl, W. Geiselmann, and T. Beth. Quantum reed-solomon codes. quant-

ph/9910059, October 1999.

[32] L.K. Grover. A fast quantum mechanical algorithm for database search. In Pro-

ceedings, 28th Annual ACm Symposium on the Theory of Computing (STOC),

pages 212–219, May 1996. quant-ph/9605043.

[33] L.K. Grover. A framework for fast quantum mechanical algorithms. quant-ph/-

9711043, 1997.

[34] L.K. Grover. Quantum mechanics helps in searching for a needle in a haystack.

Phys. Rev. Lett., 78(2):325–328, July 1997. quant-ph/9706033.

27

[35] L.K. Grover. How fast can a quantum computer search? quant-ph/9809029,

Sept 1998.

[36] P. Hoyer. Efficient quantum transforms. quant-ph/9702028, 1997.

[37] J.A. Jones and M Mosca. Implementation of a quantum algorithm to solve

deutsch’s problem on a nuclear magnetic resonance quantum computer. Journal

of Chemical Physics, 109:1648, 1998. quant-ph/9801027.

[38] R. Jozsa. Quantum algorithms and the fourier transform. quant-ph/9707033,

1997.

[39] R. Jozsa. Searching in grover’s algorithm. quant-ph/9901021, Jan 1999.

[40] A.Y. Kitaev. Quantum measurment and the abelian stabilizer problem. quant-

ph/9511026, 1995.

[41] E. Knill and R. Laflamme. Theory of quantum error-correcting codes. Phys.

Rev. A, 55(2):900–911, February 1997.

[42] E. Knill, R. Laflamme, and L. Viola. Theory of quantum error correction for

general noise. quant-ph/9908066, August 1999.

[43] W. Martin. A physics-free introduction to quantum error correcting codes. un-

published?

[44] J. Preskill. Quantum computing lecture notes from physics 229 at caltech., 1997.

Available at http://www.theory.caltech.edu/people/preskill/ph229.

[45] E. Rieffel and W. Polak. An introduction to quantum computing for non-

physicists. quant-ph/9809016, August 1998.

[46] L.J. Schulman and U. Vazirani. Scalable nmr quantum computation. quant-ph/-

9804060, 1998.

[47] P.W. Shor. Scheme for reducing decoherence in quantum computer memory.

Phys. Rev. A, 52(4):R2493–R2496, October 1995.

28

[48] P.W. Shor. Fault-tolerant quantum computation. quant-ph/9705011, 1997.

[49] P.W. Shor. Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. Siam. J. Comput., 26(5):1484–1509, October

1997.

[50] D.R. Simon. On the power of quantum computation. Siam J. Comput.,

26(5):1474–1483, October 1997.

[51] T. Sleator and H. Weinfurter. Realizable universal quantum logic gates. Phys.

Rev. Lett., 74(20):4087–4090, May 1995.

[52] A. Steane. Multiple-particle interference and quantum error correction. Proc. R.

Soc. Lond. A, 452:2551–2577, 1996.

[53] A. Steane. Quantum computing. Rept. Prog. Phys., 61:117–173, 1998. quant-

ph/9708022.

[54] A.M. Steane. Error correcting codes in quantum theory. Phys. Rev. Let.,

77(5):793–797, July 1996.

[55] V. Vedral, A. Barenco, and E. Ekert. Quantum networks for elementary arith-

metic operations. Phys. Rev. A, 1995. quant-ph/9511018.

[56] V. Vedral and M.B. Plenio. Basics of quantum computation. Porgress in Quan-

tum Electronics, 22, 1998. quant-ph/9802065.

[57] C.P. Williams and S.H. Clearwater. Explorations in Quantum Computing.

Springer-Verlag, New York, 1998.

[58] W.K. Wootters and W.H. Zurek. A single quantum cannot be cloned. Nature,

299:802–803, October 1982.

[59] C. Zalka. Grover’s quantum searching algorithm is optimal. quant-ph/9711070,

1997.

