
 1 

An Introduction to Ray Tracing 

 

Ryan McFall 

Last Revised: December 4, 2008 

1. INTRODUCTION 

Ray tracing is a computer graphics technique used to generate extremely realistic 

renderings of images.  A ray traced scene consists of several objects located in space, 

along with a "camera" describing the viewer's location in space and the direction that 

viewer is looking.  The portion of space visible to the viewer is called the view plane.  

Ray tracing works by breaking the view plane up into a rectangular grid of points, called 

pixels, and then "shooting" rays from the camera through each pixel to determine which 

object in the scene is first hit by the ray.  The color of that pixel is then determined based 

on the color of the hit object, its location in relation to the light sources in the scene, and 

properties of the object such as reflectivity and transparency.  Once rays through all the 

pixels in the view plane have been traced, the scene can be drawn. 

The figure below, taken from Hill (Hill & Kelley, 2007) shows the basic idea.  The figure 

labels the view plane as the frame buffer (which is the term used to refer to the area of 

memory allocated to hold the information currently shown on the computer’s display). 

 

The following tasks make up the process of ray tracing a scene: 

1. Determining the properties of a ray through each pixel in the final image.  This 

involves transforming pixel coordinates into the coordinates of the scene, and is a 

reasonably straight-forward computation. 

2. Determining the object in the scene first hit by the ray (if any), and determining 

properties of the object at the point of intersection.  These properties include the 

normal vector (a vector perpendicular to the surface at the point of intersection) 

and the color of the object at that point. 



 2 

3. Determining the amount of light shining upon the point of intersection, and using 

this information to compute the color of reflected light.  This may also involve 

computations to implement shadowing, reflection, and transparency. 

POV-Ray is a powerful application that illustrates the types of images that can be created 

using a ray tracing approach.  It may be helpful for you at this point to play around with 

POV-Ray to get a feel for the ray tracing process.  POV-Ray is freely available at 

http://www.povray.org/ 

2. DETERMINING WHEN AN OBJECT IS HIT BY A RAY 

To perform step 2 above, we first need to be able to describe a Ray mathematically.  

Fortunately, this is fairly simple to so.  A ray is characterized by both a starting location 

and a direction.  We set the starting location to be the camera location C, and construct 

the direction by computing the vector Px-C, where Px is the location of a particular pixel 

in the view plane.  The ray is then described parametrically by the equation: 

R(t) = C+t*(Px-C) 

Verify that this ray is indeed at the point C when t=0 and at the point Px when t=1.  For 

values of t > 1, the ray continues on into the scene. 

Many simple objects, such as planes, cubes, spheres and cylinders can also be described 

mathematically.  For example, the mathematical definition of a plane is: 

n dot (P-B) = 0 

where n is a vector that is perpendicular to the surface (called a normal vector), B is a 

point on the plane, and dot represents the mathematical dot product operator.  Any point 

P that satisfies the above equation is on the plane; points that do not satisfy the equation 

are not on the plane. 

As a concrete example, consider the plane of the floor of the room you are in.  This is 

actually a subset of a plane, since planes extend infinitely, but we’ll ignore that for 

simplicity’s sake.  There are two vectors that are perpendicular to the plane – one points 

straight up, and one points straight down.  The numerical description of these vectors are 

(0, 1, 0) and (0, -1, 0), with the negative value indicating down while the positive value 

indicates up. 

Just knowing the normal vector doesn’t help us identify a particular plane; in the room 

you are in, both the floor and the ceiling will share the same normal vectors.  As soon as 

you are given a point B on that plane, however, you know whether the plane in question 

is on the floor or the ceiling (or one of the infinite planes with the normal vectors 

described above between the floor and the ceiling). 

Once we have mathematical representations of the ray and the objects in the scene, a 

small amount of mathematics can give us the point(s) at which the ray intersects the 

object.  For the plane example given above, we know that the point of intersection must 



 3 

satisfy the equation n dot (P-B) = 0.  Every point on the ray is of the form 

C+t*(Px-C).  Thus, we can replace P in the equation n dot (P-B) = 0 with 

P=C+t*(Px-C): 

n dot (C+t*(Px-C)-B) = 0 

Solving for t will find the value of t where the intersection occurs; plugging this value of t 

back into the equation of the ray gives us the actual coordinates of intersection. 

