|
| Homework 6Details
- (4) AIDM Problem 3.1 on page 129.
- (8) Let \(U=\{A,B,C,...,Z\}\) (the capital letters of the English alphabet) be the universal set and
\(S=\{A, B, C, D\}\).
- What is \(|S|\)?
- What is \(|P(S)|\)?
- How many subsets does \(S\) have?
- What is \(|\overline{S}|\)
- (2) Is \(\mathbb{Z}^+\cup\mathbb{Z}^-=\mathbb{Z}\)? Clearly explain.
- (8) Let \(A=\{2x | x\in\mathbb{Z}\}\) and \(B=\{3x | x\in\mathbb{Z}\}\).
Express each of the following using set notation.
- \(A\cup B\)
- \(A\cap B\)
- \(A\setminus B\)
- \(A\times B\)
|
|
|