MATH 160 Spring 2026
Introduction to Discrete Mathematics
Charles Cusack
Math & Stats
Hope College
Main
Schedule
Grading
Gradebook
Homework

Policies
Advice
College
    Policies

Notes
Programs
Tutorials
Handin

CSCI 125
CSCI 255
Others

Admin

Homework 6

Details

  1. (4) AIDM Problem 3.1 on page 129.
  2. (8) Let \(U=\{A,B,C,...,Z\}\) (the capital letters of the English alphabet) be the universal set and \(S=\{A, B, C, D\}\).
    1. What is \(|S|\)?
    2. What is \(|P(S)|\)?
    3. How many subsets does \(S\) have?
    4. What is \(|\overline{S}|\)
  3. (2) Is \(\mathbb{Z}^+\cup\mathbb{Z}^-=\mathbb{Z}\)? Clearly explain.
  4. (8) Let \(A=\{2x | x\in\mathbb{Z}\}\) and \(B=\{3x | x\in\mathbb{Z}\}\). Express each of the following using set notation.
    1. \(A\cup B\)
    2. \(A\cap B\)
    3. \(A\setminus B\)
    4. \(A\times B\)