CSCI 235
Homework 10
Name_________________________

CSCI 235
Homework 10
Name_________________________

Download the MysteryAlgorithmData.xlsx spreadsheet that is linked from the Homework 10 page (where you probably downloaded this file from). The code for the various algorithms should also be linked from the Homework 10 page.

For each set of algorithms, use the data/charts in the spreadsheet to find a formula for each algorithm (feel free to create your own charts based on the data if you think it will help). Then provide a simple tight bound for the algorithm based on the formula. Finally, using this information and what you know about the various data structures, determine which version is which. A sample solution is included below for problem 0.
You should type your answers in the appropriate spots and print it when you are done. Print just the second page and hand it in at the beginning of class.
0. Inserting at the End (Begins with empty list, inserts n times)
This one is completed for you as an example. It includes my reasoning for my choices. You are not required to give justification, but you may provide it if you wish.
An analysis of the algorithms leads to the expectation that inserting n things at the end should be O(n) for all 4 data structures since each insertion should take constant time. The chart below seems to indicate that they are all indeed linear, except possibly E2 which looks like it could be growing a little faster.

Since they are all linear, I need to think a little more carefully to try to differentiate them. I would expect one of two things:

· ArrayList and Integer array will have similar running times because they both deal with Objects, or

· Object and int arrays would be similar because they are both arrays and don't suffer from possible overhead associated with an ArrayList.

Since we are inserting at the end, I would expect that the ArrayList is not doing anything clever to save time, so the overhead will likely make it worse than the two array implementations, so I’ll go with the second possibility. (If we were inserting at the beginning or middle, I might expect that ArrayList could have some clever way of shifting elements that is faster than our method of doing it).

I would expect the int array to be slightly faster than the Integer array due to potential overhead when dealing with the Integer objects. Finally, since LinkedLists have to set 2-3 pointers (previous and next, and probably also the tail since we are inserting at the end), I suspect it will be slower than the others which only have to set one value (assign the element to the array).

Based on these things, here are my conclusions:
	Algorithm
	Formula
	Bound (()
	Algorithm
	
	Choices

	E1
	.068n
	O(n)
	Integer Array
	
	LinkedList

	E2
	.124n
	O(n)
	LinkedList
	
	ArrayList

	E3
	.048n
	O(n)
	int array
	
	Integer array

	E4
	.087n
	O(n)
	ArrayList
	
	int array

1. Insert at the beginning (Begins with empty list, inserts n times)
	Alg.
	Formula
	Bound (()
	Algorithm
	
	Choices

	B1
	
	
	
	
	LinkedList

	B2
	
	
	
	
	ArrayList

	B3
	
	
	
	
	Integer array

	B4
	
	
	
	
	int array

2. Insert in the middle (Begins with empty list, inserts n times)
	Alg.
	Formula
	Bound (()
	Algorithm
	
	Choices

	M1
	
	
	
	
	LinkedList

	M2
	
	
	
	
	ArrayList

	M3
	
	
	
	
	Integer array

	M4
	
	
	
	
	int array

3. Binary search (Performs a single binary search on an array of size n)
	Alg.
	Formula
	Bound (()
	Algorithm
	
	Choices

	BS1
	
	
	
	
	LinkedList

	BS2
	
	
	
	
	ArrayList

	BS3
	
	
	
	
	Integer array

	BS4
	
	
	
	
	int array

4. Sorting (Sorts a single array of size n)
	Alg.
	Formula
	Bound (()
	Algorithm
	
	Choices

	S1
	
	
	
	
	Insertion Sort int array

	S2
	
	
	
	
	Insertion Sort ArrayList

	S3
	
	
	
	
	Insertion Sort Linked List

	S4
	
	
	
	
	Quicksort int array

	S5
	
	
	
	
	Quicksort ArrayList

	S6
	
	
	
	
	Quicksort LinkedList