2.1. Implementing Hit Methods for Generic Objects 

The package mcfall.raytracer.objects contains classes for several types of 

generic 3-dimensional shapes.  Each of these classes implements the interface 

ThreeDimensionalObject (located in the mcfall.raytracer package) which 

contains the following important methods: 

• List<HitRecord> hitTime (Ray r) 

• void transform (Matrix m) 

The hitTime method gives a list of HitRecord objects describing the “times” (values 

of t) where the ray r hits that 3-D object.  In addition to the time, the normal vector to the 

surface at the point of intersection is also returned. 

The transform method uses the mathematical matrix multiplication operation to 

transform the object’s shape.  Matrices can be used to translate (move), scale (resize) and 

rotate the object.  If a series of the above transformations are applied to an object, it is 

easy to find the time that a ray hits a transformed version of an object based on the time 

that a related ray hits a generic version of that object.  A sphere of radius 1 centered at the 

origin is an example of a generic object. 

The class MathematicalObject implements ThreeDimensionalObject and 

provides the functionality to find the hit time for a transformed object, leaving it up to 

sub-classes of MathematicalObject to compute when a particular ray hits a generic 

version of that object.  MathematicalObject leaves this computation up to its sub-

classes by declaring an abstract method named genericHitTime (Ray r). 

The responsibility of the generic classes, such as GenericPlane, is then to implement 

the method genericHitTime.  This is generally a straightforward implementation of 

the mathematical solution derived using the process described in section 2. 

3. AN OVERVIEW OF TRACING A SCENE 

The RayTracer class, located in the package mcfall.raytracer, contains the 

logic that drives the ray tracing process.  An instance of a RayTracer object is 

constructed by passing a Scene object as a parameter.  The Scene object contains 

information about each object in a scene, including what transformations have been 

applied and properties such as color, how reflective the object is and whether or not it is 



 4 

transparent.  In addition to the objects, the scene also describes the location of the camera 

viewing the scene, and the size of the view plane that the camera is looking through. 

Tracing the scene begins with a call to the startProduction method.  This method 

iterates through each pixel in the view plane, determining the ray that starts at the camera 

and goes through that pixel.  The tracePixel method is then called for that ray, 

returning the color of the object, if any, that was hit by the ray.   

tracePixel is also simple: it asks the scene to determine which object is first hit by 

the given Ray, and determines the color of the hit location using the RayTracer 

method computeColor if an object was indeed hit by the ray.  computeColor uses 

information about each light source in the scene and the material properties of the object 

that has been hit.  The actual light computations occur in the Light class, and use a 

simple mathematical model of how light works to compute the color of the pixel.  This 

lighting model is beyond the scope of this project, but references can be found in (Hill & 

Kelley, 2007). 

The Scene class’ firstObjectHitBy method calls each object’s hitTime method, 

as described in section 2.1 on page 3.  It stores the hit records returned into an array, so 

that at the end of the loop there are hit records for each object hit by the ray.  It then 

makes use of the built-in Java sorting algorithm implemented in the static sort method 

of the class Arrays. 

4. SCENE FILES 

Scenes are described using XML (eXtensible Markup Language) files.  For the purposes 

of this project, all that needs to be known about XML is that it is a text file that uses 

markup to describe the structure of data.  The structure of the data is indicated using 

elements, while additional information about a particular element can be included using 

attributes of that element. 

Rules about valid elements and their sequencing, as well as the attributes that can be used 

to annotate the elements, are contained in a file called a Document Type Declaration 

(DTD).  A DTD is provided as part of the project distribution in the file Scene.dtd, 

located in the root folder of the distribution.  However, the easiest way to learn how to 

create a particular scene file is to use the example files included as part of the 

distribution. 

 

Bibliography  

Hill, F. S.,Jr. and Stephen M. Kelley. Computer Graphics using OpenGL. 3rd ed.Prentice 

Hall, 2007.  


